
Qualitative Abstraction and Inherent Uncertainty in Scene
Recognition

Carsten Elfers, Otthein Herzog, Andrea Miene, and Thomas Wagner

Center for Computing Technologies (TZI), Universität Bremen, D-28359 Bremen
{celfers, herzog, miene, twagner}@tzi.de

1 Introduction

Scene interpretation has been identified as one of the most fundamental and challenging
tasks already since Shakey [7]. In recent years the problem has often been addressed in-
dependently with varying foci within AI, vision, and robotics. But new ambitious (bench-
mark) tasks like ambient intelligence and service- and entertainment robotics (e.g., RoboCup)
had shown the necessity of integration of formerly independent solutions. This integration
process requires solutions to some new inherent difficulties: E.g., localization is one of
the most fundamental tasks for physically grounded robots that also constitutes the map
generation of the surrounding environment (e.g., by SLAM approaches [3], [5],[16]). The
currently successful methods (i.e., Monte-Carlo, (extended) Kalman-Filter see e.g., [17])
handle sensor noise based on a set of probabilistic methods which directly result in proba-
bilistic representations of the environment. In contrast, most classic knowledge representa-
tion techniques are based on strict non-probabilistic representations.

Generally, the resulting problem can be addressed in at least three different ways:

1. Minimizing uncertainty and (trying to) generate a strictly declarative representation
with full inference power.

2. Handling uncertainty by the generation of a hybrid representation which incorporates
probabilistic and declarative representations at the expense of less powerful declarative
inferences.

3. Directly represent uncertainty by the use of a strictly probabilistic representation.

Each approach imposes strengths as well as (strict) limitations on the inferences avail-
able for scene interpretation. While deductive reasoning (e.g., subsumption) strongly relies
on the first (or at least on the second) approach other inferences like filtering, prediction
and smoothing rely on the latter representation. Nevertheless, scene interpretation requires
both types of inference.

In this paper we present two different approaches that allow us to incorporate both types
of inferences. Generally, continuous quantitative sensor information can be abstracted in
terms of qualitative representations in two different ways:

1. focusing on strictly discrete percepts (while ignoring continuous information) and
2. qualitative abstraction into predefined frames of references.

In the first part of this paper (in section 2) we present an approach that combines the
focus on discrete percepts and the generation of qualitative abstractions1. The localization
task is solved by a strict use of (qualitative) ordering information while the overall dynamic
and static spatial world model is generated by qualitative abstraction. This overall process
results in a non-probabilistic representation.

Nevertheless, uncertainty in scene interpretation arises also independently from specific
sensor noise due to either missing information or ambiguity in interpretation. Therefore, in
the second part of the paper (in section 3) we present an approach to prediction that allows
for the flexible and precise prediction of actions at different levels of granularity in the
scene-specific required precision and the data available.

1 This part strongly relies on [12].
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2 Generation of qualitative spatial representations

2.1 Motivation and Related Work
The generation of qualitative ordinal knowledge and its use for qualitative navigation has
been investigated practically as well as theoretically. The idea has been introduced by Levitt
and Lawton as part of their QUALNAV-approach [8]. Imagine walking through an unknown
city during a conference visit. You see different landmarks: a large office building far away
on your left, a church on your right and a large railway station in your back. The underlying
hypothesis of Levitt and Lawton is that the full 3600 ordering (roundview) in which a
set of landmarks is perceived by some omnidirectional sensor of an autonomous systems
is directly related to the specific position of the observer. Or the other way a round, the
position of the observer is directly related to the ordering in which a set of landmarks is
perceived. Although the idea appears to be intuitive when we consider our own experience
of landmark use walking through an unknown city the hypothesis of Lewitt and Lawton
does not hold in general. The example in figure 1 shows a simple counter-example (adopted
from Schlieder [15]). The position of the autonomous system is indicated as a black dot.
Due to Levitt and Lawton each region which results from connecting each landmark with
each other (i.e., an arrangement) should be identified by a specific ordering. In picture 1
the cyclic ordering is given by 〈1, 2, 3, 4, 5〉.

Fig. 1. Localization and ordering information

But the resulting circular ordering information is not unique to a specific region is valid
instead for all grey regions.

The detailed formal analysis of Schlieder ([15], [13], [14]) showed that the informa-
tion encoded in the roundview of Levitt and Lawton is not sufficient for qualitative navi-
gation/localization. Schlieder proposed instead an extended panoramic representation that
incorporates the opposite sides of landmarks for which he could proof a bijective mapping
between qualitative position and landmark ordering. For practical applications the informa-
tion requirements are very high. We do not only need a full 3600 view but we also have to
incorporate the opposite landmark sides which by definition cannot be perceived directly
and therefore have to be calculated (e.g., based on angular information).

In section 2.2 we present a view-based approach to qualitative navigation that requires
only partial egocentric views (i.e., neither 3600 views nor opposite landmark sides) but still
allows for a robust mapping between position and perception.
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Another field of application for qualitative knowledge is the qualitative description of
motion and the correlated interpretation and prediction of dynamic scenes. Dynamic scenes
consist of objects which are in certain spatial relations to each other. The relations vary
over time due to the movement of the objects. Temporal intervals and the relations between
them can be represented following the approaches of Allen [1] and Freksa [6]. The spa-
tial relations between the objects can be described using metric knowledge such as angles,
distances and the objects movement in terms of direction and speed. Quantitative values
concerning distances and directions can be mapped onto qualitative classes using qual-
itative distance measures as proposed by Hernandez [4]. For a detailed discussion of the
related work please refer to [9]. An approach which brings together the temporal and spatial
aspects to describe, interpret and predict dynamic scenes is presented in section 2.3.

2.2 Qualitative Localization Based on Egocentric Views

Localization and navigation can be interpreted as the mapping between perception and
space. In the case of the traditional approaches [18] the Euclidian 2D/3D space is used
as the reference system and perception is given in terms of quantitative sensor output. In
the case of qualitative localization both perception and the spatial reference system must
be defined with respect to some qualitative reference system. In the following sections
the concept of view-based qualitative navigation is demonstrated with landmarks config-
urations with four landmarks, although the general concept is not limited to any specific
number of landmarks. (For a full description please refer to [20].), Therefore we have to
give,

1. a definition of the construction of qualitative perception,
2. the specification of a qualitative reference system and
3. the mapping from perception to space (localization)2.

The fundamental idea of view-based navigation is to use the egocentric perception of an
agent without a mapping into any allocentric reference system. The only information used
to describe perception is ordering information, i.e., no angular nor any distance information
will be used. Usually the generation of spatial qualitative descriptions is a difficult task due
to the required classification process. In the case of ordering information the generation
does not require any kind of classification. The idea is to fix an arbitrary point within
the convex hull of a landmark configuration. The ordering information is given by the
orthogonal projection of the landmarks on LOrth(PΓ /V P ) (see also figure 2). Formally3,

Definition 1: (Snapshot Generation) Let PΓ denote the position of an agent AΓ and
CP (ABCD) the parallelogram configuration formed by the set of points A,B,C, D
in the plane. The line LPΓ /V P is the line of vision from PΓ to VP, with VP being
a fixed point within CP (ABCD). Furthermore LOrth(PΓ /V P ) be the orthogonal inter-
section of LPΓ /V P . The landmark panoramic ordering information can then be de-
scribed by the orthogonal projection P (PΓ , V P,CP (ABCD)) of the points ABCD
onto LOrth(PΓ /V P ).

Assume a parallelogram configuration CP (ABCD) of the landmarks A,B,C, D ∈ L
with all landmarks connected to each other by a straight line Ln/m, n, m ∈ L4. The result-
ing structure decomposes the space in twelve region outside the convex hull of CP (ABCD).

2 The crucial point is to show that there is a bijective mapping between perception and qualitative
position. This can be shown e.g., by constructing an appropriate finite state machine. For details
please refer to [20].

3 The generation of a complete ordinal snapshot as described in definition 1 is only necessary for
the initial construction of the reference system.

4 There are no specific requirements for parallelogram configuration e.g., a rectangle.
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Fig. 2. Construction of an ordering view

Fig. 3. Qualitative regions, transitions und ordinal perceptions for a parallelogram landmark configu-
ration

Moving around CP (ABCD) either clockwise or counter-clockwise results in a set of
ordering snapshots that describe qualitatively the position of the observer with respect to
CP (ABCD),

Observation 1: (Parallelogram Snapshot Cycle) The panoramic landmark representations
resulting from the subsequent projection P (PΓ , V P,CP (ABCD)) by counter-clockwise
circular movement around VP can be described by the following ordered, circular se-
quence of snapshots: ((ABCD),(ACBD), (CABD), (CADB), (CDAB), (DCBA),
(DCAB), (DBCA), (BDCA), (BDAC),
(BADC), (ABDC))

Each line Ln/m connecting landmarks n and m with each other can be interpreted
as a transition axis. Given the agent is located at position [POS − 7] with the associ-
ated perception 〈BDCA〉 and is moving counterclockwise towards region [POS − 8].
While passing the transitions axis LA/C the ordering perception changes from 〈BDCA〉
to 〈BDAC〉, Considering the result of a full round walk the ordering topology of observa-
tion 1 can alternatively be described in terms of a sequence of transitions: 〈 B/D, A/D,
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C/D, A/B, C/B, B/D, A/C, A/D, A/B, C/D, C/B, A/C 〉5. During the navigation
around CP (ABCD) each transition axis Ln/m is passed exactly twice. Thus the observation
of a transition is at least to some extent invariant. But the navigation process is even more
constrained. Given the transition axis Ln/m we are able to distinguish on which side a robot
passes Ln/m. In case of LA/C the landmark A moves from the right to the left and land-
mark C moves from the left to the right side in the case of moving from region [POS − 7]
to [POS − 8]. While passing the LA/C on the bottom side from region [POS − 12] to
[POS − 1] (once again, we assume a counter-clockwise direction of navigation) the land-
mark switch is exactly the other way a round. So the navigation can be described more
precisely as,〈 C/D, A/B, C/B, D/B, A/C, D/A, B/A, D/C, B/C, C/A 〉. The funda-
mental advantage of describing a landmark configuration in terms of a transition sequence
is that only a minimum of information is required to determine the observers, positions. Just
observing, e.g., the landmark switch A/C in combination with the direction of navigation
(clockwise vs. counterclockwise), the direction of the landmark switch allows to determine
the exact observer position with respect to CP (ABCD).

An additional interesting feature of ordering information is that it is, e.g., variant to
various deformations like compression. The circular sequence of snapshots described in
observation 1 is indeed only valid for parallelogram landmark configurations. Imagine we
are moving the landmarks B and D in figure 3 towards each other. As a matter of conse-
quence the transitions axis LA/B and LC/D have no longer a parallel orientation. Instead
after moving the landmarks B and D towards each other the axis LA/B and LC/D will
intersect on the right side of CP (ABCD) and create a new region 〈CDBA〉. Generally four
new regions may arise depending on which landmarks are changing their relativ position
to each other. This allows us to describe the second observation,

Observation 2: A semi-irregular formed quad-tuple configuration, i.e., with two parallel
lines either LAC and LB/D or LA/B and LC/D, will generate the following additional
state:

((DBAC) ∨XOR (ACDB)) ∨XOR ((BACD) ∨XOR (CDBA))

The new positions cannot be combined arbitrarily. Lets assume the same case as above.
The landmarks B and D are moved towards each other and therefore the axis LA/B and
LC/D will intersect on the right side of CP (ABCD). Since no straight lines, i.e., LA/B and
LC/D, can intersect more than once it is clear that LA/B and LC/D will not intersect on
the left side of CP (ABCD). Thus any landmark configuration with four points has at most
two additional regions (in addition to the ones specified in observation 1),

Observation 3: A irregular formed quad-tuple configuration, i.e., with no parallel lines
LA/C , LB/D, LA/B and LC/D, will generate the following additional states:

((DBAC) ∨XOR (ACDB)) ∧ ((BACD) ∨XOR (CDBA))

Thus we are able to distinguish nine different convex quad-tuple configurations by a
strict analysis of the ordering snapshots (see figure 4).

The approach has been tested in two different scenarios. First it was tested in the
RoboCup domain with a simulator of the Sony-Four-Legged-League [19]. Since our ap-
proach is intended to be used for localization outside the convex hull of a landmark config-
uration the edges of the lines within the soccer field were used as landmarks (for detailed
description please refer to [19]). Secondly, in order to get results that do not depend on any
specific kind of landmark (re-)detection we also developed a simulator EGO-QUALNAV
that allows to control precisely various fault modes like odometrie, missing landmarks,

5 Therefore, the parallelogram snapshot cycle (Observation 1) does not require to focus on some
arbitrary viewpoint V P . Instead the observation of the transitions is sufficient. The point V P of
definition 1 is only required for the initial reference view.
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Fig. 4. Convex quad-tuple ordering topologies

partial views and wrong identification of landmarks. (Figure 5(b) shows a more complex
scenario. Each bright dot describes a landmark configuration (a cluster) whereas all land-
mark configurations are connected to each other by an accessibility relation in order to
construct more complex scenarios.)

(a) Validation in the RoboCup-domain (Sim-
ulator of the Sony-Four-Legged-League)

(b) EGO-QUALNAV-SIM - environment
with a graph-based network of landmark con-
figurations

Fig. 5. Validation

Even in cases where up to 60% of the perception is incorrect6 and with a high rate of
missing information (e.g., landmarks that could not be distinguished) the simulated agent
was able to find its way from an arbitrary starting point to an arbitrary end point (for a
detailed description of the results and the precise formalisation with the according proofs
please refer to [20]).

6 Each test case has been tested with 10000 navigation tasks. For detailed results please refer to [20].
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2.3 Dynamic Qualitative Information

In this section we introduce our approach on representing motion with qualitative dynamic
knowledge. The approach enables us to both interpret and predict complex dynamic situa-
tions [9], [11].

Qualitative Motion Description The description includes single object’s motion in com-
bination with the changes in the objects’ pairwise spatial relations over time. The basic
assumption of our approach is that we have an allocentric view from above of the motion
scene. On a quantitative level the objects, absolute and relative movement is described by
four types of time series: the motion direction and speed of each object, and the spatial
direction and distance for each pair of objects. In a first abstraction step each time series is
segmented into time intervals of homogeneous motion values.

In order to segment the time series into time intervals two different segmentation meth-
ods are used: a threshold-based segmentation method and a monotonicity-based segmenta-
tion method, which groups together strictly monotonic increasing intervals, strictly monotonic
decreasing intervals and intervals of constant values. Each threshold-based segmented in-
terval is described by a single attribute: the average of its values. A monotonicity-based
segmented interval is described by its start value, its end value, and the run direction of
values: increasing, decreasing or constant. Both segmentation methods allow for various
interpretations of the resulting intervals. The monotonicity-based segmentation is useful
to recognize dynamic aspects of motion, e.g., the acceleration of a moving object. But
due to the fact that the values are measured only at the start and the end of an interval its
intermediate values are not known. Therefore, the threshold-based segmentation is more
useful to find, e.g. an object that moves with a certain average speed. In a second step
the attribute values describing the intervals are mapped onto qualitative classes for direc-
tion, speed or distance, respectively using qualitative distance measures as suggested by
Hernandez [4]. The entire process is carried out online, i.e., at each time cycle one set of
positional data is processed. Fig. 6 shows the entire process of motion description exem-
plary for a time series of object distances, segmented using the monotonicity-based method.
A single interval already allows for a simple interpretation of the movement of the two in-
volved objects: they approach each other and finally meet, which is expressed by the term
HOLDS(approach-and-meet(p, q), 〈tn, tn+k〉). The predicate HOLDS expresses the co-
herence between a certain situation and the time interval in which it is taking place or is
valid (see Allen [1]).

Fig. 6. Overview: Generation of motion description
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Fig. 7. Development of spatial directions between offender and defender announcing an impending
offside position.

Interpretation and Prediction of Dynamic Scenes Based on the qualitative motion de-
scription it is possible to recognize and predict motion situations. Domain knowledge, e.g.
about the function or type of objects involved in a situation, leads to more appropriate in-
terpretations. In addition, positional information is integrated by representing the duration
a certain object is located in a certain region via time intervals.

As an example it is possible to predict an impending offside trap (FIFA rules, law 11).
In order to predict an impending offside situation for player p, he has to be located in
the opponents’ half, actually have the ball behind him and a small remaining number of
k = 3 − 4 opponent defenders in front of him. Then it depends on the relative move-
ment of p and an opponent q if an offside position is impending. Therefore, we have to
take into account the current spatial direction between p and q (spatdir), obtained from
the threshold-based segmentation, and the development of the spatial direction between p
and q (clockwise (change-spatdir-cw) or counterclockwise (change-spatdir-ccw), ob-
tained from the monotonicity-based segmentation). If the spatial direction is already close
to the change between in-front-of and behind, and the values are increasing or decreasing
(clockwise/counterclockwise change of spatial directions) an offside position is impending.

A complex situation like offside-danger(p, q) combines several time intervals. The
temporal relations between the intervals are modelled using temporal relations on time in-
tervals defined by Allen [1] and on semi-intervals as proposed by Freksa [6]. The term
∀i, j ∈ {1, . . . , n} : si < ej postulates that all n intervals involved in the situation are pair-
wise contemporary. 〈max(si),min(ei)〉 specifies the sub-interval covered by all n time
intervals 〈si, ei〉, 1 ≤ i ≤ n. Fig. 7 shows the case of an increasing development of values.
If the present trend lasts for some further time, an offside situation will occur in the moment
the spatial relation changes to the next class (i.e. from 5 to 4) and at the same point in time
from in-front-of to behind.
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Within the prediction phase we can also distinguish offside traps caused by a forward
movement of an opponent q from offside situations caused solely by the movement of the
offender p himself be taking into account the movement of these players.

To evaluate our approach we have chosen three games from the Robocup Worldcup
2002: FC Portugal vs. Puppets, TsinghuAeolus vs. FC Portugal and VW2002 vs. Cyberoos.
The games include 53 offside situations in which the game was interrupted by the referee.
In 45 cases our system also detected an offside situation. In 8 situations our systems is not
in line with the referee. But in all of these situations the referee decides offside against a
team A although a player of team B has touched the ball before the game was interrupted.
So our system detected every correct offside situation and furthermore 8 wrong decisions
of the referee.

A detailed explanation of the offside example together with the in-depth evaluation of
results is presented in [11].

3 Relational Hidden Markov Model: Hierarchical Prediction based
on Sensor Information

3.1 Learning and Prediction based on RHMM

Instead of creating a complex model like DPRMs, the model in this work is limited to a
HMM similar structure to provide fast inference without the need of approximation meth-
ods. It also uses relational features to improve inference accuracy and to handle sparse
reference data.

Relational Hidden Markov Model

To provide explicit modeling of sensory uncertainty and the ability to deal with sparse ref-
erence data the relational Markov model and the hidden Markov model have been combined
in this work. The proposed method also provides inferences on different granularity levels.
Like a HMM the RHMM is separated in hidden and visible states, and like a RMM each
state is represented by a relation.

Definition 1. The relational hidden Markov model is defined as a tuple RHMM =< D,R, E , A, B, π >
with the set of all domainsD, the set of all hidden relationsR, the set of all visible relations
W , the transitionmatrix A, the sensormatrix B and the initial distribution π.

To provide a detailed overview of the RHMM the special structure of it will be intro-
duced in the next section, before going into detail about the inferences.

Structure
Fig. 8. Domain draft

To describe the domain-specific similarities we
define the hidden states of the RHMM as a set of re-
lations R and the visible states (evidences) as a set
of relations E , with each relation containing a set
of attributes out of A. The attribute values and the
similarities between them are specified by a set of
domains D, one domain D ∈ D for each attribute.
Therefore we define a domain as a hierarchical struc-
ture specifying the different granularity levels. A similarity between different values of an
attribute is expressed by combining them into one value on a more abstract granularity level
in the domain. An example for the structure of a domain is exemplified in figure 8. The vis-
ible and hidden states are handled in the same way, so we further omit defining both cases.
To define a set of relations we specify a function called leaves(δ), gathering all leaf nodes
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from a given node δ in the corresponding domain. With this function we define a relation
R(d1, · · · , dk) by its containing ground relations as: [2]

R(d1, · · · , dk) = {R(δ1, · · · , δk) ∈ S|δi ∈ leaves(di).
∀i(1 ≤ i ≤ k)} (1)

To specify how abstractions of predicates are built from the domains we omitted using
all possible abstractions (like in RMMs) due to a high computational effort. Instead we
build an abstraction by abstracting all attributes at the same time. Therefore we define a
function depth(d) returning the depth of a node in a domain from its most abstract root.
For example the depth of the most abstract value of a domain is zero. Further the boolean
function min(d1, d2) is only fulfilled if the difference between the depth of the parameters
is minimal in the corresponding domains. The abstraction G(s) of a ground predicate s =
R(δ1, · · · , δk) is defined as:

G(s) = {R(d1, · · · , dk) ⊆ R|di ∈ nodes(Di)
∧δi ∈ leaves(di) ∧min(depth(di), depth(dj)).
∀i∀j(1 ≤ i, j ≤ k}

(2)

Inference Basically the inference in a RHMM is a combination of the inference in RMMs
and the inference in HMMs. To determine the probability of a state transition ai,j we con-
sider all more abstract state transitions aα,β of the requested one like in RMMs. α and β
therefore specify a relation on a more abstract granularity level:

ai,j = P (qt = Si|qt−1 = Sj)
=

∑
α∈G(qt)

∑
β∈G(qt−1)

λα,βaα,βP (qt|β) (3)

Therefore aα,β determines the transition probability of a more abstract state transition
by including all containing transition probabilities in the calculation of the given transition
probability as follows:

aα,β =
∑
si∈α

P (si|α)
∑
sj∈β

oi,j (4)

oi,j represents the original trained state transition probability. To include more similar state
transitions stronger than less similar state transition we used the proposed mixturefunction
of the RMM-Rank method.

λα,β ∝ (
nα,β

10
)rank(α)+rank(β) (5)

The rank function is defined as rank(R(d1, · · · , dk) = 1 +
∑k

i=1 depth(di). Lambda
is chosen that

∑
α,β λα,β = 1. nα,β is the amount of state transitions from a predicate α to

a predicate β. Analogical to ai,j we determine the emission probabilities bi,j on a different
set of predicates, domains and attributes. For inference in the RHMM the FORWARD-
Algorithm known from HMMs is used for inferences in RHMMs too:

P (Qt+1|e1:t+1) =
αP (et+1|Qt+1)

∑
qt∈Qt

P (Qt+1|qt)P (qt|e1:t)
(6)

where α is a factor ensuring that the resulting state distribution sums up to one. P (et+1|Qt+1)
represents the sensor model and is determined by bi,j . P (Qt+1|qt) represents the transition
model and is determined by ai,j .
To approximatively compute the probability of a state/relation on a higher granularity level
after inference the containing states on the lowest granularity level can simply be combined
using the following equation:

P (Rt ∈ R) =
∑

si∈Rt

P (si) (7)
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Like in HMMs it is necessary that the states on all granularity levels are disjunct.

Training We assumed hidden but not invisible states to perform a simple maximum like-
lihood estimation for training the RHMM (s. Eqn. 8). Therefore the model will be trained
by determining the relative frequency of the state transitions and recognized evidences in
the given states.

ai,j =
∑

t N(St+1 = j, St = i)∑
t N(St = i)

(8)

N counts the state transitions of the parameters.
Determining the model parameters without knowledge about the hidden states the Baum-
Welch method is applicable but depending on the specified model structure it may be very
complex. Therefore N guesses the amount of state transitions instead of counting them.
In contrast to the ML method, the Baum-Welch method is an iterative process where the
state transition probabilities have to be determined after each iteration which may result in
a high computational effort.

Representing the RoboCup domain

To represent the essential features of the environment, two attribute domains have been
specified: The distance and the direction to represent relative coordinates. Figure 9 illus-
trates the distance and direction domains, e.g., the distance domain with four separate val-
ues on the finest granularity level. On the next more abstract level these four states are
combined to two states, e.g., the distance values Near and Middle are combined to the
value AnyNear.

Fig. 9. Illustration of the distance and direction domains.

The direction domain is specified like the distance domain on three separate levels of
granularity. On the finest granularity level 12 separate states are distinguished. Addition-
ally each attribute domain gets a value none on the finest granularity level and the value
anyNone containing none on the second finest granularity level connected to the root
(Any) to offer a state to represent features that cannot be determined, e.g., unseen objects.
For the hidden states we created two predicates, dribble(direction, distance) and pass(direction, distance)
leading to 130 hypotheses on the finest granularity level, 30 hypotheses on the next granu-
larity level and two hypotheses on the most abstract granularity level to distinguish. For the
visible states we experimented with different features of the environment, e.g., the relative
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position of the nearest teammate, the relative position of the next opponent and more. A
simple heuristical method to determine the best position on the field regarding the distance
to the goal, the distance to the ball owner, a negative influence of near opponent players
and a positive influence of near teammates turned out to be most suitable after a short
period of tests. The visible states therefore represent the relative position to the best heuris-
tically determined position on the field. Therefore one predicate represents the evidence,
evidence(direction, distance), with 65 states to distinguish.

After the discretisation of the states the time also needs to be discretised. Therefore
the actions build dynamic time frames. Each action is recognized by a symbolic method
based on [9]. The evidence will be perceived after an action ends respectively each time an
action starts. Based on these evidence/action pairs the model will be trained and predict the
following actions based on the evidences.

3.2 Evaluation

The RHMM has been evaluated in the Simulation League 3D RoboCupSoccer domain. The
necessary reference data has been generated offline by a symbolic action recognition tool,
based on a method from A. Miene [10]. Therefore 20 games of the team Virtual Werder 3D
have been recorded. By the fact that the reference data is offline available a leave-one-out
cross-validation has been performed to ensure a high degree of accuracy.

Comparable Results First we tested how the RHMM assesses the 130 different hypothe-
ses depending on the amount of available training sequences (354 Sequences have been
gathered during the 20 games). To generate comparable results we performed this test with
exactly the same data with the HMM and a simple symbolic method (called SIMPLE) set-
ting the probability of the hypothesis to 100% if it occured in the trained data, 0% if not.
For all these three methods we measured the amount of wrong hypotheses assessed higher
than the right one.

Fig. 10. Hypothesis rank test

Figure 10 shows the results indicating that the RHMM predominantly outperforms the
HMM and SIMPLE method. Especially the SIMPLE method seems to be an inappropri-
ate method for action prediction in such an uncertain environment. The simple method
predicted the right action in an average after 107, 32 wrong hypotheses. Basically the in-
ability of representing beliefs of certain evidences seems to be responsible for the enormous
amount of errors. Also the RHMM predominantly outperforms the traditional HMM with
an average error of 13, 74 to 37, 05 in evaluating the hypotheses, especially with a low
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amount of reference data. This shows that considering domain-specific information during
computation influences the result in a positive way.

Fig. 11. Inference accuracy on different granularity levels

Granularity Levels As important aspect of the given representation and the ability to per-
form inference on different levels of granularity, we were able to test the inferences on the
given three levels by their accuracy. Therefore we see in figure 11 an expected behavior if
the granularity level is more abstract less errors occur. On the finest granularity level the
average error is relatively high with 89% but this value does not consider that maybe not
the right hypothesis has been chosen but a very similar hypothesis. This assumption can be
confirmed by looking at the more abstract granularity levels. On the next abstraction level
the average error is 59% selecting between 30 hypotheses and on the most abstract level
the error could be reduced to an average of 7%.
This behavior offers the opportunity to specify a minimal certainty for the prediction and
to perform inferences of a dynamic granularity level. By adopting the level of granularity a
hypothesis can be searched exceed the given certainty. So instead of defining a fixed gran-
ularity level a minimum certainty is used to automatically determine an ideal granularity
level.

Over-Generalisation A seldom and not preferable property of the RHMM is the over-
generalisation in some cases. If only a very small amount of reference data is available for
one state but a very large amount of data is available for another but very similar state,
the state with the few reference data will be mostly neglected during inference. This is not
always preferable, because the few data could be a more appropriate basis for the inference
of this state. During the tests in the RoboCup domain this non-preferable mechanism was
nearly neglectable cause the reference data was relatively good distributed.

Complexity The complexity of the presented inference can be reduced to the complexity of
a HMM by precalculating the model parameters considering the relational dependencies.
The precalculation effort on the other hand is highly dependent to the complexity of the
model structure, especially the amount of attributes for a relation and the attributes’ domain
complexity. To indicate how complex the precalculations and the inference it-self are, the
following tables show the used time on a Athlon 2400 XP-M:
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Test Time Ø Tests σ Min Max
Training 56,45 1000 0,16 50 70

LookUpTable 3,68 1000 0,15 0 10
Inference 272,82 14900 0,04 260 430

Fig. 12. RHMM-RANK inference without precalculations

Test Time Ø Tests σ Min Max
Training 68,01 1000 0,15 50 80

LookUpTable 704,23 1000 0,24 680 730
Inference 2,99 14900 0,03 0 10

Fig. 13. RHMM-RANK inference with precalculations

Fig. 12 shows the time used for the inference without any precalculations with two
evidences. Fig. 13 shows the same measurements with precalculations. The tables show
that the precalculations for the given model structure can be done within a very short period
of time (704, 23ms) and decrease the used inference time significantly (from 272, 8ms to
2, 99ms).

4 Discussion and Future Work

One of the most demanding task to be accomplished in scene interpretation based on phys-
ically grounded robots is the handling of uncertainty. Uncertainty arises essentially from
two different sources: (1) perception: sensor noise and (2) ambiguity and missing (and even
false) information in the process of interpretation. In this paper we presented approaches to
both classes of problems. In the first part (section 2) we described an approach to localiza-
tion7 based on qualitative ordering information that does not rely on probabilistic inference.
In addition we showed that a strictly propositional representation can be obtained by ab-
straction into qualitative (predefined) frames of reference. Nevertheless, even if the use of
probabilistic inference (and representation) can be avoided in terms of localization and the
generation spatial world model, the problem of uncertainty has to be addressed at least due
to the inherent ambiguity of the interpretation process and the missing information required
for monotonic logical inference. Therefore, in the second part we presented the relational
hidden Markov model (RHMM) which is based on the well-established HMMs and the
RMM, and we showed how it could be applied to spatio-temporal reasoning. While pre-
diction is an important inference for dynamic scene interpretation it is strongly embedded
into the overall interpretation (reasoning) process. Depending on the specific interpretation
and the information available the requirements will differ significantly with respect to the
required precision and the validity of the generated prediction hypotheses. We showed that
the RHMM can be used efficiently to address this problem. In the RoboCup-domain the use
of RHMM leads to an increased inference accuracy with a minimally increased calculation
effort. In this domain the RHMM could predominantly outperform the well-known HMM
in inference accuracy, but it was also shown that the required inference mechanism is more
complex than the one of HMM. However, by pre-calculating the models’ relational para-
meters the inference complexity could (in the RoboCup-domain) practically be reduced to
the complexity of a HMM. This makes the model especially interesting for time critical

7 The presented approach addresses the global localization-problem and is not limited to position
tracking (in terms of Thrune’s classification [17]).
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domains with spatio-temporal representations based on noisy sensor information. The in-
creased inference accuracy results from the ability of modeling domain specific information
like similarities between discrete states.

To further improve the inference accuracy of the RHMM the attribute domains can
probably be determined automatically to represent the underlying environment domain in
an optimal way. Perhaps even the states themselves could be determined in such a way.
Furthermore, the application in different domains could be interesting in order to gather
more results for different types of domain representations.
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