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Abstract. Verbal statements and vision are a rich source of informa-
tion in a human-machine interaction scenario. For this reason Situated
Computer Vision aims to include knowledge about the communicative
situation in which it takes place. This paper presents three approaches
how to achieve scene models of such scenarios combining different modal-
ities. Seeing (planar) scenes as configurations of parts leads to a proba-
bilistic modeling with Bayes’ nets relating spoken utterances with results
of an object recognition step. In the second approach parallel datasets
form the basis for analyzing the statistical dependencies between them
through learning a statistical translation model which maps between
these datasets (here: words in a text and boundary fragments extracted
in 2D images). The third approach deals with complex indoor scenes from
which 3D data is acquired. Planar structures in the 3D points and statis-
tics extracted on these planar patches describe the coarse spatial layouts
of different indoor room types in such a way that a holistic classification
scheme can be provided.
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1 Introduction

We are currently witnessing that computer vision is becoming a more and more
important cue in human-machine interaction. Verbal statements in this interac-
tion relate to the external scene, gestures provide means of non-verbal commu-
nication, actions indicate human intentions, and gaze provides hints on human
attention. From the standpoint of communication, vision is a rich source of con-
textual information. But we can also turn the perspective around. Vision takes
place in a communicative situation, that provides expectations for visual pro-
cessing and dictates which aspects are relevant in a scene. Situated computer
vision aims at taking this information into account.

Situatedness refers to an inherent ambiguity occurring in a selective percep-
tion process. The perceiver needs to be aware of the current situation in order
to infer an intended result because interpretations are uncertain and different
interpretations might be possible. Such situational constraints can be formulated
as contextual knowledge or as a prior of a probability distribution. Perception
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is modeled as a selective process, i.e. it does not aim at a complete nor generic
object or scene understanding. Instead, perception is embedded in a purposive
capturing process or a related task. It could also be constraint by the system’s
own embodiment as suggested by recent work in cognitive systems [1]. Thus
there is a large spectrum of possible situational constraints ranging from physi-
cal embodiment to mental models. The latter are the focus of this article. They
have been introduced as situation models already a long time ago [2,3]. Situation
models have been first described as amodal representations, i.e. independent of
any perceptual process. However, newer experimental studies show that they are
tightly linked to visual perception [4].

In the following sections, computer vision will mostly be treated as a stochas-
tic process. This pays tribute to the inherent uncertainty of relating situational
expectations to vision results. Modeling of context plays an important role that
should lead to more stable scene interpretations. The article focuses on three
different approaches for situated computer vision. The first example represents
scenes as a configuration of objects and relates verbal descriptions to them (Sec-
tion 2). The second example explores cross-situational inferences and exploits
re-occurring patterns for model acquisition (Section 3). The third example is
directed to complex 3D scenes and demonstrates a holistic scene classification
(Section 4).

2 Scenes as configurations of parts

Because of the central role of objects and relations in the categorization of scenes,
many approaches choose this level for recognition purposes [5,6]. The strength as
well as the weakness of this approach is that it is built on an object recognition
step. On the positive side, it enables a generic and compositional approach for
modeling contexts that directly relates to language. On the negative side, it is
an error-prone strategy that especially suffers from segmentation difficulties.

Verbal scene specifications:

- “. . . bar with a bolt . . . ”

- “. . .motor in front of the bar . . . ”

- “. . . blue cube in front of the ring . . . ”

- “. . . long thing in the middle . . . ”

- etc.

Fig. 1. Graph-based scene representations: a graph can be defined on different gran-
ularity and different relational semantics.

In order to deal with recognition errors on the level of primitives, Wachsmuth
and Sagerer [7] combine spatial relationships with an uncertainty model of the
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„... kleine Ring vor dem Propeller ...“ [... small ring in front of the rotor ...]

Fig. 2. Example of a German dataset: The Bayesian network is dynamically generated
from the visual and verbal information given. Note that the semantics of the word
“Propeller” is previously not known. Therefore, a general term object is instantiated in
the corresponding observable variable.

object recognition process as well as of the object and relation naming process
using graphs. The nodes of the graph are defined by object detection results
and are attributed with the object region, object type, and object color infor-
mation from visual processing. Edges are defined by topological relations (e.g.
connected with) or projective relations (e.g. in front of). Here, a partial scene
model is specified by a verbal description. This needs to be matched to the visual
representation. For this purpose a Bayesian network is dynamically constructed
from the verbal and visual information given.

In Fig. 1 an example scene and possible verbal descriptions are given. The
scenario is limited by a fixed number of elementary object types, a fixed num-
ber of color classes, and a uniform table background. However, more complex
objects can be constructed by aggregation of elementary objects using bolts and
nut-parts. These parts can dynamically be assigned names in the course of a
dialog that refer to functional parts of the construction goal, e.g. “motor unit”
of a toy-airplane. Thus, relations are defined on two different granularity levels:
(i) relations between parts connected in an aggregated structure, (ii) relations
between spatially separated scene entities. In a specific matching case, the level
of granularity is selected by the wording used in the verbal description.

In Fig. 2 an example of the dynamically generated Bayesian network is shown.
It is constructed from pre-modeled sub-networks that are combined with regard
to the number of visual scene objects and the number of verbally described ob-
jects. The hidden variables IO and RO realize the mapping between verbal items
and visual items. The mapping is constrained by the spatial relation that further
depends on the reference frame selected by the speaker. The model parameters
are partially learned from labeled training data1 and are partially hand-crafted2.
1 On the vision side, the statistics of the object recognizer and pixel-based color classi-

fier are measured by respective confusion matrices. The statistics on the class-specific
wording is based on an online questionnaire.

2 A hierarchy of nouns denoting object classes and super-classes was modeled by hand.
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Further details of the Bayesian network are discussed in [7]. The spatial model
of the system is further described in [8].

The matching is computed by the maximum a posteriori hypotheses of the
IO and RO variables,

(io∗, ro∗) = argmax
io,ro

Pr(IO = io, RO1 = ro|E) (1)

where E is the set of observations given by the verbal description and the visual
scene representation. Evaluation experiments show that a correct scene identi-
fication can be inferred despite recognition errors on the visual as well as on
the verbal side. The system achieves a correct object mapping (IO) (with two
additionally selected objects allowed) of 76% for high input error rates of 21%
lost or wrongly recognized verbal features as well as 15% false type classifications
and 9% false color classifications. For objects, that are sufficiently specified by
verbal descriptions, it is even possible to correct erroneous recognition results.

3 Cross-situational learning

Another rich source of information are parallel datasets. They provide a coarse
grouping of paired collections from different modalities that is the basis for ana-
lyzing the statistical dependencies between them. The coarse groupings are given
by situations. Here, a situation is defined by a simple pairing of an image and
its caption, but it could also be given by an observed scene or action performed
and a spoken utterance. It is difficult to learn something from a single isolated
situation because correspondences between different modalities are not given ex-
plicitly. The system has to infer them despite noise, distracting data, and the
inherent combinatorics of n-to-m relations. Related approaches have been put
forward by [9,10]. However, these concentrate either on blob-based representa-
tions using color and texture features or on local descriptors like SIFT [11].

The model acquisition task is formulated as the learning of a statistical trans-
lation model. In statistical language models, we generally seek to find the trans-
lation string e = (e1, . . . , eL) that maximizes the probability Pr(e|f), given the
source string f = (f1, . . . , fM ) (where f refers to French and e refers to English
in the original work by [12]). Using Bayes’ rule and maximizing the numerator,
the following equation is obtained:

ê = argmax
e

Pr(e|f) = argmax
e

Pr(f |e)Pr(e). (2)

Pr(e) is incorporated into the formula, which is the probability distribution
over all valid strings e provided by the grammar of the model. Pr(f |e) is known
as the translation model (prediction of f from e), and Pr(e) as the language
model (probabilities over e independent of f). Most of the work that transfers
this concept to image annotation tasks [13,14,15] concentrates on the transla-
tion model; taking f as the words in the text and e as the visual words in the
images, they thus predict words from image items. However, the omission of
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(a) Extracted boundary fragments (b) Cluster

(c) Compound (d) Spatial relation

Fig. 3. Building compounds from boundary fragments. First, fragments are clustered
using a symmetrically defined edge distance. Secondly, compounds are learned that
encode spatial relations between fragment classes.

the language model component, Pr(e) (in this case, probabilities over the “lan-
guage” of images—i.e., over “good” image representations), can be seen as a
shortcoming. The structural information in images is mostly neglected.

Local descriptors exploit the textural characteristics of object surfaces, but
they do not capture the overall shape of an object. Moringen et al. [16] focus
on an alternative image representation that uses boundary fragments. These
can be directly extracted from an image by a connected component analysis on
edge pixels [17] or generated from an image abstraction provided by a region
segmentation. In the second case, region boundaries define the edge pixels. A
boundary fragment f can simply be defined as a connected sequence of edge
pixels fk = (x, y):

f = (f1, . . . , fK), where |fk − fk+1| ≤
√

2, 1 ≤ k < K. (3)

Similar to [17], Moringen et al. extract fragments by chaining from randomly
chosen seed points. These provide templates for fault-tolerant shape recognition
by using chamfer matching as described by [18]. Chamfer matching utilizes a
distance transform in order to implement an efficient way of computing the edge
distance dedge between a boundary fragment f possibly transformed by T and
an edge image I,

dedge(f , T, I) ≡ 1
|f |

|f |∑
k=1

Id[(Tf)k]2 where |f | = |(f1, . . . , fK)| = K. (4)
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where Id is the distance transformed image (pixels are coding the distance to
the next edge pixel rather than the present of edges).

In the following, the edge distance serves two different purposes in the trans-
lation framework: (i) it provides the basis for a distance metric on boundary
fragments that is used for clustering purposes and (ii) it defines a detector for
fragment classes on images.

Similar to other related approaches, a basic visual vocabulary is learned by
clustering a set of singleton features. An agglomerative clustering is used because
the fragments and edge distance do not form a vector space3. [16] use a symmetric
variant of dedge for clustering:

dsymm(f1, f2) = d′edge(f1, f2) + d′edge(f2, f1),

where d′edge(f1, f2) = min
T∈T

dedge(f1, T, If2)
. (5)

Here, T is a discrete set of transformations that is applied to f1 when overlaying
it over an image during chamfer matching, If2 is a bitmap representation of
the boundary fragment f2. Then, a cluster vl is defined as a triple (Fl, f̂l, ηl)
consisting of a set Fl of fragments, a representative fragment f̂l and a detection
threshold ηl that is later optimized on the training set by applying the translation
model.

In agglomerative clustering, there are different possibilities to transfer the
distance function defined on elements to a distance function between clusters.
[19] reports a good performance for a maximum operation:

dmax(v1, v2) = max
fj∈F1,fk∈F2

dsymm(fj , fk), with vl = (Fl, f̂l, ηl), l = 1, 2. (6)

The clusters define fragment classes V that provide the basic visual vocabulary
for the translation model. Fig. 3(b) shows an exemplary cluster that may be
associated with the semantic concept of legs of chairs, tables, or stools. More
specific visual descriptions can be defined by visual compounds:

cm = (Vm,Rm), where Vm = {vmj |vmj ∈ V, j = 1 . . . Jm},
Rm = {rjk

m : P × P → IR|j, k = 1 . . . Jm}
where P is set of pixel positions {0, 1, . . . , 255}2.

(7)

Here, Vm is a collection of fragment classes with spatial relations Rm between
them. Let vm 1 and vm 2 be fragment classes detected in the image at positions
p1 = (x1, y1) and p2 = (x2, y2). Then the spatial relation between them can be
judged by

r1 2
m (p1, p2) =

1
nm

nm∑
i=1

Nµ1 2
mi,σ

(p2 − p1). (8)

Here, nm is the number of occurrences of the compound cm in the training set.
Each offset between the detected fragment classes vmj and vmk is stored in µjk

mi

defining a Gaussian kernel with standard deviation σ.
3 As a consequence, the mean-fragment cannot be computed directly.
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Fig. 4. Boundary fragment compounds: results for a furniture dataset with 300 train-
ing images and 225 test images.

During the training of the translation model, Moringen et al. search for com-
pounds by using Melamed’s method for finding non-compositional-compounds
(NCCs) in parallel text [20]. Fig. 3(c) shows an exemplary compound generated
in an experiment on a captionized furniture dataset. The dataset consisted of
525 images (300 training, 225 test) with single pieces of furniture or groups of
furniture. The captions have been processed by a tagger [21] and partial parser
[22,23] leaving between 1 and 4 head nouns. Precision-recall curves are given in
Fig. 4 for some of the vocabulary words learned. Relatively low precision values
indicate that there is a large variance of shapes in the dataset. The training set
included only a few exemplars per word category so that generalizing models
are difficult to learn. However, for some words like ‘bench’ reasonable compound
models have been extracted.

4 Dealing with Complex 3D Scenes

This section is going to contribute to the question, how to capture scene struc-
tures and how to extract context for interpreting tasks in complex scenes. The
importance of context has already been recognized a long time ago. Systems
like CONDOR [24] or SPAM [25] coded explicit contextual rules performing a
complex knowledge engineering task. More recently, graphical models have been
applied in order to provide a more concise model relating objects and aspects
of the considered scene [26,27]. Murphy, Torralba, and Freeman estimate global
contexts, like persons, vehicles, furniture and vegetation from low-level image
features [26]. Hoiem, Efros, and Herbert first extract a 3D surface geometry from
2D images and relate the estimated local geometries to object classes predicted
by a window-based object detector [27].

The work discussed so far mainly deals with 2D image information. Murphy
et al. demonstrate that many different scene categories can be distinguished
by purely considering 2D image statistics on texture and edges. Other ap-
proaches also distinguish successfully indoor/outdoor [28], sky/no-sky, vegeta-
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tion/no-vegetation [29]. However, this does not necessarily extrapolate to finerly
graded scene categories like different types of rooms, e.g. “office” or “meeting
room”. Here, typical furniture like tables, chairs, and shelves reoccur, but in
different layouts. Furthermore, furniture in the same type of room may have
changing colors and textures or be viewed from different directions.

In these cases, a 3D description of the scene is much more invariant with re-
gard to in-class variations. However, strategies that provide a complete semantic
interpretation of the 3D scene suffer from very constraint settings and the neces-
sity of extensive modeling. Therefore, we aim at a more holistic 3D approach to
scene classification in the spirit of the gist approach used by Torralba [30]. In the
following, we describe the scene by a collection of planar structures and analyze
whether it is possible to compute proper feature vectors for the classification of
different room types (here: office, hall, and meeting room). The challenge faced
is to categorize rooms only based on the information of one frame. Details of our
approach can be looked up in [31]. Section 4.1 presents our 3D data acquisition
and necessary steps for determining sets of planar structures in this data. In
Section 4.2 and 4.3 features and classifiers are chosen and examined with regard
to their performance in categorizing room percepts to room types.

4.1 3D Data Acquisition and Meaningful Structure Extraction

(a) (b) (c)

Fig. 5. (a) Swissranger SR3000, (b) exam-
ple amplitude image, and (c) example 3D
point cloud preprocessed.

3D Data Acquisition. Besides the
known techniques like laser scan-
ners and stereo rigs for acquiring
3D information recently new hard-
ware was developed by Swiss Cen-
ter for Electronics and Microtechnol-
ogy (CSEM) [32]. This camera, Swiss-
ranger SR3000 (Fig. 5(a)), provide 3D
data in real-time independent of tex-
ture and lighting conditions. 176×144
CMOS active pixel sensors measure
distances (Fig. 5(c)) between the optical center of the camera and the real 3D
world points via the time-of-flight of a near-infrared signal. Additionally each
sensor delivers an amplitude value indicating the amount of light reflected by a
world point.

To deal with noise arising from the different reflection properties, several
preprocessing techniques proposed in [33] are applied. A distance-adaptive me-
dian filter smooths the distance values with mask sizes depending on this value.
Points with small amplitude values, which indicate low quality of the measure-
ment, are removed and edge points arising in the case when light from the fore-
and the background hits the same pixel simultaneously are rejected. Finally, the
distances are backprojected to compute 3D coordinates with regard to a camera
coordinate system. The computed 3D points are arranged regularly in a 2D lat-
tice enabling us to nicely apply 2D preprocessing and search methods to 3D data
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saving computation time and complexity. Nevertheless, all methods proposed in
the following are applicable to any type of 3D data.

Meaningful Structures. For many applications it is necessary to extract
meaningful structures which enable a semantic description of complex scenes.
If using 3D data, we decided to focus on geometric aspects. Human-made envi-
ronments – like walls, floors, and furniture – consist of large planar structures.
Therefore, it is a reasonable step to find planar surfaces within a given 3D point
set. It is assumed that preceptions of halls, offices, and meeting rooms can be
categorized in a proper way using planar structures, because they provide more
stable features compared to colors, textures, and materials occurring in different
indoor scenarios.

In principal there are three possibilities to extract planes from a 3D point
set. First, the Random Sample Consensus (RANSAC) algorithm [34] can be
used to fit robustly plane models in 3D data, possibly in combination with the
Iterative Closest Points (ICP) algorithm [35] or SIFT features for refining the
planes [36,37]. Second, the Expectation Maximization (EM) algorithm can be
used to adjust the number of planes and estimates the locations and orientations
by maximizing the expectation of a log-likelihood function [38,39]. Finally, region
growing based approaches start from an initial triangle mesh and merge adjacent
planar triangles iteratively [40].

In the following, a combination of seeded region growing [41] and RANSAC
based on special values holding the correlating arrangement of points is intro-
duced. The main idea is to decompose the point cloud into planarly connected
regions and to extract planes in these regions for refinement.

First, oriented particles similar to Fua’s approach [42] are defined for each
point: A point’s normal is computed using a point set {pi | pi ∈ N3×3} defined on
the 8-neighborhood of the Swissranger image plane. The normal nc of the current
point pc is determind by the principal component analysis of the points {pi}.
The deviation σc of the point pc to the fitted plane classifies whether a point is
locally planar (σc < θσ) or nonplanar [43].

Second, this set of 3D points annotated with their normals is decomposed into
connected regions using region growing. Iteratively, points are selected randomly
as seeds of regions and extended with points of the 8-neighborhood N3×3 if four
criteria are fulfilled. Two criteria are defined on the particles themselves, which
are the validation of the points generated by the preprocessing and the local
planarity as defined above. The other two criteria are computed on pairs of
particles – the conormality and coplanarity measurement defined by Stamos
and Allen [43]. Two points p1 and p2 are conormal, when their normals n1 and
n2 hold:

α = cos−1(n1 · n2) < θα (9)

Two points p1 and p2 are coplanar if the distance d

d = max(| r12 · n1 |, | r12 · n2 |),
r12 = p1 − p2 (10)
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is smaller than a threshold θd. The distance d is computed with respect to the
orientation and the distance of the oriented particles.

As a result, a set of mainly planar connected patches is constructed. On
each of these regions several runs of the RANSAC algorithm extract the largest
and smoothest planes. This step can be seen as a postprocessing step in which
basically the parameters nc, dc of the planes {Pc} are refined. Due to overseg-
mentation neighboring planar patches which are close to each other (so-called
close patches) and belong to the same affine plane have to be merged. A plane
is chosen randomly and merged with planes within a region of interest (ROI)
fulfilling the angle condition (Eq. 9).

Figure 6 presents exemplary photos of the six room scenarios – two offices,
two halls, and two meeting room – and planar patches produced by the algorithm
introduced above using 3D point clouds provided by the Swissranger SR3000.
The thresholds mentioned here were set (for the current point pc) to θα = 10◦,

θd = 0.2 · zc, and θσ = σ̄ +
√

1
n

∑n
c=1(σc − σ̄)2 where n is the number of valid

points per frame and σ̄ = 1
n

∑n
c=1 σc is the mean deviation.

4.2 Feature Extraction

For classification an extraction of meaningful features from the given planes is
required. The aim is to classify a perception of a room (here: one frame of the 3D
ToF sensor) while e.g. a robot enters the room. The result of the classification
should be a hypothesis which room type was entered, even if the robot has not
seen this particular room before.

As well defined feature vectors have to fulfill several conditions it is not suit-
able to use all plane parameters merged into one vector as features for classifica-
tion as proposed by Lourenco [44]. The features should not only be independent
from colors and textures in the scene, which is implemented by the extracted
planar structures, but they should also be invariant with respect to changes in
the absolute number of planes, changes in view angle and view direction of the
camera, and invariant to in-class variation of the furniture configuration. In the
following, different aspects of the planar patches {Pi} in a frame are examined
as first simple features for classification concerning the conditions listed above:

(i) Number of Points per Patch: ∀i : ni = |Pi|P
j |Pj | .

(ii) Angles between Patch Normals: ∀i 6= j : αij = cos−1(ni ·nj). Alternatively,
to introduce structural information, angles α′ij only between close patches
can be computed.

(iii) Ratios between Sizes of Patches: ∀i 6= j : rij = min(|Pi|,|Pj |)
max(|Pi|,|Pj |) .

Finally, the feature vectors (FV1, FV2, FV3, FV4) are computed as his-
tograms over these terms ni, αij , α

′
ij , rij where the values in the bins are nor-

malized to the range [0, 1].
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(a) (b) (c)

(d) (e) (f)

Fig. 6. First, exemplary photos and 3D point clouds of the training set are shown:
the trained (a) office, (b) meeting room, and (c) hall. Second, the rooms for testing are
displayed: the tested (d) office, (e) meeting room, and (f) hall.

4.3 Experiments and Discussion

For the following experiments 300 frames of two different offices, two halls, and
two meeting rooms were acquired. The camera was positioned at a height of 145
cm (robot’s camera head) and rotated horizontally 30◦ left/right and vertically
10◦ up/down in order to simulate a more or less random view on the room
while entering. Also, the rooms chosen had significant differences in the layout
within a room type as shown in Fig. 6. One office, one meeting room, and one
hall (Fig. 6(a), 6(b), 6(c)) form the training set where 270 frames per room are
used to train the classifiers and the remaining 30 frames to test the performance
in recognizing (recog) an already seen room. 300 frames per room of the three
other rooms (Fig. 6(d), 6(e), 6(f)) form the main test set for examining the
performance of our system in categorizing (catego) percepts of rooms which
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NN SVM GMM
recog catego recog catego recog catego

FV1 0.91 0.62 0.92 0.64 0.90 0.65

FV2a 0.71 0.51 0.71 0.50 0.73 0.68

FV3 0.89 0.65 0.84 0.67 0.88 0.71

FV4 0.83 0.54 0.77 0.53 0.78 0.52

FV1, FV3 0.90 0.79 0.93 0.77 0.89 0.77

FV1, FV2a 0.92 0.69 0.97 0.68 0.91 0.74

FV1, FV2b 0.91 0.68 0.88 0.65 0.86 0.66

FV1, FV3, FV4 0.89 0.78 0.90 0.77 0.94 0.81

FV1, FV2b, FV3, FV4 0.97 0.79 0.99 0.79 0.97 0.81

Table 1. This table presents results of the recognition (recog) and categorization
(catego) using different feature vectors. Three classifiers are tested: a neuronal network
(NN), a support vector machine (SVM), and a gaussian mixture model (GMM). FV1
describes the histogram of the relative sizes of the patches, FV2a the histogram of
angles between all patches, FV2b the median of these angles, FV3 the histogram of
the angles between close patches, and FV4 the histogram of the ratios between sizes
of patches.

have not be seen before. We intentionally started with a very small training set
containing a single room per category in order to show the generalizability of
the learned model.

Three different classifiers are used to examine the proposed features in Sec-
tion 4.2. The examined feature vectors are the number of points (FV1), the
angles between patches (FV2a) and the median over these angles (FV2b), the
angles between close patches (FV3), and the ratio of number of points between
pairs of patches (FV4). The features are tested separately and in combination. A
neural network (NN) [45], the support vector machine SVMlight (SVM) [46,47]
and a gaussian mixture model (GMM) [48] are used for the classification task.

Table 1 presents all classification results for different feature vectors and
combinations of them. The first four rows show results using the feature vectors
FV1, FV2a, FV3, and FV4 in isolation. FV1 and FV3 turn out as features
which contribute most to a good feature vector with 0.90 correct recognition of
known rooms and 0.65 right categorization of new rooms. Combining these two
features (FV1 and FV3) improves the rates up to 0.93 and 0.79, respectively.
The categorization can be further improved up to 0.81 if the feature vector FV4
is added while the recognition rate is increased up to 0.99 using FV2b. As an
assumption it can be stated that GMMs provide the most stable and proper
classifiers using [FV1 FV2b FV3 FV4] as a feature vector. Round about 75% of
the false classified vectors contains a mix up between meeting room and office.
Since both room categories have commonalities like a large table area in the
middle of the room, this is an expected result.

For additional experiments extra offices were recorded. Four of the now six
different offices have a similar layout with two opposing work places while the
other two rooms contain only a single work place. At least 0.69 of the four double-
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place offices are categorized properly while only 0.34 to 0.51 of the single-place
office percepts are classified correctly. If the training data is extended with frames
of a single-place room the categorization rate of all offices can be increased to
0.88 on average.

Eighty percent of successful room categorization indicates that these pla-
nar structures on the 3D point clouds provide meaningful information about
categories of rooms whereon feature vectors suitable for classification can be
defined.

5 Conclusion

In this paper we present three possible approaches mainly using structural infor-
mation and context for scene modeling. In simpler planar scenarios where scenes
can be seen as configuration of parts spatial relationships as well as results from
the object and relation naming process are used to deal with uncertainties from
the object recognition process. For more general cases statistical dependencies
between different modalities can be analyzed through cross-situational learning.
Here, translation models from one data source to an other source have to be
learned. We implemented exemplary a system inferring from word sets to visual
compounds consisting of boundary fragments and spatial relationships between
them. For modeling more complex indoor scenarios like different room types in
a more view point independent manner using 3D data seems to be reasonable.
Extracted planar patches and statistics on these patches describe the coarse lay-
outs of room types independent from colors, textures, and design of the furniture
and objects typical for these room types.

In a more general learning system of a robot these three approaches can be
combined to enable a learning on different granularity levels. Such a process
could start from a distinction between different room types, go to learning the
important functional regions, and finish in a detailed object learning within the
constraint setup of this functional region.

References

1. Vernon, D.: Cognitive vision: The case for embodied perception. Image and Vision
Computing, Special Issue on Cognitive Vision 26 (2008) 127–141

2. Kintsch, W., van Dijk, T.A.: Toward a model of text comprehension and produc-
tion. Psychological Review 85 (1978) 363–394

3. Johnson-Laird, P.N.: Mental models: Towards a cognitive science of language,
inference, and consciousness. Harvard University Press (1983)

4. Zwaan, R.: The immersed experiencer: Toward an embodied theory of language
comprehension. The Psychology of Learning and Motivation 44 (2004)

5. Lipson, P.R.: Context and Configuration Based Scene Classification. PhD thesis,
MIT (1996)

6. Neumann, B., Mller, R.: On scene interpretation with description logics. In:
Cognitive Vision Systems. Volume 3948. (2006) 247–275



14 S. Wachsmuth, A. Swadzba

7. Wachsmuth, S., Sagerer, G.: Bayesian networks for speech and image integration.
In: National Conf. on AI. (2002) 300–306

8. Wachsmuth, S.: Multi-modal Scene Understanding Using Probabilistic Models.
Ibidem Verlag (2001)

9. Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D., Blei, D., Jordan, M.I.: Match-
ing words and pictures. Journal of Machine Learning Research 3 (2003) 1107–1135

10. Jamieson, M., Fazly, A., Dickinson, S., Stevenson, S., Wachsmuth, S.: Learning
structured appearance models from captioned images of cluttered scenes. In: Intl.
Conf. on Computer Vision. (2007) 1–8

11. Lowe, D.G.: Object recognition from local scale-invariant features. In: Intl. Conf.
on Computer Vision, Corfu, Greece (1999) 1150–1157

12. Brown, P.F., Della Pietra, V.J., Della Pietra, S.A., Mercer, R.L.: The mathematics
of statistical machine translation: parameter estimation. Comput. Linguist. 19
(1993) 263–311

13. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.A.: Object recognition as
machine translation: Learning a lexicon for a fixed image vocabulary. In: Europ.
Conf. on Computer Vision. (2002) 97–112

14. Wachsmuth, S., Stevenson, S., Dickinson, S.: Towards a framework for learning
structured shape models from text-annotated images. In: HLT-NAACL Workshop
on Learning word meaning from non-linguistic data. (2003) 22–29

15. Jamieson, M., Dickinson, S., Stevenson, S., Wachsmuth, S.: Using language to
drive the perceptual grouping of local image features. In: Intl. Conf. on Compter
Vision and Pattern Recognition. (2006) 2102–2109

16. Moringen, J., Wachsmuth, S., Dickinson, S., Stevenson, S.: Learning visual com-
pound models from parallel image-text datasets. In: DAGM Symposium on Pattern
Recognition. (2008)

17. Opelt, A., Fussenegger, M., Pinz, A., Auer, P.: Weak hypotheses and boosting for
generic object detection and recognition. In: Europ. Conf. on Computer Vision.
Volume 3022. (2004) 71–84

18. Borgefors, G.: Hierarchical chamfer matching: A parametric edge matching algo-
rithm. Trans. on Pattern Analysis and Machine Intelligence 10 (1988) 849–865

19. Moringen, J.: Lernen von wort-form-korrespondenzen aus bildern und bildunter-
schriften. Technical report, Bielefeld University (2007)

20. Melamed, D.: Automatic discovery of non-compositional compounds in parallel
data. In: Conf. on Empirical Methods in Natural Language Processing. (1997)

21. Brill, E.: Some advances in transformation-based part of speech tagging. In:
National Conf. on AI. Volume 1. (1994) 722–727

22. Abney, S.: Parsing by Chunks. In: Principle-Based Parsing. (1991)
23. Abney, S.: Partial Parsing via Finite-state Cascades. In: ESSLLI Robust Parsing

Workshop. (1996)
24. Strat, T.M., Fischler, M.A.: Context-based vision: Recognizing objects using both

2D and 3D imaging. In: Trans. on Pattern Analysis and Machine Intelligence.
Volume 13. (1991) 1050–1065

25. McKeown, D.M., Harvey, W.A., McDermott, J.: Rule-based interpretation of
aerial imagery. In: Readings in Computer Vision: Issues, Problems, Principles,
and Paradigms. (1987) 415–430

26. Murphy, K., Torralba, A., Freeman, W.T.: Using the forest to see the trees: A
graphical model relating features, objects, and scenes. In: Advances in Neural
Information Processing Systems. Volume 16. (2003)

27. Hoiem, D., Efros, A.A., Hebert, M.: Putting objects in perspective. In: Intl. Conf.
on Computer Vision and Pattern Recognition. Volume 2. (2006) 2137–2144



Probabilistic Scene Modeling for Situated Computer Vision 15

28. Szummer, M., Picard, R.W.: Indoor-outdoor image classification. In: Intl. Work-
shop on Content-Based Access of Image and Video Databases. (1998) 42–51

29. Paek, S., Chang, S.F.: A knowledge engineering approach for image classification
based on probabilistic reasoning systems. In: Intl. Conf. on Multimedia and Expo.
Volume 2. (2000) 1133–1136

30. Torralba, A.: Contextual priming for object detection. Intl. Journal of Computer
Vision 53 (2003) 153–167

31. Swadzba, A., Wachsmuth, S.: Categorizing perceptions of rooms using 3d features.
In: Intl. Workshops on Statistical Techniques in Pattern Recognition, Orlando,
Florida, USA (2008) submitted.

32. Weingarten, J., Gruener, G., Siegwart, R.: A state-of-the-art 3D sensor for robot
navigation. In: Intl. Conf. on Intelligent Robots and Systems. (2004)

33. Swadzba, A., Liu, B., Penne, J., Jesorsky, O., Kompe, R.: A comprehensive system
for 3D modeling from range images acquired from a 3D ToF sensor. In: Intl. Conf.
on Computer Vision Systems. (2007)

34. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fit-
ting with applications to image analysis and automated cartography. In: Commun.
ACM. Volume 24. (1981) 381–395

35. Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. Trans. on Pattern
Analysis and Machine Intelligence 14 (1992) 239–256
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