
Belief Update in AgentSpeak-DL

Álvaro F. Moreira1 and Renata Vieira2

1 Universidade Federal do Rio Grande do Sul
afmoreira@inf.ufrgs.br

2 Pontifcia Universidade Catlica do Rio Grande do Sul
renata@pucrs.br

Abstract. In previous work [8] we proposed an extension for the belief base
of AgentSpeak agents based on Description Logic, aiming at enabling agent ori-
ented programming to cope with recently proposed technologies for the Semantic
Web. In such an extension an agent belief base contains the definition of complex
concepts, besides specific factual knowledge. The foreseen advantages are: (i)
more expressive queries to the belief base; (ii) a refined notion of belief update,
which considers consistency of a belief addition; (iii) flexibility in plan searching
allowed by subsumption relation between concepts; and (iv) knowledge sharing
in a semantic web context (based on OWL). Following this proposal an extension
of the well know Agent Speak interpreter, Jason, was presented in [13]. Among
the interesting open issues is how to deal with the addition of beliefs which vio-
lates ontology consistency. In this work we discuss this problem related to ABox
updating in the context of AgentSpeak-DL

1 Introduction

Developing applications that make full use of machine-readable knowledge sources as
promised by the Semantic Web vision is attracting much of current research interest.

Among the key components of the Semantic Web aredomain ontologies[4]. They
are responsible for the specification of the domain knowledge, and as they can be ex-
pressed logically, they can be the basis for sound reasoning in the specified domain.
Another key component of the Semantic Web technology is the work on intelligent
agents which are responsible for making use of the available knowledge, autonomously
interacting with other agents, so as to act on the user’s best interest.

In [8] we bring these two key Semantic Web components together by proposing
an extension to the BDI agent programming language AgentSpeak [3]; there has been
much work on extending this language so that it becomes a fully-fledged programming
language for multi-agent systems [10], [12]. The AgentSpeak extension proposed in [8]
is based on Description Logic (DL) [1] rather than classical (predicate) logic. With DL,
the belief base of an AgentSpeak agent consists of the definition of complex concepts
and relationships among them, as well as specific factual knowledge (or beliefs, in this
case) — in DL terminology, these are called TBox and ABox respectively.

Description logics are at the core of widely known ontology languages, such as the
Ontology Web Language (OWL) [2]. An extension of AgentSpeak with underlying au-
tomatic reasoning over ontologies expressed in such languages can have a major impact

Dagstuhl Seminar Proceedings 08361
Programming Multi-Agent Systems
http://drops.dagstuhl.de/opus/volltexte/2008/1641

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on the development of agents and multi-agent systems that can operate in a Semantic
Web context.

Following the proposal in [8], JASDL, an extension of the well know AgentSpeak
interpreter, Jason [10], was presented in [13]. Among the interesting open issues is how
to deal with the addition of beliefs which violate ontology consistency. In this work we
will discuss this problem related to ABox updating in the context of AgentSpeak-DL.
The basic idea is to adapt the algorithms proposed in [6] and [7] for the updating of
ontologies described in a description logic.

2 The AgentSpeak-DL Language

AgentSpeak-DL is essentially the same as predicate logic AgentSpeak, the only differ-
ence being that in predicate-logic AgentSpeak the belief base of an agent consists solely
of ground atoms, whereas in AgentSpeak-DL the belief base contains the definition of
complex concepts and relationships, besides factual knowledge. An AgentSpeak-DL
agent specificationag is thus given by an ontologyOnt and a setpsof plans, as defined
by the grammar in Figure 1.

ag ::= Ont ps

Ont ::= TBox ABox
at ::= C(t) | R(t1, t2)

ps ::= p1 . . . pn (n≥ 1)
p ::= te : ct← h
te ::= +at | −at | +g | −g
ct ::= at | ¬at | ct ∧ ct | T
h ::= h1; T | T
h1 ::= a | g | u | h1; h1

g ::= !at |?at
u ::= +at | −at

Fig. 1. AgentSpeak-DL Syntax.

A TBox is a set of class and property descriptions, and axioms establishing equiva-
lence and subsumption relationships between classes (unary predicates) and properties
(binary predicates). An ABox describes the state of an application domain by asserting
that certain individuals are instances of certain classes and that certain individuals are
related by a property.

In order to keep the formal treatment and examples simple, from now on we will
consider TBoxes with classes only, and ABoxes with instances of those classes; that is,
we assume a simplified language with no properties.

A plan is formed by atriggering event— denoting the events for which that plan
should be consideredrelevant— followed by a conjunction of belief literals represent-

2

ing acontext. The context must be a logical consequence of that agent’s current beliefs
for the plan to beapplicable. The remainder of the plan is a sequence of basic actions or
(sub)goals that the agent has to achieve (or test) when the plan, if applicable, is chosen
for execution. In Figure 2, we give examples of AgentSpeak-DL plans that were written
to deal with the event resulting from the arrival of a presenter/speaker in the room.

+paperPresenter(P)
: late(P)
← !reschedule(P).

+invitedSpeaker(P)
: late(P)
← !apologise;

!announce(P).

+presenter(P)
: ¬late(P)
← !announce(P).

Fig. 2. Examples of AgentSpeak plans.

The first plan in Figure 2 says that if a presenter of a paper is late he is resched-
uled to the end of the session (and the session goes on). If an invited speaker is late,
apologies are given to the audience and the speaker is announced. The third plan just
announces any presenter (presenter being a concept that is the union of paperPresenter
and invitedSpeaker) if he is not late.

An example of TBox components using the language above is as follows:

invitedSpeaker⊑ presenter
paperPresenter⊑ presenter

This TBox asserts that the conceptsinvitedspeakerandpaperpresenterare subcon-
cepts ofpresenter. Examples of elements of an ABox defined with respect to the TBox
above are:

invitedSpeaker(john)
paperPresenter(mary)

3 Ontological reasoning in AgentSpeak-DL

The steps in the reasoning cycle are essentially the same in AgentSpeak-DL as for
predicate-logic AgentSpeak, with the exception of the following aspects that are af-
fected by the introduction of ontological reasoning:

– plan search

3

– querying the belief base
– belief updating

3.1 Plan Search in AgentSpeak-DL

The reasoning cycle of an agent can be better understood by assuming that it starts with
the selection of an event from the set of events. The next step in the reasoning cycle is
the search for relevant plans for dealing with the selected event.

As an example let us consider the case of checking for plans that are rel-
evant for a particular event in the smart meeting-room scenario again. Suppose
that a sensor in a smart meeting-room has somehow detected in the environ-
ment the arrival of the invited speakerjohn. This causes the addition of the ex-
ternal event〈+invitedSpeaker(john),⊤〉 to the set of events. Suppose also that
invitedSpeaker⊑ presentercan be inferred from the ontology. Under these circum-
stances, a plan with triggering event+presenter(X) is also considered relevant for
dealing with the event. Observe that using subsumption instead of unification alone as
the mechanism for selecting relevant plans potentially results in a larger set of plans
than in predicate-logic AgentSpeak.

3.2 Querying the Belief Base

The evaluation of a test goal?at in the body of a plan is more expressive in
AgentSpeak-DL than in predicate-logic AgentSpeak. In predicate-logic AgentSpeak,
the execution of a test goal consists in testing ifat is a logical consequence of the
agent’s beliefs. The crucial difference is that now the reasoning capabilities of DL al-
lows agents to infer knowledge that is implicit in the ontology. As an example, suppose
that the agent belief base does not refer to instances ofattendee, but has instead the facts
invitedSpeaker(john) andpaperPresenter(mary). If in the TBox we define that a paper
presenter and an invited speaker are also attendees, a test goal such as?attendee(A)
succeeds producing substitutions that mapA to johnandmary.

3.3 Belief Updating

Both plan search and querying are well resolved both in the formal semantics and in
the implementation of AgentSpeak-DL. Opens issues still remain in relation to belief
updating. Suppose for instance that the TBox of an ontology is such that can be inferred
from it that the conceptschair andbestPaperWinnerare disjoint. Clearly, if the ABox
asserts thatchair(mary), the assertionbestPaperWinner(mary) is not to be added to
it, otherwise the ontology would become inconsistent. In the process of developing an
ontology a reasoner will inform the ontology developer of this inconsistency so that he
can take an action by probably reviewing his definition, but in the context of multi-agent
systems belief updating reveals to be more subtle.

In the first versions of predicate-logic AgentSpeak, the addition of a belief to the
belief base has no further implications . If the addition of a belief would make the belief
base inconsistent the belief would not be added. Later, [9] proposed the adoption of a
principled notion of belief update following (most of) the rational postulates of [11].

4

The approach taken in JASDL, an implementation of AgentSpeak-DL in the Jason
platform [13] is: if the update will make the ABox inconsistent it is not performed. So in
this respect it is not different from the approach taken in the predicate logic based ver-
sion of AgentSpeak. But that is not satisfactory since the updating has to be performed
to reflect the new state of affairs.

An interesting approach for update of ontologies is that of [6]. In that approach the
TBox is taken to be invariant and it is the ABox that has to be fixed in order to keep
consistency. We believe that this is not a restrictive assumption since, in the real world,
ABox changes are more frequent. In what follows we illustrate the main points of the
algorithm proposed in [6] and we use their running example.

Suppose we have the following very imple DL-Lite ontology describing a basketball
players’ domain:

– TBox: {∃.WillPlay ⊑ AvailablePlayer, AvailablePlayer ⊑ Player, Injured ⊑
¬AvailablePlayer}

– ABox: {WillPlay(John, allstargame)}

Observe that we can infer from the ontology above thatAvailablePlayer(John),
Player(John), and that¬Injuried(John). Suppose now that John gets injured so the
ABox has to be updated withInjured(John) to reflect this new state of affairs. But
simply addingInjured(John) to the ABox{WillPlay(John, allstargame)} will produce
an inconsistent ABox.

Observe also that the factInjured(John) means, according to the TBox, that he is
not an available player anymore, and not being an available player also means that
he will not play a game. However, heremains a player and if we simply remove
WillPlay(John, allstargame) form the ABox and addInjured(John), the fact that John
remains a player is not captured anymore. In order to fix thisPlayer(John) has to be
added to the ABox.

The update algorithm porposed by [6] can be briefly described as follows:

– Input:
• a setF of facts
• a DL-Lite ontology: TBoxT and ABoxA

– Output:
• ERROR if < T ,F > is inconsistent
• a new ABoxA′ otherwise

For the example above the main steps of the algorithm are the following:

– A′ = A ∪ F , i.eA′ = {Willplay(John, allstargame)}∪ {Injured(John)}
– F ′ = what is inferred from< T ,A > (original) and is contradictory withF i.eF ′

= {AvailablePlayer(John), WillPlay(John, allstargame)}
– remove fromA′ what is inF ′. We then haveA′ = {Injured(John)}
– add toA′ what can be derived from what has been removed and do not contradict
F i.eA′= {Injured(John)} ∪ {Player(John)}

5

4 Conclusions and Future Work

This is a draft paper exposing preliminary ideas for belief updating in AgentSpeak-DL
based on an algorithm for ontology updating. Most of the work still has to be done and
we foresee the following activities: we are now working on the formal semantics of
AgentSpeak-DL with belief updating. This formal semantics will be the starting point
both for implementing a version of JASDL with principled belief updating and also for
investigating which belief revision postulates [11] are followed by agents developed
with the AgentSpeak-DL programming language.

We also would like to extend the belief modification in AgentSpeak-DL in order to
incorporate principled belief removal. As a starting point for this investigation we will
adopt the algorithm for belief update and removal proposed in [7].

References

1. F. Baader, D. Calvanese, D. N. D. McGuinness, and P. Patel-Schneider, editors.Handbook
of Description Logics. Cambridge University Press, Cambridge, 2003.

2. D. L. McGuinness and F. van Harmelen, editors.OWL Web Ontology Language overview.
W3C Recommendation. Avalilable at http://www.w3.org/TR/owl-features/, February 2004.

3. A. S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
W. Van de Velde and J. Perram, editors,Proceedings of the Seventh Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW’96), 22–25 January, Eindhoven, The
Netherlands, number 1038 in LNAI, pages 42–55, London, 1996. Springer-Verlag.

4. S. Staab and R. Studer, editors.Handbook on Ontologies. International Handbooks on
Information Systems. Springer, 2004.

5. R. Stevens, C. Wroe, P. W. Lord, and C. A. Goble. Ontologies in bioinformatics. In Staab
and Studer [4], pages 635–658.

6. G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the Update of Description Logic
Ontologies at the Instance Level. InAAAI, 2006.

7. G. De Giacomo, M. Lenzerini, A. Poggi, and R. Rosati. On the Approximation of Instance
Level Update and Erasure in Description Logics. InAAAI, pages 403–408, 2007.

8. Á. Moreira, R. Vieira, R. Bordini, and J. Hübner. Agent-Oriented Programming with Un-
derlying Ontological Reasoning. InDALT, pages, 155–170, 2005.

9. N. Alechina, R. H. Bordini, J. F. Hübner, M. Jago, and B. Logan. Belief revision for
agentspeak agents. InAAMAS, pages 1288–1290, 2006.

10. R. H. Bordini and J. F. Hübner.Jason: a Java-based interpreter for an extended version of
AgentSpeak, 2007.http://jason.sourceforge.net/.

11. J. Doyle. Reason maintenance and belief revision – foundation vs. coherence theories. In
P. Gärdenfors, editor,Belief Revision, Cambridge Tracts in Theoretical Computer Science.
Cambridge, Cambridge, 2004.

12. R. Vieira,Á. F. Moreira, M. Wooldridge, and R. H. Bordini. On the formal semantics of
speech-act based communication in an agent-oriented programming language.J. Artif. Intell.
Res. (JAIR), 29:221–267, 2007.

13. T. Klapiscak and R. Bordini JASDL: A Practical Programming Approach Combining Agent
and Semantic Web Technologies In DALT, 2008

6

