
Implementing probabilistic description logics:
An application to image interpretation

Tobias H. Näth1 Ralf Möller1

1 Institute for Software Systems
Technische Universität Hamburg-Harburg,

Harburger Schlostr. 20
Hamburg D-21073, Germany,

Email: tobias.naeth@tu-harburg.de
Email: r.f.moeller@tu-harburg.de

Abstract

This paper presents an application of an optimized
implementation of a probabilistic description logic de-
fined by Giugno and Lukasiewicz [9] to the domain of
image interpretation. This approach extends a de-
scription logic with so-called probabilistic constraints
to allow for automated reasoning over formal ontolo-
gies in combination with probabilistic knowledge. We
analyze the performance of current algorithms and in-
vestigate new optimization techniques.

Keywords: probabilistic description logics, image in-
terpretation, probabilistic lexicographic entailment

1 Introduction

For at least ten years, modeling of uncertainty com-
bined with description logics (DLs) has been a topic
of research. Several theoretical approaches have been
developed and discussed in the literature. Though
there are implementations for fuzzy description logic
available, e.g. [31], none of the probabilistic ap-
proaches has to our knowledge made its way into a
DL reasoning system obtainable today. The reason
is that various kinds of semantics were investigated,
each of which turned out not to be easily realizable
in a mature DL system. Recently, techniqes for so-
called probabilistic lexicographic reasoning services
were proposed by Giugno and Lukasiewicz [9]. Their
approach, named P-SHOQ(D), reduces the proba-
bilistic reasoning problems to solving linear programs
and standard satisfiability tests with respect to the
underlying description logic. This property allows
for a modular implementation reusing mature soft-
ware components, i.e., a DL reasoner and a linear
program solver. Although this approach seems at-
tractive, experience shows that, usually, severe per-
formance problems can be expected for expressive
logics. However, since the P-SHOQ(D) approach is
well-suited for the application scenario we are cur-
rently investigating, namely image interpretation (see
below). The use of description logic for image inter-
pretation has also been explored in [26, 24]. We inves-
tigate the hypothesis that a modular implementation
can be done in practice. As a DL reasoner Racer-
Pro has been chosen due to its stability and maturity
[3, 2]. As a solver for linear programs we used [4] and
[1]. The combined probabilistic reasoning system is

This work was partially supported by the EU-funded project
BOEMIE (Bootstrapping Ontology Evolution with Multimedia
Information Extraction, IST-FP6-027538).

called ContraBovemRufum.1 The results we obtained
are indeed encouraging. From the experiences of the
optimized, but modular implementation in our appli-
cation scenario, we develop new optimization tech-
niques for subsequent system implementations.

Figure 1: Pole-vault image. Or does it show a high-
jump?

Automated high-level interpretation of images re-
lies on low-level feature extraction of image data. Let
us consider the image in Figure 1. The image is from
the athletics domain. A low-level process might ex-
tract instances of the concepts athlete, pole and bar.
These are visible objects. However, image interpreta-
tion should not stop here. The high-level interpreta-
tion of this image should probably be a more abstract
objects, in this case perhaps a pole-vault event. But,
can we be sure about this? If not, where does the
uncertainty arise? What if the low level extraction
fails to detect the pole and the image might be inter-
preted as a high-jump event? Naturally, both inter-
pretations seem possible in this case. The pole-vault
interpretation should be the more likely one, but we
do not want to rule out the high-jump interpretation.
With more evidence arriving it may also be the case
that conclusions would be drawn differently, recon-
sidering the previously made interpretations. Usually
the extraction process provides probability values of
its certainty for each detected visible instance. These
values could be used to guide the high-level interpre-
tation process.
The main contributions of this paper can be sum-
marised as follows:

1. We investigated the feasibility of the approach
taken by Giugno and Lukasiewicz [9] in a prac-
tical implementation, showing that it can be im-
plemented and that it is worth to continue in this
line of research. The implementation already in-
cludes the optimised algorithms proposed in [21].

1See [25] for the genesis of the name.

Dagstuhl Seminar Proceedings 08091
Logic and Probability for Scene Interpretation
http://drops.dagstuhl.de/opus/volltexte/2008/1618

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. The application of probabilistic description log-
ics for image interpretation is examined and the
benefits of the taken approach are shown.

3. New techniques for further optimisations of the
reasoning algorithms are discussed.

The paper is organized as follows. Section 2 provides
an overview over the related research. Section 3 in-
troduces the syntax and semantic of the probabilistic
reasoning extension. Within section 4 the previously
described application scenario is modelled and the ap-
plication of the new system is presented. Section 5
summarises the implementation. The algorithms and
the implementation are analysed in section 6. Section
7 concludes this paper.

2 Related Research

The research related to the theory which is realized
by the ContraBovemRufum system may be divided
into three categories: probabilistic logics, description
logics and non-monotonic logics. The first category
deals with the combination of probability theory and
logic, the second with decidable subsets of first order
logic and the third with exceptions in the logic.

2.1 Probabilistic Logics

In “Boole’s Logic and Probability”, Halperin [15] in-
vestigates the research done by George Boole (1815-
1864) on the combination of probability theory and
logic. He is describing how Boole’s work may be ap-
plied to the subject of linear programming. Thus we
may state that combining logics and probability is a
rather old field of research.

Several probabilistic reasoning methods for knowl-
edge based systems have been discussed and pub-
lished in books by Pearl [28], Paass [27], Bacchus [6],
Russell [30]. Scanning the related literature two ap-
proaches can be found in order to perform inferences
with probabilities. The first approach uses Bayesian
or belief networks to determine the inferred proba-
bilities [28, 30], the second makes use of linear pro-
gramming for this task [27]. Both approaches have
been tried to be combined with description logics.
The combination of Bayesian networks and descrip-
tion logics is first described in [19] (P-Classic), and is
recently further investigated to some extend in [8]. An
implementation of P-Classic is described in [18]. The
disadvantage of P-Classic, namely the required upper
bound for number restrictions led us to the investi-
gation of another approach. Our system implements
the algorithms proposed in [10] and its follow up [21],
which use linear programming to achieve probabilistic
inference.

2.2 Description Logics

Although the approach of [10] is based on the expres-
sive description logic SHOQ [16], due to the modu-
larity, any description logic could be considered. Our
implementation is bound to SHIQ(D) [12, 17, 13]
provided by RacerPro. For our drafted application
scenario in this paper it is sufficient to introduce the
description logic ALC. A further overview on descrip-
tion logics is given in [5].

Let A be a concept name and R be a role name.
Then, the set of ALCconcepts (denoted by C or D)
is inductively defined as follows: C,D → A | ¬C |C u
D |C tD | ∀R.C | ∃R.C. Concepts can be written in
parentheses. The semantics is defined in the standard
form using a Tarskian interpretation I = (∆I , ·I)
such that

AI ⊆ ∆I , RI ⊆ ∆I ×∆I

(¬C)I = ∆I\CI (complement)

(C uD)I = CI ∩DI (conjunction)

(C tD)I = CI ∪DI (disjunction)

(∃R.C)I = {x ∈ ∆I | ∃y. (x, y) ∈ RI ∧ y ∈ CI}
(value restriction)

(∀R.C)I = {x ∈ ∆I | ∀y. (x, y) ∈ RI → y ∈ CI}
(existential restriction)

A concept C is satisfiable if there exists an inter-
pretation such that CI 6= ∅.

A (generalized) terminology (also called Tbox, T)
is a set of axioms of the form C v D (generalized
concept inclusion, GCI). A GCI C v D is satisfied by
an interpretation I if CI ⊆ DI . An interpretation
which satisfies all axioms of a Tbox is called a model
of the Tbox. A concept C is satisfiable w.r.t. a Tbox
if there exists a model I of T such that CI 6= ∅. A
concept D subsumes a concept C w.r.t. a Tbox if for
all models I of the Tbox it holds that CI ⊆ DI .
D is called the subsumer, C is the subsumee. An
ABox A contains a finite set of assertional axioms
stating explicit knowledge concept membership (a : C
satisfied if aI ∈ CI) and role membership ((a, b) :
R satisfied if (aI , bI) ∈ RI) on the elements of the
domain. An interpretation I is a model of an ABox
A with respect to a TBox T iff it is a model of T and
satiesfies all assertions in A.

2.3 Non-monotonic Logics

In the introduction we have seen that for image in-
terpretation also non-monotonic logic are appropri-
ate. The difference between monotonic and non-
monotonic reasoning is summarised below.

Reasoning in Propositional Logic or First Order
Logic is monotone with respect to the available knowl-
edge. More precisely, adding new statements to the
knowledge base ”can only increase the set of entailed
sentences” [30] or in other words ”if something is
known to be true (false), it will never become false
(true)” [14]. In [30] this is formally stated as:

If KB |= φ then KB ∧ ψ |= φ , iff all models
I of KB and ψ are also models of φ. In the context
of description logics a knowledge base KB is a Tbox.

By the observation of human reasoning one may
recognise that it is not monotone at all. This can be
described informally as ”changing one’s mind”. Hu-
mans allow exceptions in their knowledge which can
not be resembled neither in Propositional Logic nor
in First Order Logic. To address these shortcomings
several non-monotonic reasoning methods [29, 22, 23]
have been developed.

Default Logic is a non-monotonic reasoning
method developed by Reiter [29]. In this approach
one differentiates between hard facts about a world
and default rules. ”Since the set of all hard facts can-
not completely specify the world, we are left with gaps
in our knowledge; the purpose of the default rules is
to help fill in those gaps with plausible conclusions”
[28].

Further research in default logic developed sev-
eral different kinds of entailments, e.g. 0-entailment,
1-entailment, z-entailment, lexicographic entailment
and me-entailment to name a few (see [7] for an
overview).

The probabilistic DL successors [9, 21] of lexico-
graphic entailment [20] will be the object of the pre-
sented theory.

2

3 Probabilistic Lexicographic Entailment for
Description Logics

In order to extend a description logic for dealing with
probabilistic knowledge an additional syntactical and
semantical construct is needed. This additional con-
struct is called a conditional constraint. This exten-
sion of description logics has been first formalized in
[10, 9].

A conditional constraint consists of a statement of
conditional probability for two concepts C,D as well
as a lower bound l and an upper bound u constraint
on that probability. It is written as follows:

(D|C)[l, u] (1)

Where C can be called the evidence and D the hy-
pothesis

To gain the ability to store such statements in a
knowledge base it has to be extended to a probabilis-
tic knowledge base PKB here named probabilistic
terminology P. Additionally to the TBox T here clas-
sical terminology Tg of a description logic knowledge
base we introduce the PTBox PT here generic prob-
abilistic terminology Pg, which consists of Tg and a
set of conditional constraints Dg, and a PABox Po or
assertional probabilistic terminology Po holding con-
ditional constraints for every probabilistic individual
o. In [9] there is no ABox declared, knowledge about
so called classical individuals is also stored inside the
TBox using nominals.

Dg therefore represents statistical knowledge
about concepts and Po represents degrees of belief
about the individuals o.

To be able to define the semantics for a descrip-
tion logic with probabilistic extension the interpreta-
tion I = (∆I , ·) has to be extended by a probability
function µ on the domain of interpretation ∆I . The
extended interpretation is called the probabilistic in-
terpretation Pr = (I, µ). Each individual o in the
domain ∆I is mapped by the probability function µ
to a value in the interval [0,1] and the values of all
µ(o) have to sum up to 1 for any probabilistic inter-
pretation Pr .

With the probabilistic interpretation Pr at hand
the probability of a concept C, represented by Pr(C),
is defined as sum of all µ(o) where o ∈ CI .

The probabilistic interpretation of a conditional
probability Pr(D|C) is given as

Pr(CuD)
Pr(C)

where Pr(C) > 0.
A conditional constraint (D|C)[l, u] is satisfied by

Pr or Pr models (D|C)[l, u] if and only if Pr(D|C) ∈
[l, u]. We will write this as Pr |= (D|C)[l, u]. A prob-
abilistic interpretation Pr is said to satisfy or model
a terminology axiom T , written Pr |= T , if and only
if I |= T . A set F consisting of terminological axioms
and conditional constraints, where F denotes the ele-
ments of F , is satisfied or modeled by Pr if and only
if Pr |= F for all F ∈ F .

The verification of a conditional constraint
(D|C)[l, u] is defined as Pr(C) = 1 and Pr has to
be a model of (D|C)[l, u]. We also may say Pr ver-
ifies the conditional constraint (D|C)[l, u]. On the
contrary the falsification of a conditional constraint
(D|C)[l, u] is given if and only if Pr(C) = 1 and Pr
does not satisfy (D|C)[l, u]. It is also said that Pr
falsifies (D|C)[l, u].

Further a conditional constraint F is said to be
tolerated under a Terminology T and a set of con-
ditional constraints D if and only if a probabilistic
interpretation Pr can be found that verifies F and
Pr |= T ∪ D.

With all these definitions at hand we are now pre-
pared to define the z-partition of a set of generic
conditional constraints Dg. The z-partition is build
as ordered partition (D0, . . . ,Dk) of Dg, where each
part Di with i ∈ {0, . . . , k} is the set of all condi-
tional constraints F ∈ Dg \ (D0 ∪ · · · ∪ Di−1), that
are tolerated under the generic terminology Tg and
Dg \ (D0 ∪ · · · ∪ Di−1).

If the z-partition can be build from a generic prob-
abilistic terminology Pg = (Tg,Dg), it is said to be
generically consistent or g-consistent. A probabilistic
terminology P = (Pg, (Po)o∈Ip) is consistent if and
only if Pg is g-consistent and Pr |= Tg ∪ To ∪ Do ∪
{({o}|>)[1, 1]} for all o ∈ Ip. The z-partition groups
the conditional constraints by specificity. A part of
the z-partition is more specific than another if its in-
dex is higher. With possible conflicting conditional
constraints and the inability to find a probabilistic
interpretation Pr that tolerates all of them, the goal
is to select a preferred probabilistic interpretation Pr
to draw the conclusion from. Because of this accord-
ing to [20] two criteria have to be taken into account:

1. A Pr is preferred to another model if it satisfies
more defaults.

2. Satisfying a more specific default is preferred to
a less specific one.

Both criteria allow us to order the probabilistic
interpretations Pr according to them. Both orders
should be combined into one, to determine the pre-
ferred model. A lexicographic order provides such an
integration. The second criterion is chosen as the ma-
jor criterion, since it is preferred to satisfy a more spe-
cific default than to satisfy less specific ones. We use
the z-partition for the definition of the lexicographic
order on the probabilistic interpretations Pr as fol-
lows:

A probabilistic interpretation Pr is called lexico-
graphical preferred to a probabilistic interpretation
Pr ′ if and only if some i ∈ {0, . . . , k} can be found,
that |{F ∈ Di | Pr |= F}| > |{F ∈ Di | Pr ′ |= F}|
and |{F ∈ Dj | Pr |= F}| = |{F ∈ Dj | Pr ′ |= F}|
for all i < j ≤ k.

We say a probabilistic interpretation Pr of a set F
of terminological axioms and conditional constraints
is a lexicographically minimal model of F if and only if
no probabilistic interpretation Pr ′ is lexicographical
preferred to Pr .

By now the meaning of lexicographic entailment
for conditional constraints from a set F of termino-
logical axioms and conditional constraints under a
generic probabilistic terminology Pg is given as:

A conditional constraint (D|C)[l, u] is a lexi-
cographic consequence of a set F of terminolog-
ical axioms and conditional constraints under a
generic probabilistic terminology Pg, written as F ‖∼
(D|C)[l, u] under Pg , if and only if Pr(D) ∈ [l, u]
for every lexicographically minimal model Pr of F ∪
{(C|>)[1, 1]}. Tight lexicographic consequence of F
under Pg is defined as F ‖∼tight (D|C)[l, u] if and
only if l is the infimum and u is the supremum of
Pr(D). We define l = 1 and u = 0 if no such proba-
bilistic interpretation Pr exists.

Finally we define lexicographic entailment using
a probabilistic terminology P for generic and asser-
tional conditional constraints F .

If F is a generic conditional constraint, then it is
said to be a lexicographic consequence of P, written
P ‖∼ F if and only if ∅ ‖∼ F under Pg and a tight
lexicographic consequence of P, written P ‖∼tight F
if and only if ∅ ‖∼tight F under Pg.

3

If F is an assertional conditional constraint for o ∈
IP , then it is said to be a lexicographic consequence
of P, written P ‖∼ F , if and only if To ∪ Do ‖∼ F
under Pg and a tight lexicographic consequence of P,
written P ‖∼tight F if and only if To ∪ Do ‖∼tight F
under Pg.

4 Modelling the application scenario

Let us consider again the application scenario painted
in the introduction. We will use modified elements of
the athletics ontology from the BOEMIE project to
demonstrate how the modelling with conditional con-
straints may be applied in this context. Concept defi-
nitions have been modelled as conditional constraints
in the PTBox while the concept hierarchy remains
in the TBox. Relevant axioms and conditional con-
straints which form the model of the application sce-
nario are shown in Figure 2.

T = {
High Jump v Jumping Event
Pole V ault v Jumping Event
High Jump u Pole V ault v ⊥}

Dg = {
(High Jump|∃hasPart.Bar)[0.4, 1.0]
(Pole V ault|∃hasPart.Bar)[0.4, 1.0]
(Pole V ault|∃hasPart.Pole)[0.7, 1.0]
(Pole V ault|∃hasPart.Bar u ∃hasPart.Pole)[0.8, 1.0]}

Figure 2: Application scenario model

We assume that we gained the lower bound for our
conditional constraints out of statistics over a reason-
able amount of pictures from the athletics domain.
With an upper bound of 1.0 we wish to express the de-
fault knowledge e.g. ”If some hasPart.Bar is evident
then this is a HighJump Event”. More specific con-
straints having further evidences gain a higher lower
bound probability and therefore their uncertainty in-
terval becomes smaller.

The probabilistic lexicographic entailment may be
used to decide the following two interesting proba-
bilistic inference problems:

To compute a probabilistic subsumption for the
concepts D, C the tight probabilistic lexicographic en-
tailment is determined with respect to Pg and F = ∅.

Probabilistic instance checking for an individual
o and a concept E is done by computing the tight
probabilistic lexicographic entailment with E set as
conclusion and > as evidence and with respect to Pg
and F = Do.

Probabilistic instance checking is the reasoning
service which we are using with respect to the generic
probabilistic terminology in Figure 2 to determine
the probability intervals of pictures showing specific
jumping events. Out of a picture as shown in Fig. 1
image analysis and postprocessing might produce the
following PAbox axioms :

(∃hasPart.Bar|>)image1[0.8, 1.0]
(∃hasPart.Pole|>)image1[0.9, 1.0]

Here the upper bound is set to 1.0 to express the
optimism that the image extraction process identi-
fied the right concept. The lower bound is set to the
probability provided by the image extraction process
denoting the confidence in the identified concept. No-
tice that a concept which has been detected with a low
confidence results in a larger interval of uncertainty.

We also investigated the consequences of a
change of confidence in a detected concept with

respect to probabilistic instance checking. The
following values for (PoleV ault|>)image1[PV l, PV u]
and (HighJump|>)image1[HJl,HJu] have been
computed while we varied the lower bound of
(∃hasPart.Pole|>)image1[var, 1.0]. The computed
results are shown in Figure 3. How can we inter-

var 0.0-0.4 0.5 0.6 0.7 0.8 0.9 1.0
HJu 0.68 0.65 0.58 0.51 0.44 0.37 0.3
HJl 0.32 0.32 0.32 0.32 0.32 0.0 0.0
PVu 0.68 0.68 0.68 0.68 0.68 1.0 1.0
PVl 0.32 0.35 0.42 0.49 0.56 0.63 0.7

Figure 3: Computed intervals

pret these results in order to determine the preferred
interpretation? If we interpret the results as points
then we should consider the Euclidian distances to
the two points [0, 0] as negation point and [0, 1] as
ignorance point. Combining these two distances as a
product we obtain a ranking for the interpretations.
With this ranking the PoleVault results start to be
preferred when the varied lower bound is between 0.4
and 0.5. Between 0.0 and 0.4 the results can not be
discriminated.

5 Implementation

The ContraBovemRufum system implements the al-
gorithms presented by [10, 21] in the Java program-
ming language. Figure 4 displays the generic systems
architecture. For the reasoning tasks RacerPro with
its JRacer interface is used. We are currently work-
ing on a version of JRacer which accesses RacerPro
directly through a foreign function interface eliminat-
ing all network overhead. As solvers a native Java
solver by Opsresearch and the Mosek linear program
solver have been integrated.

Knowledge Base

TBox ABox PTBox PABox

ContraBovemRufum

Interface

Description
Logic Reasoner

Linear Program
Solver

Interface

Interface

Probabilistic Knowledge Base

Figure 4: System architecture

For application programmers two different sets of
interfaces are provided. The first set contains the
ProbabilisticKBInterface, which provides all opera-
tions related to setting up and modifying PTBox
and PABox, and the ProbabilisticEntailmentInter-
face, which offers the probabilistic inference oper-
ations to decide consistency for PT and PKB as

4

well as probabilistic subsumption and probabilistic
instance checking.

The second set of interfaces handles the configu-
ration of the services. Using the SolverConfiguration
interface the selection of the solver may be changed at
runtime. The ReasonerConfiguration interface makes
the settings for the reasoner. With the Entailment-
Configuration interface the algorithm used to com-
pute the entailment may be chosen at runtime. Cur-
rently tight logical entailment and the two available
algorithms for tight lexicographic entailment are sup-
ported.

6 Analysis

Besides the successful implementation of the algo-
rithm proposed in [10] a further objective was the
analysis of average case behaviour. During the imple-
mentation it became obvious, that the algorithm used
will perform in the average case like O(2n), where n is
the number of conditional constraints within the ith
part of the z-Partition.

In order to explain this conclusion, one has to take
a closer look at the algorithm. The algorithm may be
divided into three parts:

Part 1 tests, if the evidence concept is satisfiable
against the TBox(Tg) and a set F of all ABox
and PABox axioms bound to a certain individ-
ual. F is only relevant, if probabilistic concept
membership is computed.

Part 2 computes lexicographic minimal sets of con-
ditional constraints that are not in conflict with
the verified evidence.

Part 3 computes the tightest entailed bounds using
the previously computed sets and the conclusion
concept.

The reason for poor average case performance is
within the second part. Here the computation of the
power set for each part Di of the z-partition is re-
quired in order to iterate through all possible subsets
G. A power set has 2n elements (see proof in [11])
and the algorithm visits all of them. Therefore the
average complexity is determined to be O(2n) and it
has been shown that the algorithm is intractable.

Here are some ideas on how to modify the algo-
rithm to improve its average case performance:

As a first idea ”lazy power set computation” is
introduced. By this is meant, that one starts with G
as the set containing all elements and then with all
subsets, where we have (n − 1) elements and so on.
The cardinality of these sets of subsets is given by(

n
n−i

)
, where n is the number of elements and i the

number of omitted elements.
If a set of subsets is found, where some sets are

satisfiable, the process may be stopped since we are
interested only in those kind of sets which satisfy as
many conditional constraints as possible. Still for the
worst case all subsets down to the level where the sub-
sets only contain one element have to be computed.
But on average the algorithm has to visit less subsets
G than the implemented algorithm.

The second idea is to combine ”lazy power set com-
putation” with binary search. This works as follows:

We start with the set of subsets containing
(

n
n−dn

2 e
)

and test its elements for satisfiability. If at least one
set is satisfied, the search continues within the upper
half between n and dn

2 e; otherwise the search con-
tinues in the lower half in the same manner.These
two ideas have been already applied to the algorithm
in [21] and implemented for ContraBovemRufum sys-
tem.

A third idea is to introduce some heuristic method
before performing binary search in order to reduce the
search space. For example we could pick a random
subset G of Dj and test it for satisfiability. If G is
indeed satisfiable the cardinality of G is set as new
lower bound for the binary search.

Further analysing the implemented software fol-
lowing observations were made. The time needed
to compute one column of the application scenario
in Figure 3 on a Pentium4@2,8Ghz with 1GB main
memory was reduced to 7 seconds with binary search
solving 44 linear programs coming from 8,6 seconds
with full power set computation solving 62 linear pro-
grams. Still such a manageable scenario as ours al-
ready needs quite a bit of processing time. Therefore
we also looked for opportunities to increase the per-
formance without changing the implementation. Here
both external software components come into view.

A change of the linear program solver did not
improve the systems performance for the applica-
tion scenario. Inspecting the log of the mosek solver
showed that solving the linear problems with maxi-
mal number of 9 variables and 15 linear constraints
required almost no cpu time. Therefore the time for
our computations was spent in a different place.

Setting up one linear programs involves at most 2
reasoner calls per variable and conditional constraint,
thus for the above mentioned case generating at most
126 calls. A previous naive implementation, which
made 4 reasoner calls per variable and conditional
constraint, spent 12,3 seconds and 15 seconds respec-
tively. So reducing the costs to call the reasoner
would achieve a significant performance gain. The
communication with the reasoner involves significant
overhead out of two sources, network communication
and parsing of concept terms. The first source was
eliminated by accessing RacerPro as a library via a
foreign function interface. Here the computing times
come down to 6 seconds and 7,3 seconds. To address
the parsing of concept terms significant programming
effort is necessary and would involve porting the sys-
tem.

7 Conclusion

We presented the implementation of new probabilis-
tic lexicographic reasoning services and discussed the
underlying techniques. The complexity lies within the
non-monotonic part of the logic, the computation of
lexicographic minimal sets. It has been proven that
the algorithm proposed [10] is intractable. The algo-
rithm presented in [21] has significantly better per-
formance. Still it is not expected to scale for large
PTBoxes as the presented computing times indicate.
These results are not unexpected because the algo-
rithms were designed to prove sound and complete-
ness.

The discussed application scenario shows that
this probabilistic description logic is well suited to
model this task. It also demonstrates that the non-
monotonic part of the logic is needed for the proposed
way of modelling. However if we find a way to model
which avoids conflicting constraints then we only need
tight logical entailment to determine the probabilistic
inference problems. This means that only one linear
program has to be set up, which has to be maximised
and minimised to compute upper and lower bound.
In this case it is expected that significant larger PT-
Boxes can be supported.

The discussed optimisations show that computa-
tional time was halved and the presented optimisa-
tion ideas indicate that there is still room for further
improvements.

5

In the future we will investigate further optimisa-
tions for the implemented algorithm in order to im-
prove its average case behaviour. If the reader is in-
terested in verifying the presented results on his own,
the implantation can be obtained form the following
site under the section software:
http://www.sts.tu-harburg.de/%7Et.naeth/

References

[1] Or-objects, 2000.

[2] Racerpro reference manual, 2005. Version 1.9.

[3] Racerpro user’s guide, 2005. Version 1.9.

[4] The mosek java api manual version 4.0. MOSEK
ApS, 2006.

[5] Franz Baader, Diego Calvanese, Deborah
McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Hand-
book: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

[6] Fahiem Bacchus. Representing and reasoning
with probabilistic knowledge: a logical approach
to probabilities. MIT Press, Cambridge, MA,
USA, 1990.

[7] Rachel A. Bourne and Simon Parsons. Connect-
ing lexicographic with maximum entropy entail-
ment. In ESCQARU, pages 80–91, 1999.

[8] Zhongli Ding and Yun Peng. A probabilis-
tic extension to ontology language owl. hicss,
04:40111a, 2004.

[9] Rosalba Giugno and Thomas Lukasiewicz.
P-SHOQ(D): A probabilistic extension of
SHOQ(D) for probabilistic ontologies in the se-
mantic web. In JELIA, pages 86–97, 2002.

[10] Rosalba Giugno and Thomas Lukasiewicz.
P-SHOQ(D): A probabilistic extension of
SHOQ(D) for probabilistic ontologies in the se-
mantic web. Technical Report INFSYS RR-1843-
02-06, TU Wien, 2002.

[11] Jr. H. F. Mattson. Discrete Mathematics with
Applications, chapter 3, pages 120–121. John
Wiley & Sons, Inc., 1993.

[12] V. Haarslev and R. Möller. Expressive abox
reasoning with number restrictions, role hi-
erarchies, and transitively closed roles. In
Fausto Giunchiglia and Bart Selman, editors,
Proceedings of Seventh International Conference
on Principles of Knowledge Representation and
Reasoning (KR2000), Breckenridge, Colorado,
USA, 12-15 April, pages 273–284. Morgan Kauf-
mann, 2000.

[13] V. Haarslev, R. Möller, and M. Wessel. The de-
scription logic alcnhr+ extended with concrete
domains: A practically motivated approach. In
R. Goré, A. Leitsch, and T. Nipkow, editors, In-
ternational Joint Conference on Automated Rea-
soning, IJCAR’2001, June 18-23, Siena, Italy,
pages 29–44. Springer-Verlag, 2001.

[14] Rolf Haenni. Towards a unifying theory of logical
and probabilistic reasoning. In ISIPTA, pages
193–202, 2005.

[15] Theodore Hailperin. Boole’s Logic and Proba-
bility. Elsevier Science Publishers B.V., second
edition edition, 1986.

[16] I. Horrocks and U. Sattler. Ontology reasoning in
the SHOQ(D) description logic. In Proceedings of
the Seventeenth International Joint Conference
on Artificial Intelligence, 2001.

[17] I. Horrocks, U. Sattler, and S. Tobies. Rea-
soning with individuals for the description logic
SHIQ. In David MacAllester, editor, Proceed-
ings of the 17th International Conference on Au-
tomated Deduction (CADE-17), number 1831,
Germany, 2000. Springer Verlag.

[18] Alissa Kaplunova and Ralf Möller. Probabilis-
tic LCS in a P-Classic Implementation. Techni-
cal report, Institute for Software Systems (STS),
Hamburg University of Technology, Germany,
2007. See http://www.sts.tu-harburg.de/tech-
reports/papers.html.

[19] Daphne Koller, Alon Y. Levy, and Avi Pfeffer.
P-classic: A tractable probabilistic description
logic. In AAAI/IAAI, pages 390–397, 1997.

[20] Daniel Lehmann. Another perspective on default
reasoning. Annals of Mathematics and Artificial
Intelligence, 15:61–82, 1995.

[21] T. Lukasiewicz. Probabilistic description logics
for the semantic web. Technical Report INFSYS
RR-1843-06-05, TU Wien, 2006.

[22] John McCarthy. Circumscription - a form of non-
monotonic reasoning. Artif. Intell., 13(1-2):27–
39, 1980.

[23] Drew V. McDermott and Jon Doyle. Non-
monotonic logic i. Artif. Intell., 13(1-2):41–72,
1980.

[24] R. Möller and B. Neumann. Ontology-based rea-
soning techniques for multimedia interpretation
and retrieval. In Semantic Multimedia and On-
tologies : Theory and Applications. 2007. to ap-
pear.

[25] Tobias H. Näth. Analysis of the average-case be-
havior of an inference algorithm for probabilistic
description logics. Diplomarbeit, TU Hamburg-
Harburg, February 2007.

[26] B. Neumann and R. Möller. On scene interpre-
tation with description logics. Image and Vision
Computing, Special Issue on Cognitive Vision,
2007. to appear.

[27] Gerhard Paass. Non-Standard Logics for Auto-
mated Reasoning, chapter 8, pages 213–251. Aca-
demic Press Limited, 1988.

[28] Judea Pearl. Probabilistic Resoning in Intelli-
gent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc., 1988.

[29] Raymond Reiter. A logic for default reasoning.
Artif. Intell., 13(1-2):81–132, 1980.

[30] Stuart Russell and Peter Norvig. Artificial In-
telligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, 2nd edition, 2003.

[31] Umberto Straccia. fuzzydl, 2007.

6

