
General Logic Programs as Infinite Games?

Chrysida Galanaki1, Panos Rondogiannis1, and William W. Wadge2

1 Department of Informatics & Telecommunications
University of Athens

Panepistimiopolis, 157 84 Athens, Greece
{chrysida,prondo}@di.uoa.gr

2 Department of Computer Science
University of Victoria

PO Box 3055, STN CSC, Victoria, BC, Canada V8W 3P6
wwadge@csr.uvic.ca

Abstract. In [vE86] M.H. van Emden introduced a simple game seman-
tics for definite logic programs3. Recently [RW05,GRW05], the authors
extended this game to apply to logic programs with negation. Moreover,
under the assumption that the programs have a finite number of rules,
it was demonstrated in [RW05,GRW05] that the game is equivalent to
the well-founded semantics of negation. In this paper we present work-
in-progress towards demonstrating that the game of [RW05,GRW05] is
equivalent to the well-founded semantics even in the case of programs
that have a countably infinite number of rules. We argue however that in
this case the proof of correctness has to be more involved. More specifi-
cally, in order to demonstrate that the game is correct one has to define
a refined game in which each of the two players in his first move makes
a bet in the form of a countable ordinal. Each ordinal can be considered
as a kind of clock that imposes a “time limit” to the moves of the cor-
responding player. We argue that this refined game can be used to give
the proof of correctness for the countably infinite case.

1 Introduction

In [vE86] M.H. van Emden first introduced a simple game semantics for defi-
nite logic programs. Recently [RW05,GRW05], the authors extended this game
to apply to logic programs with negation. Moreover, under the assumption
that the programs are finite, it is demonstrated in [RW05,GRW05] that the
game semantics is equivalent to the so-called well-founded semantics of nega-
tion [vGRS91,Prz89]. It should be noted that the class of finite (propositional)
? This research is supported by EΠEAEK II under the task “ΠYΘAΓOPAΣ-II:

ENIΣXYΣH EPEYNHTIKΩN OMA∆ΩN ΣTA ΠANEΠIΣTHMIA”, Project title:
Applications of Computational Logic to the Semantic Web, funded by the European
Social Fund (75%) and the Greek Ministry of Education (25%).

3 It is common in the theory of logic programming to study programs that are propo-
sitional and have a countable (possibly infinite) number of rules. We adopt this
convention throughout this paper.

Dagstuhl Seminar Proceedings 08271 
Topological and Game-Theoretic Aspects of Infinite Computations 
http://drops.dagstuhl.de/opus/volltexte/20081651

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


programs is broad and important since, for example, every Datalog program
with negation can be instantiated into such a program.

Of course, our ultimate goal would be to demonstrate that the game is also
applicable to propositional programs that have a countably infinite number of
rules. This would establish the applicability of the game in the most general
way, since every first-order logic program with negation can be instantiated into
a propositional logic program that has a countable (possibly infinite) number of
rules (see for example [F02]). In this paper we present work-in-progress towards
this goal. More specifically, we outline a proof technique which, as we argue, can
be used to show the applicability of the game in this more general setting. The
technique consists of defining a refined game, one in which the two players use
bets in the form of countable ordinals as parts of their moves. We argue that
this refined game is equivalent to the infinite-valued model [RW05] and therefore
to the well-founded model. The basic ideas behind the game are outlined in the
next section and formalized in the subsequent sections.

2 Logic Programming and Games: an Introduction

In this section we give an introduction to the game semantics of logic program-
ming as described in [vE86,RW05,GRW05]. Moreover, we present at an intuitive
level the main contribution of this paper.

A general logic program (or simply a logic-program) is a countable set of rules
of the form:

p ← q0, . . . , qn−1,∼r0, . . . ,∼rm−1

A goal clause is a formula of the form ← p. Given a logic program P and a
goal G, we write PG for P ∪ {G}. We write literals(PG) for the set of all literals
that appear in the goal clause G or in the bodies of clauses of P ; similarly, we
write negvars(P) for the set of all propositional variables, that appear in negative
literals in the bodies of clauses of P . A logic program is called definite if none of
its rules contains negative literals.

Let P be a definite logic program and G a goal clause. In the van Emden
game there exist two players, Player I and Player II who try to prove (respectively
disprove) the goal G. Player I, the Believer, believes that G will succeed and his
first move is to play G. Player II, the Doubter, thinks G will fail. His first move
is to choose the (only) variable that exists in G (declaring in this way his belief
that this variable will fail). From then on play proceeds as follows: the Believer
must play a clause in the program whose head is the variable just played; and
the Doubter must, on his turn, play one of the variables in the body of this
clause. Either player can win by making a move for which his opponent has no
legal response. For the Believer, this means playing a fact. For the Doubter, this
means choosing a variable for which there is no rule in the program. Finally, the
Doubter has an important advantage: he wins if the game never ends.

The above game can be extended to apply to logic programs that allow neg-
ative literals in clause bodies. Actually, the game introduced in [RW05,GRW05]
simply adds one extra rule to the van Emden game: when one of the players plays

2



a literal of the form ∼ p then his opponent must, on the next move, play the
atom p. The intuition behind this new rule is that when negation is encountered,
the two players swap roles: the believer becomes the doubter and vice-versa; the
situation will be called a role-switch from now on. As before, any player who has
no legal move loses. If on the other hand the game play is infinite and after a
certain point one of the players remains a doubter, he wins. Finally, if the two
players swap roles infinitely often, the result is a tie.

Notice that in the above discussion the fact that the program P may be
infinite, plays no role. However, when one tries to establish that the game is
equivalent to the well-founded semantics of negation, it is convenient to make
the assumption that the program P is finite (see [RW05,GRW05]). In the rest
of this section we will explain the reasons why until now we have restricted
attention to finite programs and we will intuitively explain how one can lift the
proofs to the more general case. The rest of the paper will formalize the intuitive
ideas that we will now present.

The well-founded semantics of logic programs is based on a three-valued
logic, namely a logic that uses the truth values False, 0 and True. Intuitively,
in [RW05,GRW05] it was demonstrated that an atom has value True (respec-
tively False) in the well-founded model iff Player I (respectively Player II) has
a winning strategy in the corresponding game that has this atom in the goal
clause; moreover, the value 0 was shown to correspond to the case where the
best choice for both players is to lead the game to a tie. It is well-known that
the well-founded model is constructed in stages, and the truth values that are
introduced in different stages can be thought of as having different “strengths”.
On the other hand, the game we have described does not have any notion of
different levels of winning or losing. Therefore, in order to establish the equiv-
alence it would be convenient if we had on the one hand a refinement of the
well-founded model in which the strengths of truth values are as explicit as pos-
sible and on the other hand a refinement of the game that uses different degrees
of winning and losing.

The refinement of the well-founded model that we use is the characterization
that two of the authors have recently obtained [RW02,RW05]. More specifically,
the infinite-valued semantics introduced in [RW02,RW05] is a refinement of the
well-founded semantics and it uses instead an infinite number of truth values
ordered as follows:

F0 < F1 < F2 < · · · < Fα < · · · < 0 < · · · < Tα < · · · < T2 < T1 < T0

Notice that the above set of truth values has an Fα and a Tα for every countable
ordinal α. However, it can be shown that when we are dealing with finite logic
programs we only need Fk and Tk for k < ω.

Suppose now we are dealing with finite programs. Motivated by the infinite-
valued semantics, we can define a refined game which supports different degrees
of winning and losing. More specifically, assume we are given a play that is a win
for Player I. In order to calculate the payoff that corresponds to this play, we
simply count the number of role-switches that have taken place; if this number

3



is equal to say k then the payoff of the play is taken to be equal to Tk. Then,
it can be shown (see [RW05,GRW05] for the details) that the refined game is
equivalent to the infinite-valued semantics, which immediately implies that the
unrefined game is equivalent to the well-founded semantics.

But how can we extend this proof idea to the case of infinite programs?
Notice that the infinite-valued semantics for infinite programs may assign to
atoms values of the form Tα (or Fα), where α is an infinite ordinal. How can
we now define the refined game? Counting the number of role-switches in a play
of the game is no longer enough because this process can only return a natural
number and not a countable ordinal. In other words, we want to somehow express
the fact that if one of the players can win the game, then the time that will be
required can be measured by a countable ordinal.

In this paper we argue that the above problem can be overcome by adopt-
ing a technique that is common in the theory of infinite games (see for exam-
ple [Wad84][page 47]). We define a refined game in which the two players make
a bet in the form of a countable ordinal as part of their first move. The new
game then has the following extra rule:

During a role-switch both players have to decrease the value of their
ordinal, if this is greater than 0. In every other move, the ordinal must
be identical to the ordinal played by the same player in his previous
move.

Now, Player I wins an extended game iff he manages to win the game (in the
original sense) and his initial bet has not reduced to 0 before the last role-switch
has taken place. Similarly for Player II. Each bet can be considered as a type of
clock which imposes a “time limit” on the corresponding player.

The correctness of the original game for infinite propositional programs can
then be established by showing that this refined game is equivalent to the infinite-
valued semantics.

The rest of the paper is organized as follows: Section 3 describes the game for
logic programs with negation (this section is included for reasons of completeness,
since the game is actually the one introduced in [RW05,GRW05]). Section 4
defines the refined game in which the players use bets. Section 5 provides a
sketch of the proof that the game is equivalent to the well-founded semantics of
logic programs. Finally, Section 6 concludes the paper.

3 Game Semantics for Infinite Programs

The semantics that we develop in this paper are based on the so-called infinite
games of perfect information (or PI-games for short) [GS53,Myc92]. The games
will take place between two players that we will call Player I and Player II:

Definition 1. An infinite game of perfect information (or a PI-game for short)
is a sextuple Γ = (X, R, A, B,D, Φ) such that:

– X is a non-empty set, called the set of moves for Players I and II.

4



– R is a set of rules which impose restrictions on the moves of the two players.
– A is the set of strategies for Player I, which consists of all functions a :⋃

n<ω X2n → X, with X0 = {〈〉}.
– B is the set of strategies for Player II, which consists of all functions b :⋃

n<ω X2n+1 → X.
– D is a linearly ordered set called the set of rewards, with the property that

for all S ⊆ D, lub(S) and glb(S) belong to D.
– Φ : Xω → D is the payoff-function of the game.

Games of the above form will often be referred as games with payoff.

We now define the notion of a play of the game:

Definition 2. Let Γ = (X,R, A,B,D, Φ) be a game and let a ∈ A and b ∈ B
be two strategies. We define the following sequence:

s0 = a(〈〉)
s2i = a(〈s0, . . . , s2i−1〉)
s2i+1 = b(〈s0, . . . , s2i〉)

A (complete) play of the game is the infinite sequence 〈s0, s1, s2, . . .〉. The si’s
will be called the moves of the play. A prefix of a play is called a partial play.

Given two strategies a ∈ A and b ∈ B, we will often write a ? b for the play
determined by these two strategies. Given a play s, we will say that a player
first breaks the rules in s if the first move in s that does not conform to the rules
of the game is played by that particular player. A play s will be called legal if
all its moves conform to the rules of the game.

A notion that plays a very important role in the theory of infinite games is
that of determinacy:

Definition 3. A game Γ = (X, R, A, B,D, Φ) is determined with value v if

glbb∈B luba∈A Φ(a ? b) = luba∈A glbb∈B Φ(a ? b) = v

We now give a precise definition of the game for logic programs with negation.
Let P be a logic program and G a goal clause. We define a corresponding PI-game
ΓPG = (X,R, A, B,D, Φ), as follows:

3.1 The set of moves

The set of moves X of ΓPG
is equal to:

X = {G} ∪ P ∪ literals(PG) ∪ negvars(P)

In other words, a player can choose one of the following moves: a) he can play
the goal clause, or b) play a clause of the program, or c) a literal that appears
in G or in the body of a clause of P , or finally, d) a propositional variable that
appears in a negative literal in the body of some clause of P .

5



3.2 The rules of the game

We can now specify the rules that the two players must obey:

– (R1) The first move of Player I is the goal clause G.
– (R2) If the previous move is a clause, the next move is one of the literals in

the body of the clause.
– (R3) If the previous move is a positive literal p, the next move is a clause in

P whose head is p.
– (R4) If the previous rule is a negative literal ∼p, the next move must be p

itself. These two moves constitute a role-switch.

If in rule (R2) the body of the clause is empty, then we will say that the player
is forced to break rule (R2). Similarly, the player is forced to break rule (R3) if
he can not can find a clause in P whose head is p. If one of the players breaks
the rules without being forced to, we will say that he breaks the rules without
reason. This last case refers to moves that are completely unreasonable (such as
for example if Player I does not play the goal clause as his first move, or if a
player does not choose a literal from the non-empty body of the clause that the
other player has just played, etc). We should note here that since our game is
infinite, a play continues even after one of the two players has broken the rules;
however, the moves beyond this point will be irrelevant to the outcome of the
play.

3.3 The sets of strategies

The sets of strategies for the game are specified as in Definition 1.

3.4 The set of rewards

The set D of rewards is the set {F, 0, T}. Intuitively, F corresponds to the False
truth value, T to the True truth value and 0 to an intermediate truth value that
is above False and below True. From the game point of view, F corresponds to
a win of Player II, T to a win of Player I, and 0 to a tie of the two Players.

3.5 The payoff function

Let a ∈ A and b ∈ B be two strategies, and let s = a ? b be the unique play
determined by a and b. The following two definitions will be useful in defining
the payoff function:

Definition 4. Let P be a program, G a goal, and let s be a play of the corre-
sponding game ΓPG

. Then, s is called a true-play if either Player II first breaks
the rules in s or if s is a legal play that contains an odd number of negative
literals.

6



Definition 5. Let P be a program, G a goal, and let s be a play of the corre-
sponding game ΓPG . Then, s is called a false-play if either Player I first breaks
the rules in s or if s is a legal play that contains an even number of negative
literals.

We are now in a position to give a formal definition of the payoff function Φ:

Φ(s) =





T, if s is a true-play
F, if s is a false-play
0, otherwise

Notice that in the above definition of the payoff function, the value 0 corresponds
to the case where there is an infinite number of role switches in the play.

4 The Refined Negation Game

In this section we give a precise definition of the refined negation game. Let P
be a logic program and G a goal clause. We define a corresponding PI-game
ΓPG

= (X,R, A, B,D, Φ), as follows:

4.1 The set of moves

The set of moves X of ΓPG is equal to:

X = {(x, α) : x ∈ {G} ∪ P ∪ literals(PG) ∪ negvars(P), α is a countable ordinal}
In other words, the moves are now pairs: the first part of each pair is as in the
unrefined game; the second part is a countable ordinal.

4.2 The rules of the game

We can now specify the rules that the two players must obey:

– (R1) The first move of Player I consists of the goal clause ← p, together
with a countable ordinal, which we call the bet of Player I. The first move of
Player II consists of the atom p together with a (possibly different) countable
ordinal, which we call the bet of Player II.

– (R2) If the first part of the previous move is a clause, the first part of the
next move is one of the literals in the body of the clause.

– (R3) If the first part of the previous move is a positive literal p, the first part
of the next move is a clause in P whose head is p.

– (R4) If the first part of the previous move is a negative literal ∼ p, the
first part of the next move must be p itself. These two moves constitute a
role-switch.

– (R5) During a role switch both players have to decrease the value of their
ordinal, if this is greater than 0. In every other move, the ordinal must be
identical to the ordinal played by the same player in his previous move.

Rule violations are defined analogously as in the unrefined case.

7



4.3 The sets of strategies

The sets of strategies for the game are specified as in the case of the unrefined
game.

4.4 The set of rewards

The set D of rewards is the set {F0, F1, . . . , Fα, . . . , 0, . . . , Tα, . . . , T1, T0} of truth
values which are ordered as: F0 < F1 < · · · < Fα < · · · < 0 < · · ·Tα < · · · <
T1 < T0.

4.5 The payoff function

The notions of true-play and false-play are identical to the ones used in the
unrefined case. Consider now a play s of the refined game. We define ŝ to be
the maximum initial segment of s in which the rules have not been broken; in
particular, ŝ = s if there are no rule violations during the game. Moreover, we
define ‖ s ‖I (respectively ‖ s ‖II) to be equal to the initial bet of Player I
(respectively Player II) in ŝ. Finally, we will say that the flag has fallen for one
of the players in ŝ if this player’s ordinal has decreased to 0 before the last
role-switch in ŝ.

The refined payoff function Φ is then defined as follows:

Φ(s) =





T‖s‖I
, if s is a true-play and Player’s I flag has not fallen in ŝ

F‖s‖II
, if s is a false-play and Player’s II flag has not fallen in ŝ

0, otherwise

4.6 An Example

We can now illustrate the above definitions with the following example:

Example 1. Consider the countably infinite program P :

q0 ← q ← q1 p ←∼q
q1 ←∼q0 q ← q3

q2 ←∼q1 q ← q5

q3 ←∼q2

...
...

and the goal G =← p. It can be easily seen that the infinite-valued semantics
assigns to the variable p the value Tω+1. We claim that this is also the value
of the game that has G as its first move. Consider a play of the following form
(notice that in this example the ordinals played by Player II are irrelevant to the
calculation of the payoff of the play as long as they obey rule R5 of the game):

8



Player I Player II
← p ω + 1 p ω + 1

p ←∼q ω + 1 ∼q 3
q ω q ← q3 3
q3 ω q3 ←∼q2 3
∼q2 2 q2 2

q2 ←∼q1 2 ∼q1 1
q1 1 q1 ←∼q0 1
∼q0 0 q0 0

q0 ← 0
...

...
...

...
...

...

Player II is forced to break the rules first, so this is a true-play. The payoff
for the play is Tω+1 since the initial bet of Player I is ω + 1. In fact this is the
best payoff that Player I can get. If he plays ω as his initial bet, after the first
role-switch he will have to reduce his initial bet to a natural number n. But then
Player II can choose a rule q ← qm such that m > n. Eventually Player’s I flag
will fall and the payoff will be 0.

Player I Player II
← p ω p ω + 1

p ←∼q ω ∼q m
q n q ← qm m

qm n qm ←∼qm−1 m
∼qm−1 n− 1 qm−1 m− 1

...
...

...
...

q2 ←∼q1 1 ∼q1 3
q1 0 q1 ←∼q0 3
∼q0 0 q0 2

q0 ← 0
...

...
...

...
...

...

The above discussion leads to the conclusion that in this example the game
agrees with the infinite-valued model (and consequently with the well-founded
model). A formalization of this observation is given in the next section.

5 Equivalence with the Well-Founded Semantics

In this section we outline how the proof of the equivalence of the refined game
to the infinite-valued semantics can be established. The material in this section
represents work-in-progress. We intend to provide a more detailed account of the
statements in this section in the final version of the paper.

The first one of the statements concerns the determinacy of the refined nega-
tion game:

9



Theorem 1. Let P be a program, G a goal clause and let ΓPG
be the corre-

sponding refined game. Then, ΓPG is determined.

The proof of the above can be given based on the same ideas as the corre-
sponding proof in [GRW05]. Intuitively, one uses results from Borel determinacy
of win-lose games in order to establish the determinacy of this more complicated
type of games.

The second statement concerns the equivalence of the refined game to the
infinite-valued semantics:

Theorem 2. Let P be a program and let p be an atom that appears in P . Con-
sider the goal G =← p and let ΓPG

= (X, R, A, B, V, Φ) be the corresponding
refined game. Moreover, let MP be the minimum infinite-valued model of P .
Then, ΓPG

has value Tα (respectively Fα) if and only if MP (p) = Tα (respec-
tively MP (p) = Fα).

Again, the proof of the above can be performed along the same lines as
in [GRW05]. However, the proof must now use transfinite induction (instead of
ordinary induction as in [GRW05]). The main idea is therefore that one shows
inductively that for every level of truth values, the refined game characterization
and the infinite-valued one coincide.

6 Conclusions

In [RW05,GRW05] we introduced a game for logic programs with negation and
demonstrated that if one restricts attention to finite such programs, the game
is equivalent to the well-founded semantics. In this paper we have outlined how
one can prove the above equivalence even for infinite logic programs.

Future work includes presenting the proofs of the previous section in full
detail and using the game to prove the correctness of program transformations.
It is our hope that the game-theoretic work that is just starting to emerge in
the area of logic programming, will eventually prove to be equally valuable as
the corresponding work in functional programming.

References

[F02] M. Fitting. Fixpoint Semantics for Logic Programming: A Survey. Theoret-
ical Computer Science 278(1–2), 25–51, 2002.

[GRW05] Ch. Galanaki, P. Rondogiannis and W.W. Wadge. An Infinite-Game Seman-
tics for Well-Founded Negation in Logic Programming. Submitted to Annals
of Pure and Applied Logic (2005).

[GS53] D. Gale and F.M. Stewart. Infinite Games with Perfect Information. In
Annals of Mathematical Studies, volume 28, pages 245–266. Princeton Uni-
versity Press, 1953.

[Myc92] J. Mycielski. Games with Perfect Information. In R.J. Aumann and S. Hart,
editor, Handbook of Game Theory, pages 41–70. Elsevier Science Publishers,
1992.

10



[Prz89] T.C. Przymusinski. Every Logic Program has a Natural Stratification and an
Iterated Fixed Point Model. In Proceedings of the 8th Symposium on Prin-
ciples of Database Systems, pages 11–21. ACM SIGACT-SIGMOD, 1989.

[RW02] P. Rondogiannis and W.W. Wadge. An Infinite-Valued Semantics for Logic
Programs with Negation. In Proceedings of the 8th European Conference on
Logics in Artificial Intelligence (JELIA’02), pages 456–467. Springer-Verlag,
2002. (available from http://www.di.uoa.gr/∼prondo/inf.ps).

[RW05] P. Rondogiannis and W.W. Wadge. Minimum Model Semantics for Logic
Programs with Negation-as-Failure. ACM Transactions on Computational
Logic, 6(2):441–467, 2005.

[RW05] P. Rondogiannis and W.W. Wadge. An Infinite-Game Semantics for Negation
in Logic Programming. In Proceedings of the first International Workshop
on Games for Logic and Programming Languages (GaLoP), pages 77–91.
Edinburgh, April 2005.

[vE86] M.H. van Emden. Quantitative Deduction and its Fixpoint Theory. Journal
of Logic Programming, 3(1):37–53, 1986.

[vGRS91] A. van Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics
for General Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

[Wad84] W.W. Wadge. Reducibility and Determinateness on the Baire Space. PhD
thesis, University of California, Berkeley, 1984.

11




