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Mpi-Spin [1, 2] is an extension to the model checker Spin [3, 4] for verifying
correctness of MPI-based parallel and distributed algorithms. It adds to Spin’s
input language a number of types, constants, and functions corresponding to
primitives in the MPI Standard [5]. The semantics of these added primitives are
defined using an abstract model of a generic MPI implementation which encodes
all possible behaviors permitted by the Standard. Thus Mpi-Spin can verify that
an algorithm will behave correctly on any (correct) MPI platform.

By default, Mpi-Spin will check for a number of standard defects in MPI-
based algorithms: deadlocks, failure to wait for the completion of communication
requests before finalization, attempts to access buffers used in active communi-
cation operations, out-of-order invocations of collective functions, and so on. It
can also be used to verify the functional correctness of an algorithm—that an
algorithm will always produce the correct result on any given input [6].

Functional correctness is specified by providing a sequential version of the
algorithm which is presumed to be correct. The problem is then reduced to ver-
ifying that the parallel and sequential versions are functionally equivalent. This
is accomplished using symbolic execution [7]: the inputs to the algorithms are
modeled using symbolic constants Xi and the outputs are expressed as symbolic
expressions in the Xi. Nondeterministic choice is used to model branches and the
branch decision is recorded in a symbolic path condition variable pc. A simple
decision procedure can detect that pc becomes unsatisfiable, at which point the
search backtracks.

To compare the two versions, a composite model is constructed in which pc is
initialized to true, the sequential model is executed, and then the parallel model
is executed with the value of pc resulting from the sequential execution. Finally,
an assertion is used to check that the symbolic results from the two versions
coincide. A depth-first search of the state space of the composite model will
explore all possible executions of the sequential version, each of which results
in a path condition-symbolic output pair. For each of these pairs, all possible
executions of the parallel version consistent with pc are explored, and the outputs
are compared. Thus the path condition is used to “match up” executions of the
two versions on the same inputs domains.

The notion of equivalence depends upon the semantics one associates to
the numerical operations. Successively weaker notions of equivalence supported
by Mpi-Spin are Herbrand (operations are treated as uninterpreted functions),
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Solution 27:

Path condition is conjunction

of the following:

0. x8-x6*(x2/x0) == 0

1. x5-x3*(x2/x0) == 0

2. x7-x6*(x1/x0) == 0

3. x4-x3*(x1/x0) == 0

4. x0 != 0

Reduced row-echelon form:

x0/x0 x1/x0 x2/x0

x3-x3*(x0/x0) 0 0

x6-x6*(x0/x0) 0 0

All parallel solutions

are Herbrand-equivalent

to the sequential solution.

Solution 27:

Path condition is conjunction

of the following:

0. x8-x6*(x2/x0) == 0

1. x5-x3*(x2/x0) == 0

2. x7-x6*(x1/x0) == 0

3. x4-x3*(x1/x0) == 0

4. x0 != 0

Reduced row-echelon form:

1 x1/x0 x2/x0

0 0 0

0 0 0

All parallel solutions

are real-equivalent

to the sequential solution.

Fig. 1. Gaussian elimination: Mpi-Spin output for 3× 3 matrices (excerpt)

IEEE754 (corresponding the IEEE754 floating-point standard) and Real (val-
ues are treated as Real numbers). An excerpt of the output of Mpi-Spin on a
Gaussian elimination algorithm is shown in Fig. 1. One of the path condition-
output pairs resulting from the sequential version is displayed, followed by the
conclusion that all possible executions of the parallel version consistent with that
path condition produce the same result. Fig. 1(left) uses Herbrand arithmetic;
Fig. 1(right) uses Real arithmetic. In this example, equivalence holds in both
cases, though the output is simplified in the Real case.

Methods are currently being explored to improve the symbolic algorithm
in various ways. The first is the use of abstraction to reduce the number of
variables and computations in the composite model. An example dealing with
a matrix-matrix multiplication algorithm (derived from [8]) is shown in Fig. 2.
In this case, the sequential and parallel versions both make use of a vector-
matrix multiplication helper function vecmat. To prove equivalence, it is not
necessary to know anything about vecmat, so this function can be modeled using
an uninterpreted symbolic function VECMAT. Furthermore, the state of all the
variables comprising one row of input matrix A can be represented using a single
symbolic variable; the entire matrix B can be represented using a single symbolic
variable, and each row of C can be represented using one symbolic variable.
Methods to automatically find these abstraction opportunities and perform the
corresponding model transformations are being studied.

Matthew Dwyer has pointed out that the symbolic comparison algorithm
lends itself naturally to parallelization. A single process could explore the se-
quential version and each path condition-output pair produced could be forked
off to a separate process to explore the corresponding parallel executions. The
processes exploring the parallel executions can run in parallel with no communi-
cation between them. This is because the path conditions are pairwise mutually
exclusive, so it is not possible for the state spaces generated by two distinct
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double a[N][L], b[L][M], c[N][M];

for (i=0; i<N; i++) vecmat(a[i], b, c[i]);

(a) specification: sequential code using vector-matrix multiplication function

double b[L][M], in[L], out[M];

while (1) {

MPI_Recv(in, L, MPI_DOUBLE, 0, MPI_ANY_TAG, comm, &status);

if (status.MPI_TAG == 0) break;

vecmat(in, b, out);

MPI_Send(out, M, MPI_DOUBLE, 0, status.MPI_TAG, comm);

}
(b) parallel “master-worker” implementation: excerpt of worker code
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VECMAT(ã1, b̃)
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(c) mapping of concrete variables to abstract variables

Fig. 2. Matrix-matrix multiplication: abstractions used to verify functional correctness

processes to intersect. A parallel version of the algorithm for grid or cluster
environments is under development.
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