
Cartesian Programming: The TransLucid
Programming Language

John Plaice and Blanca Mancilla

School of Computer Science and Engineering
The University of New South Wales
unsw sydney nsw 2052, Australia

{plaice,mancilla}@cse.unsw.edu.au

Abstract. The TransLucid programming language is a low-level inten-
sional language, designed to be sufficiently rich for it to be the target lan-
guage for translating the common programming paradigms into it, while
still being fully declarative. The objects manipulated by TransLucid,
called hyperdatons, are arbitrary-dimensional infinite arrays, indexed by
multidimensional tuples of arbitrary types.
We present the syntax, denotational and operational semantics for a
simple TransLucid system, consisting of 1) a header detailing how ex-
pressions should be parsed, 2) a set of libraries of types, and operations
thereon, defined in a host language, 3) a set of TransLucid equations,
and 4) a TransLucid demand to be evaluated.
The evaluation of a demand for an (identifier, context) pair is undertaken
using eduction, where previously computed pairs are stored in a cache
called a warehouse. The execution ensures that only those dimensions
actually encountered during the execution of an expression are taken
into account when caching intermediate results.

Key words: Cartesian programming, Lucid language, declarative programming,
multidimensional programming, context-aware programming, semantics.

1 Introduction

This paper presents the TransLucid programming language, in which variables
define hyperdatons, infinite multidimensional arrays of arbitrary dimensionality,
indexed by dynamically generated lazy tuples. The infinite nature of the hyper-
datons allows the natural encoding of the set of possible states in an imperative
language or the set of possible functions in a functional language; it is even pos-
sible to encode hyperdatons of functions, thereby providing a simple solution to
adding higher-order functions to the Lucid programming language [6]. The lazy
tuples — reminiscent of those of Linda [2] — and the declarative nature of the
language ensure that an easily written, efficient, multithreaded implementation
can be generated.

The multidimensional nature of the hyperdaton supports a Cartesian ap-
proach to computing. Descartes radically simplified geometry by giving it an

Dagstuhl Seminar Proceedings 08271
Topological and Game-Theoretic Aspects of Infinite Computations
http://drops.dagstuhl.de/opus/volltexte/2008/1654

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

algebraic basis; the simplicity of the coordinate system that he introduced made
previously difficult problems trivial, and laid the foundations for all of modern
mathematics and science. Similarly, the hyperdaton means that there is simply
no further need to describe the “evolution” of a variable, either through space
or time or with respect to some virtual dimensions, since one can simply con-
sider the Cartesian product of all of the possible dimensions—including time
and space—to create an index and then to demand the value of that variable at
that point. With TransLucid, we are introducing Cartesian Programming.

The original version of TransLucid used eager tuples and was presented
in [1]—we now call that language Eager TransLucid. The history of the de-
velopment leading from the original Lucid to TransLucid is presented in [3].
The eductive implementation of Eager is given in [4]. The first multithreaded
implementation of TransLucid is given in [5].

In this article, we develop the TransLucid language so that it can be used
as a production language, covering the relationship between the concrete and
abstract syntaxes and the denotational and operational semantics.

This article begins by presenting a simple TransLucid system (§2), consisting
of a header (§3), libraries (§4), equations (§5) and a demand (§6). The section
on equations presents both their concrete and abstract syntax. The denotational
semantics (§7) defines the domains manipulated by TransLucid and defines how
demands are interpreted. The operational semantics (§8) is defined in order to
cache intermediate results, ensuring that only dimensions of relevance are stored
in the cache. The conclusions (§9) discuss future work.

2 A simple TransLucid system

A simple TransLucid system is a quadruple S = (H,L,Q,D), where

– H is a header, defining the arities and precedences of operators appearing
in the equations, thereby allowing the translation of concrete syntax into
abstract syntax;

– L (3 `) is a set of libraries, defining the available types and functions;
– Q is a set of TransLucid equations;
– D is a demand to be executed.

3 The header

TransLucid is designed as a coordination language, which means that one can use
types, constants and operators defined in another language, and then manipulate
these. The header consists of a number of declarations defining how to parse
expressions. In particular, the arity and precedence of operators are defined, as
are the delimiters for user-defined types.

2

3.1 Infix operators

There are five kinds of declaration for infix binary or variadic operators. In each
of the cases enumerated below, we are defining an operator symbol named op of
precedence level n, which will be translated into an operator called name in the
abstract syntax.

– infixn: infix non-associative binary operator.

infixn ustring<op> ustring<name> int<n> ;;

– infixl: infix left-associative binary operator.

infixl ustring<op> ustring<name> int<n> ;;

– infixr: infix right-associative binary operator.

infixr ustring<op> ustring<name> int<n> ;;

– infixm: infix variadic operator.

infixm ustring<op> ustring<name> int<n> ;;

An example use of infixm would be for the set union operator, where we
consider the union to be a single operation, as in:

A ∪B ∪ C ∪D ∪ E =
⋃
{A,B,C,D,E}

– infixp: infix variadic comparison operator.

infixp ustring<op> ustring<name> int<n> ;;

An example use of infixp would be for the repeated < operator, as in:

A < B < C < D < E = (A < B) ∧ (B < C) ∧ (C < D) ∧ (D < E)

3.2 Unary operators

There are two kinds of unary operators, prefix and postfix.

– prefix: prefix unary operator.

prefix ustring<op> ustring<name> ;;

All prefix operators are assumed to have the same precedence level, which
is higher than that of all the infix operators.

– postfix: postfix unary operator.

postfix ustring<op> ustring<name> ;;

All postfix operators are assumed to have the same precedence level, which
is higher than that of all the prefix operators.

3

3.3 Typed constants

Normally a constant of type τ will be written τ<s> in the source code, where both
τ and s are utf-8–encoded strings. However, programs can become very difficult
to read if there are many typed constants. We therefore provide specialised
syntax for a default integer type, a default floating-point type, as well as for the
parenthesisation of constants of given types.

– defaultinttype: default integer type.

defaultinttype type<name> ;;

defines the default integer type to be name. Integers of that type may simply
appear as numbers. There may only be one such declaration in the header.

– defaultfloattype: default floating-point type.

defaultfloattype type<name> ;;

defines the default floating-point type to be name. Floating-point numbers
of that type may simply appear as numbers. There may only be one such
declaration in the header.

– delimiters: delimiters for a type.

delimiters type<name> uchar<left> uchar<right> ;;

states that constants of type name need simply be placed between the
left . . . right pair. Common values for left and right would be brackets and
quote characters of various kinds. Unicode contains many such pairs. For
each type, there may only be one such declaration in the header.

3.4 Dimensions

In TransLucid, any ground value may be used as a dimension. It is also useful
to have identifiers as dimensions.

– dimension: declare a dimension identifier.

dimension ustring<name> ;;

name may be used as dimension without it being evaluated.

3.5 Library

Finally, the header needs to provide an interface for learning about new kinds of
type and operator, beyond the ones provided by default by any implementation.
This is done as follows:

– library: declare a library of types and functions.

library ustring<name> ;;

states that the library called name should be loaded. Libraries are defined in
Section 4.

4

4 Libraries

A library ` defines the following information:

– types: These are ground data types. For each type, a context-dependent parse
function and a context-dependent print function are defined. Therefore a
library ` defines these two interfaces:

`parse : Type→ Str→ Ctxt→ Val

`print : Type→ Val→ Ctxt→ Str

– operators: An operator name is context-dependent and may be overloaded.
Therefore, ` defines:

`op : Str→ Val+ → Ctxt→ Val

For each type, an equality function must be defined.
– type conversion operators: These are used to cast typed values of one type

to another. There is no implicit casting. Therefore, ` defines:

`conv : Type→ Val→ Ctxt→ Val

5 Equations

We present the concrete syntax, then the abstract syntax, then the conversion
from the former to the latter.

5.1 Concrete syntax

Here is the concrete syntax for equations (eqn) and expressions (expr):

eqn ::= ident = expr ;;

expr ::= (expr)
| const
| ident
| expr postfix
| prefix expr
| expr infix expr
| ident (expr , . . . , expr)
| convert <ident> expr
| istype <ident> expr
| isspecial <str> expr

5

| if expr then expr (elsif expr then expr)∗ else expr fi
| # expr
| expr @ expr
| [pair , . . . , pair]

pair ::= expr : expr

ident ::= [a-zA-Z][a-zA-Z0-9]*

const ::= ident <str>
| ldelim str rdelim
| int
| float

int ::= [0-9][a-zA-Z0-9]*

float ::= int.int
| int^[+-]?int
| int.int^[+-]?int

5.2 Operator precedence

The unary operators bind with higher precedence than the binary and variadic
operators. In increasing order, here is the precedence of all of the operators:

– ‘!’, ‘;’, binary, left-associative, least precedence;
– ‘@’, binary, left-associative;
– infix, binary or variadic, of varying precedence and associativity;
– prefix, unary;
– postfix, unary;
– ‘#’, unary, highest precedence.

Operators of the same precedence but different associativity cannot be used
together without parentheses, nor can different variadic operators of the same
precedence.

5.3 Abstract syntax

The abstract syntax for expressions is simpler than the concrete syntax.

E ::= id〈x〉
| const〈τ, s〉

6

| op〈s〉 (E, . . . , E)
| convert〈τ〉 E
| istype〈τ〉 E
| isspecial〈v〉 E
| if (E,E,E)
| # E

| E @ E

| [E : E, . . . , E : E]

Note that:

– The concrete expr becomes the abstract E.
– The concrete ident becomes the abstract id .
– The concrete prefix, postfix and infix all become the abstract op.
– The concrete if–then–else–elsif–fi all use the abstract if.

5.4 From concrete to abstract syntax

Given a set of equations Q and a header H, we write translate(Q,H) for the
conversion from concrete to abstract syntax of Q, taking into account the infor-
mation provided by H. The process is straightforward, except for the handling
of the infix operators. Since there are five different forms of associativity, and
precedence levels can be any unsigned number, parsing these structures and cre-
ating the correct parse tree cannot be done using static tables. The following
C++-style code will do the trick:

Expression*
infix_expr_build (OperatorInfix* op,

Expression* left,
Expression* right)

if (left->is_unary)
return new ExpressionOpInfix (op, left, right);

if (!left->is_infix)
left->add_right (op, right);
return left;

// Now we know that we have two infix operators
left_prec = left->op->prec;
left_assoc = left->op->assoc;
if (left_prec < op->prec)
left->add_right (op, right);
return left;

// Now we know that left_prec == op->prec
if (left_assoc != op->assoc)
throw "Parser error";

if (left_assoc == ASSOC_NON)

7

throw "Parser error";
if (left_assoc == ASSOC_LEFT)
return new ExpressionOpInfix (op, left, right);

if (left_assoc == ASSOC_RIGHT)
left->add_right (op, right);
return left;

// Now we know that assoc == ASSOC_VARIABLE or ASSOC_COMPARISON
if (left_op != op)
throw "Parser error";

// Now we know that we have the same operator
left->add_leaf (right);
return left;

where left->add_right will replace the right-hand element of the left operand
with an expression:

void
ExpressionOpInfix:add_right (OperatorInfix* op, Expression* right)
args[1] = infix_expr_build (op, args[1], right);

and where left->add_leaf will add an additional argument to the node:

void
ExpressionOpInfix:add_leaf (Expression* right)
args.push_back (right);

6 Demand

A demand is simply an expression to be evaluated.

7 Semantics

The semantics is standard, defined according to the structure of the expressions
to be evaluated. What will be different will be the use of a dynamic context
of evaluation. We begin by presenting some notation and the domains, then we
give the semantics for evaluating expressions.

7.1 Notation for functions

We define some basic notation on functions (3 f, g′, g):

– The domain of a function f is written dom(f).
– If c 6∈ dom(f), we will write f(c) = ⊥.

8

– If dom(f) is finite, then we may write f as:

f = {c11 7→ c12, . . . , cn1 7→ cn2}

meaning that:

f (c11) = c12

. . .

f (cn1) = cn2

– If f and g are two functions, then f † g is the perturbation of f by g:

(f † g) (c) =
{
g (c), c ∈ dom(g)
f (c), otherwise

7.2 Domains

– Type (3 τ) is the set of types found in the system. The set Type may vary,
but must contain at least the types sp, bool and tuple. For each τ ∈ Type,
the set of valid values for τ is written V (τ).

– Value (3 v) is the set of values found in the system.

Value =
⋃{

V (τ) | τ ∈ Type
}

– TypedValue
(
3 τ〈v〉

)
is the set of properly typed values. It is a subset of

Type×Value.

TypedValue =
⋃{

τ〈v〉 | τ ∈ Type ∧ v ∈ V (τ)
}

When we do not need to distinguish the type and value, we will write c.
– Bool = V (bool) is the set of Boolean values. The possible values are:

Bool = {false, true}
– Special = V (sp) is the set of special values, to ensure that all operations

in TransLucid are fully defined, no matter what the values of the passed
arguments. The set must be partially ordered with the greatest lower bound
property. In the current implementation, the following values are defined, in
increasing order:

Value Meaning
undecl Undeclared identifier
multidecl Multiply declared identifier
undef Undefined definition
multidef Multiple definition
access Accessibility error
loop Infinite loop
dim Undefined dimension
type Type error
arith Arithmetic operation error
string String operation error
eod End of data

9

– Tuple = V (tuple t) (3 κ) is the set of tuples, used to hold contexts as well
as complex types:

Tuple = TypedValue→ (TypedValue | Demand)

The domain of a tuple (its dimensions) must always be computable, while
the values associated with these dimensions need not yet be calculated. In
the current implementation, the domain of tuples must always be finite.

– Demand is the set for demands, which encapsulate unevaluated expressions
with their static and dynamic environments.

Demand = System×Ctxt×Expr

A demand is written demand〈ξ, κ〉E, where ξ ∈ System, κ ∈ Tuple and
E ∈ Expr.

– SimpleSystem (3 ξ) is the semantic counterpart of a TransLucid simple
system S (Section 2). A system ξ contains the following components:

ξparse : Type→ Str→ Ctxt→ Val

ξprint : Type→ Val→ Ctxt→ Str

ξop : Str→ Val+ → Ctxt→ Val

ξconv : Type→ Val→ Ctxt→ Val

ξeqn : Str→ Expr

The system ξ defined from S = (H,L,Q,D) is given by:

ξparse =
⋃
`∈L

`parse

ξprint =
⋃
`∈L

`print

ξop =
⋃
`∈L

`op

ξconv =
⋃
`∈L

`conv

ξeqn = translate(Q,H)
ξdemand = translate(D,H)

7.3 Expressions

The evaluation rules for expressions, given below, are of the form:[[
E
]]
ξκ

which means that given a system ξ and a context κ, expression E evaluates to
a typed value c = τ〈v〉.

10

Conventions

– If in the right-hand part of a rule, there is an occurrence of τα, then this
type can be calculated through the following convention:

τα〈vα〉 = eval1

(
[[Eα]]ξκ

)
where:

eval1

(
τ〈v〉

)
= τ〈v〉

eval1

(
demand〈ξ, κ〉E

)
= [[E]]ξκ

– If in the right-hand part of a rule, there is an occurrence of cα, then the
constant must be fully evaluated, as is given by:

cα = τα〈vα〉 = eval
(
[[Eα]]ξκ

)
where:

eval
(
τ〈v〉

)
= τ〈v〉, τ 6= tuple

eval
(
tuple〈ci 7→ `i〉

)
= tuple

〈
ci 7→ eval(`i)

〉
eval

(
demand〈ξ, κ〉E

)
= eval

(
[[E]]ξκ

)
– In the rules below, i and j take on the values from 1 to n.

Rules [[
id〈s〉

]]
ξκ = ξeqn(s)(ξ)(κ)[[

const〈τ, s〉
]]
ξκ = ξparse(τ)(s)(κ)[[

op〈s〉(Ei)
]]
ξκ =

{
min{vj | τj = sp}, ∃j, τj = sp
ξop(s)(c1, . . . , cn)(κ), otherwise[[

convert〈τ〉E1

]]
ξκ =

{
c1, τ1 = sp
ξconv(τ)(c1)(κ), otherwise[[

istype〈τ〉E1

]]
ξκ =

{
bool〈true〉, τ1 = τ
bool〈false〉, otherwise[[

isspecial〈v〉E1

]]
ξκ =

{
bool〈true〉, c1 = sp〈v〉
bool〈false〉, otherwise

[[
if (E1, E2, E3)

]]
ξκ =

c1, τ1 = sp[[
E2

]]
ξκ, c1 = bool〈true〉[[

E3

]]
ξκ, c1 = bool〈false〉

sp〈type〉, otherwise

[[
#E1

]]
ξκ =

 c1, τ1 = sp
κ(c1), c1 ∈ dom κ
sp〈dim〉, otherwise

11

[[
E2 @ E1

]]
ξκ =

c1, τ1 = sp
sp〈type〉, τ1 6= tuple
sp〈access〉, ¬accessible (κ′, κ)
[[E2]]ξ(κ † v1), otherwise[[

[Ei1 : Ei2]
]]
ξκ =

{
min{vj1 | τj1 = sp}, ∃j, τj1 = sp
tuple

〈
ci1 7→ demand〈ξ, κ〉Ei2

〉
, otherwise

The line accessible(κ′, κ) refers to the possibility of moving from context κ to κ′.
By default, this is always true; in situations where contexts may have physical
interpretations, then this relation will be more complex.

7.4 Demands

The semantics of a system ξ is given by evaluating the demand therein and then
by printing out the result:

let c = τ〈v〉 = [[ξdemand]] (ξ) (∅)
in ξprint(τ)(c)(κ)

8 Operational Semantics

The operational semantics are designed to cache intermediate results for each
demand for the calculation of an (identifier, context) pair (x, κ). However, it is
often the case that the current context includes information about dimensions
that are not needed for the calculation of a particular expression. Therefore, it
is necessary to keep track of a hierarchy of dimensions, which is a list of sets of
dimensions.

A hierarchyH is writtenH = 〈C0, . . . , Cn−1〉, where each Ci is a set of dimen-
sions. When H appears in a set of rules, it means that to evaluate an expression,
first all of the dimensions in C0 need to be known. Once these dimensions are
known, then the dimensions in C1 need to be known, and so on.

Hierarchies are used to build warehouses. A warehouse W is a function:

W : Id×Ctxt→ Val+ ∪Val

When the pair (x, κ) is being executed to produce a value c, a hierarchy H =
〈C0, . . . , Cn−1〉 will be built. After adding these entries to warehouse W , the
following will hold:

W(x, ∅) = C0?
W(x, κ | C0) = C1?

W
(
x, κ | (C0 ∪ C1)

)
= C2?
. . .

W
(
x, κ | (C0 ∪ · · · ∪ Cn−2)

)
= Cn−1?

W
(
x, κ | (C0 ∪ · · · ∪ Cn−1)

)
= c

12

To simplify the building of hierarchies, the operational semantics rules main-
tain a stack—a list—of contexts, built up through the successive use of the @
operator. Rather than perturbing the current context, the use of the stack makes
it easier to keep track of the hierarchies being built.

8.1 Basic operations

Here we define operations on hierarchies. The ‘:’ is the “cons” operator, and the
‘〈〉’ is the empty list.

restrict
(
〈〉, C

)
= 〈〉

restrict(C0 : H, C) =
{
restrict(H, C), C0 − C = ∅
(C0 − C) : restrict(H, C), otherwise

merge
(
H, 〈〉

)
= H

merge
(
〈〉,H′

)
= H′

merge(C0 : H, C ′0 : H′) = (C0 ∪ C ′0) : merge
(
restrict(H, C ′0), restrict(H′, C0)

)
collapse

(
〈〉
)

= ∅
collapse(C0 : H) = C0 ∪ collapse(H)

add(H,H′) = append
(
H, restrict

(
H′, collapse(H)

))
in
(
〈〉, c

)
= false

in(C0 : H, c) =
{

true, c ∈ C0

in(H, c), otherwise

addone(H, c) =

{
H, in(H, c) = true
add
(
H,
〈
{c}
〉)
, otherwise

8.2 Rules

The operational semantics rules are of the form:

K,W ` E : c,H′,K′,W ′

where:

– E is the expression being evaluated.
– c is the calculated value.

13

– H′ is the dependency hierarchy built while evaluating E.
– K and K′ are the before and after states of a context stack, which is simply

a list of partially evaluated contexts, i.e., with demands in the right-hand
sides of entries. Each time that an @ is encountered, the context stack grows.
The difference between K′ and K is that K′ will contain more evaluated
right-hand sides. The mergerhs and evalrhs operators are straightforward.

– W and W ′ are the before and after states of a warehouse. The difference be-
tweenW ′ andW is thatW ′ will contain more entries. The mergewarehouses
and addtowarehouse operators are straightforward.

To simplify the presentation of the rules below, we will assume that ξparse,
ξop and ξconv are not context-dependent. We will also not consider the handling
of special cases and values. Adding these features is straightforward.

E = ξeqn(s)
W,K ` E : c,H,K′,W ′

W ′′ = addtowarehouse(W ′, s, c,H,K′)
W,K ` id〈s〉 : c,H,K′,W ′′

c = ξparse(τ)(s)
K,W ` const〈τ, s〉 : c, 〈〉,K,W

K,W ` Ei : ci,Hi,Ki,Wi

c = ξop(s)(Ei)
H′ = merge(Hi)
K′ = mergerhs(Ki)

W ′ = mergewarehouses(Wi)
K,W ` op〈s〉(Ei) : c,H′,K′,W ′

K,W ` E1 : c1,H1,K1,W1

c = ξconv(τ)(c1)
K,W ` convert〈τ〉 E1 : c,H1,K1,W1

K,W ` E1 : τ1〈v1〉,H1,K1,W1

τ = τ1

K,W ` istype〈τ〉 E1 : bool〈true〉,H1,K1,W1

K,W ` E1 : τ1〈v1〉,H1,K1,W1

τ 6= τ1

K,W ` istype〈τ〉 E1 : bool〈false〉,H1,K1,W1

14

K,W ` E1 : bool〈true〉,H1,K1,W1

K1,W1 ` E2 : c2,H2,K2,W2

H′ = add(H1,H2)
K′ = mergerhs(K1,K2)

W ′ = mergewarehouses(W1,W2)
K,W ` if(E1, E2, E3) : c2,H′,K′,W ′

K,W ` E1 : bool〈false〉,H1,K1,W1

K1,W1 ` E3 : c3,H3,K3,W3

H′ = add(H1,H3)
K′ = mergerhs(K1,K3)

W ′ = mergewarehouses(W1,W3)
W,K ` if(E1, E2, E3) : c3,H′,K′,W ′

K,W ` E : c,H,K′,W ′
κ = find(K′, c)
κ′ = evalrhs(κ, c)
K′′ = replace(K′, κ, κ′)

K,W ` #E : κ′(c), addone(H, c),K′′,W ′

K,W ` E1 : κ1,H1,K1,W1

κ1 :K1,W1 ` E2 : c2,H2, κ2 :K2,W2

W,K ` E2@E1 : c, add
(
H1, restrict(H2,dom κ1)

)
,K2,W2

K,W ` Ei1 : ci,Hi,Ki,Wi

E′i2 = demand〈ξ,K〉 Ei2
H′ = merge(Hi)
K′ = mergerhs(Ki)

W ′ = mergewarehouses(Wi)
K,W ` [Ei1 : Ei2] : [ci : E′i2],H′,K′,W ′

The above rules can naturally be transformed into an efficient system for
demand-driven evaluation, using a sequential or a multi-threaded approach.

9 Conclusions

We have presented a simple TransLucid system, and given an outline of the
concrete and abstract syntaxes as well as the denotational and operational se-
mantics. The current TransLucid interpreter implements the language as it is
defined in this paper.

15

Future work involves transforming TransLucid into a reactive system, in
which the set of equations evolves over time, through the use of a time di-
mension, and through the use of multiple threads, each making demands of the
reactive system at each instant.

Envisaged applications of TransLucid are the development of Cartesian lan-
guages for functional and imperative programming, using TransLucid as imple-
mentation target.

References

1. Gabriel Ditu. The Programming Language TransLucid. PhD thesis, School of Com-
puter Science and Engineering, The University of New South Wales, Sydney, Aus-
tralia, March 2007.

2. David Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80–112, 1985.

3. John Plaice, Blanca Mancilla, and Gabriel Ditu. From Lucid to TransLucid: Itera-
tion, dataflow, intensional and Cartesian programming. Journal of Mathematics in
Computer Science, In press. 2008.

4. John Plaice, Blanca Mancilla, Gabriel Ditu, and William W. Wadge. Sequential
demand-driven evaluation of Eager TransLucid. In 32nd Annual IEEE International
Computer Software and Applications Conference, pages 1266–1271, Turku, Finland,
28 July – 1 August 2008.

5. Toby Rahilly and John Plaice. A multithreaded implementation for TransLucid. In
32nd Annual IEEE International Computer Software and Applications Conference,
pages 1272–1277, Turku, Finland, 28 July – 1 August 2008.

6. William W. Wadge and Edward A. Ashcroft. Lucid, the Dataflow Programming
Language. Academic Press, London, 1985.

16

