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Abstract 

Since the 1980s the need increased for overcoming idiosyncrasies of approaches to modeling in the 

various sub-disciplines of computing. The theoretical model of evolution is used in this paper for 

analyzing how computing and conceptual modeling have changed. It is concluded that computing has 

changed into a social phenomenon with a technical core and that therefore relying on (formal) model 

semantics as the sole tool for the discussion of conceptual modeling is no more adequate. A number of 

language games of computing is identified and the task set to describe these language games to the 

extent necessary for deciding whether or not they can serve as the foundation of computing. 

Introduction 

Conceptual modeling for software development, when considered in general, takes place as an iteration 

of a sequence of a problem exploration step followed by a solution implementation step, and a solution 

assessment step. Often many actors, so-called stakeholders are involved and need to have their say in 

figuring out what software system finally is specified, implemented, purchased, and used. It is thus not 

likely that a mono causal model will be good at sufficiently well explaining software development. 

Evolution is a theoretical model, originating from biology, for the emergence of species that explains the 

observability of a direction of that emergence towards ever growing complexity of organisms [Gr98]. 

The important point about evolution theory is that it based on natural selection and mutation in general 

is considered as being sufficient for a scientific explanation of the natural history of species. Evolution 

theory thus can explain the emergence of order and complexity of life without making the assumption 

of a master mind being involved. I use the term evolution theory here metaphorically [RM98] for setting 

a context for understanding the process of emergence and change of conceptual modeling. The latter is 

(and has been) changing in consequence of the way independent actors impact each other’s life while 

the considered actors do not necessarily intend to bring about any such changes to conceptual 

modeling. The focus of this paper thus is not the individual process of creating a conceptual model. 

Rather, this paper focuses on the changes of conceptualization of conceptual modeling throughout its 

history. 

Conceptual modeling is the activity of creating conceptual models, i.e., models that describe problem 

structures in a way that still is relatively independent from the technology and strategy used to solve the 
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problem. In that sense conceptual modeling has a rather long tradition and is intimately connected to 

the genesis of mathematics. Models deliver their problem solution aid largely by providing a guiding 

metaphor [KT07]. For example, the guiding metaphor of mathematical models mainly has been that of 

equation. Newer such guiding metaphors that are closely related to the genesis and evolution of 

informatics are algorithm, relation, intelligent system, and dialog. The latter guiding metaphors of model 

construction have found their utilization in software engineering, data engineering, artificial intelligence, 

and web engineering. 

Brodie, Mylopoulos and Schmidt [B*84] coined the term conceptual modeling in 1984. Back then they 

were responding to the increasing specialization of those involved in data engineering, artificial 

intelligence, or programming languages. They aimed at overcoming the unnecessary parts of the 

emerging divide between these sub-disciplines of computing. Since that time the specialization has 

increased rather than decreased and hardly anyone oversees the various sub-disciplines of computing to 

the extent necessary for deciding which of the differences found over these sub-disciplines are 

necessary and which are accidental. The feeling, however, remains that differences found between the 

various sub-disciplines of computing are more related to notation and basic vocabulary rather than to 

the used concepts, the ways to utilize the models, or the ways the models are constructed. Similarly it 

occurs such that that considered over time in a given sub-discipline of computing the differences that 

one finds are more related to notation, terminology, and implementation technology rather than the 

key model ingredients or modeling procedures. 

Conceptual models 

[A*05, p. 59] defines a “mathematical model of a physical law is a description of that law in the language 

of mathematics.” Similarly says [BS04, p. 49] that a “… mathematical model of some measurable 

aspect(s) of the real world is an equation or set of equations …” that “describes” known assertions and 

can be used to predict new assertions. Also [Kr06] in his definition of model focuses on a model being a 

substitute or proxy entity for what I call model original, a term I borrow from Stachowiak [73]. By 

successfully using a model one achieves having a command over the model original that was too difficult 

or expensive, undesirable, inconvenient, impossible or similar to be achieved without the model. It is 

common to the above definitions that the concept of model original they employ is some part or aspect 

of the “real world” and that this real world exists independently from its model. Certainly this reference 

to a real world not necessarily has to be included in a model concept. 

With respect to defining what a model is one frequently finds that view of models as some kind of 

artifact that describes something (see, e.g. [Ac65, St73, Ba03]). This view is compatible with the attitude 

towards modeling as for example customary in the UML community that considers models as words or 

sentences encoded in a modeling language, i.e., UML. That view is of highest importance, as implicit in a 

description is one who describes and makes choices about what to describe, how to do so and what for. 

Models are thus made for a purpose, have an area of application, a particular way of suitable usage, and 

an intended user. I explore this idea in more detail below by analyzing Stachowiak’s general model 

theory. 
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Herbert Stachowiak has provided a huge body of work regarding models. His general model theory 

(GMT) in particular is documented in [St73, St83, St92]. The GMT has been reused lately by Petkoff, 

Ludewig, Hesse, and Broy & Rumpe in [Pe98, Lu02, He06, BR07]. See also [KT07] for further references 

regarding conceptual modeling. Stachowiak has characterized models in two ways: an ontological one 

(in which he says what a model is) and a pragmatic one (in which he says in how and what for 

conceptual models are used). His pragmatic characterization was received better by his audience, as 

listed above, than his ontological characterization. I restrict myself in this paper to his pragmatic 

characterization. Aspects of ontological characterization of model were, however, discussed in [KT07]. 

Stachowiak states that models have the mapping property (have an original), truncation property (the 

model lacks some of the predicates accredited to the original), and pragmatic property (the model use 

is only justified for particular model users, tools of investigation, period of time, and similar). It is 

constitutive for GMT that between model M and original O is defined what I call an icomorphism ι, i.e., 

a pair ( γ , τ ) of partial mappings γ : O → M, τ : M → O that I call grounding and transfer respectively. 

Stachowiak considers models and original as semiotic entities that actually are sets of predicates.  

Stachowiak considers abstraction to play an important role in modeling. The abstraction relationship 

between model and original in Stachowiak’s theory is specified solely by not including into the model 

some of the predicates accredited to the original. The grounding thus, where it is defined, is injective. 

The grounding γ only enables interpreting the chosen original’s predicates in terms of the model. The 

transfer’s task is interpreting the original’s predicates in terms of the model. That in fact two such 

mappings are needed follows from a further important property of models that I call extension property 

i.e. that to models usually are accredited properties that are not accredited to the model originals. I thus 

summarize the GMT in stating that modeling is abstraction plus sense making. Abstraction is achieved by 

choosing appropriate original’s predicates. Sense making is achieved by interpreting via a grounding the 

chosen original’s predicates in terms of the model.  

Kreyszig in [Kr06, p. 2, 6] identifies modeling as a three step procedure. First, obtain a model; second, 

analyze the model; and third, transfer any findings from the model to its original. The mappings 

grounding and transfer as introduced above just permit making these steps in an organized fashion. 

The early historic development of mathematics is essentially a consequence of modeling for practical 

problem solving. Struik writes for example [St72, p. 34]: “The oriental mathematics emerged as a 

practical science for doing calendar calculations, managing harvest, organization of public buildings, and 

for simplifying the collection of taxes.” For this paper I assume conceptual modeling starts out as early 

mathematics and unfolds with mathematics over millennia until in recent history computers were 

invented and revolutionized conceptual modeling. Certainly conceptual modeling will have additional 

sources that are ignored here such as philosophy, theology, and law.  

Focusing on mathematics drivers of conceptual modeling can easily be identified as well-funded demand 

for problem solution, needs to organize teaching mathematics sensibly, and the need to find a sound 

base for mathematical research. It appears, however, that despite all efforts for organizing teaching and 

research appropriately mathematical modeling in the pre-computer era was more like an art rather than 

a controlled process. 
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Obvious dimensions of conceptual modeling are (1) the model subject, i.e., that which is modeled 

including its meta-modeling; (2) the modeling procedure, i.e., proceeding, role and life cycle models; (3) 

basic conceptualizations of modeling such as a art, engineering activity, business or otherwise; and (4) 

the model handling technology, such as manual, manually controlled, program controlled, computer 

algebra systems, and so forth. Obviously these dimension can serve as a conceptual framework for 

observing change in conceptual modeling. 

The evolution of conceptual modeling 

Functionally conceptual models are utterances regarding the model original and a number of different 

ways of the model to be related to its original has been identified [KT07]. Conceptual modeling in 

principle is affected from the technologization of the word that was diagnosed by Ong [On96]. In fact, at 

least since Kempelen’s Chess Turk and later Babbage there have been substantial initiatives towards 

automation of human cognitive functions. From a historical point of view the most obvious change that 

happened to conceptual modeling is indeed its technologization. The invention of mechanical 

calculators and program controlled machines such as looms (for more detail see, e.g. Ifrah [If00]) had 

profound impact on how and what for conceptual models were used. Model handling nowadays is 

largely program controlled and model creation no longer is essentially a one-person-job. Like using 

conceptual models it has become a social activity. 

The languages used for defining and handling models have continued to become ever more high-level. 

These languages are used to hide the technological base of model handling from the individuals involved 

in this. A stage has been reached in which a design notation such as the UML can be considered as a 

programming language. For that to be possible substantial investments into hardware, software, and 

education of staff were required. Conceptual modeling has become a business, i.e., the business of 

software development. The resources spent for it must pay off. That drives fundamental changes. The 

speed with which models can be developed and made operational has become an issue. Digitalization of 

media via computers not only helps new areas to emerge in which model subjects are found, such as 

computer games, health informatics, or e-government. The need to amortize the investments in 

technology and staff also pushes for new applications. Modeling procedures for mainstream problem 

classes in software development are well-documented. 

Conceptual modeling nowadays mainly takes place during software development. Software 

development and with it conceptual modeling has turned into a social activity. At least six different actor 

roles can be identified: business (or application) expert, requirements engineer, developer, tester, 

maintainer, and project manager. It continues to be important that computers can be used for 

computing values of functions for given arguments. However, the way computers are conceptualized is 

changing. The fact that computers can be considered as meta-media becomes more and more 

important. A convergence is ongoing of media that once were clearly distinguished such as film, music, 

book, and game. One of the early triggers and indicators of that process of convergence is Bush [Bu45]. 

Note that for Bush the goal of that process was to aid human problem solvers. Turing has addressed the 

relationship between human thought and program controlled symbol manipulation [Tu50]. 
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The traditional theoretical model of computation is the Turing table. That role, however, is challenged 

by Turing table’s incapability to function as theoretical model for intentionally non-terminating 

procedures, dialog, parallel computation, and the evaluation of material predicates. A revised 

theoretical model of computation is thus required. It is the view of this paper that any such model needs 

to take into consideration that computation has turned into a social phenomenon. 

One such way of recognizing this social nature of computation is to acknowledge the existence of the 

roles in software development as indicated above and have integrated theoretical models for each of 

these roles. Based on recognizing these roles six different language games relevant for software 

development can be identified easily: First, a cooperative language game in which application experts 

use software (and its documentation) for solving (business) problems. In this game the model semantics 

is constituted by business best practices and organization conventions. The models mainly serve for 

strategy building. Second, there is a refutative language game in which models serve as specification for 

an implementation that is sought for. Here model semantics in fact is formal. These two games are 

intermediated by a third and a fourth game, i.e., the coordination and inquiry game, respectively. In the 

coordination game project leaders make sure that appropriate specifications are worked out in a 

sensible amount of time and that these then are implemented appropriately. The fourth language game 

exactly is about obtaining the appropriate specifications. Not only is the model semantics different in 

these games while the model as a token, a structured pattern, or text is or maybe the same. Also the 

rules of the game are different. In the cooperative game first priority is given to getting a given job done 

with the available resources. In the refutative game, however, first priority is given to getting a correct 

implementation of a given specification. At an even higher level of intermediation the cooperative and 

the refutative language game are connected to each other by a testing game and a maintenance game.  

It seems such that one can classify model construction and use roughly into the following phases: 

1. Until 1819: individual manual model construction, individual manual model use. 

2. 1820 – 1950: individual and manual model construction, collective mechanical manually 

controlled model use. 

3. 1951 – 1968: individual program controlled model construction & closed group program 

controlled model use. 

4. 1968 - 1990: closed group program controlled model construction and use. 

5. Since 1980: interactive computing.1 

6. Since 1990: open group program controlled model construction and used. 

 

According to [If00, p. 127] the first automatic calculator that found large scale commercial use was the 

Arithometer of Charles-Xavier Thomas of Colmar. It was invented in 1820. Note that the prehistory of 

this device is quite long and, again according to Ifrah (p. 121), includes Wilhelm Schickard’s Calculating 

Clock that was invented in 1623. Interestingly it seems to be such that Schickard, an astronomer by 

profession, did in no way think about using his device for performing calculation that were relevant to 

him professionally. Ifrah reports about a letter of Schickard to Kepler in which the Calculating Clock is 

                                                           
1
 I abuse here the begin of the object oriented age as indicated by Wegner and Goldin in [WG99]. 
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discussed with a clear focus on how amazing it was to automate calculation rather than on how to use 

professionally the device that automated calculations. While remarkable progress was made in 

technologizing calculation it lasted until 1910 that Jay Randolph Monroe (see Ifrah, p. 140) got 

completely rid of manual interventions during multiplication and division. I date here the invention of 

program controlled model construction somewhat arbitrarily with 1951 the year of publication of Betty 

Holberton’s “Sort-Merge Generator” an early form of compiler; see [MH81, p. 9]. By that time, as 

Murray Hopper reports, computers widely were seen as calculation devices and text processing was 

understood to be something completely different from calculation. I mark the end of the era of 

individual model construction by 1968, the year of the Garmisch Software Engineering conference. 

Winograd reports in [Wi …, p. …] that by ???? the dominating activity of computer scientists was text 

processing rather than computation. For more respective information see the preface of [Ka06]. Given 

the back then non-existing use of computers for processing pictures, music, and film it appears as a 

quite safe assumption that nowadays the subject of computing more adequately can be described as 

media processing rather than computation in the traditional sense. 

 

This phase model highlights two dominant aspects of change affecting conceptual modeling, i.e. (1) its 

technologization, towards the capability of creating and using conceptual models under program 

control; and (2) its socialization towards establishing open communities as creators and users of models. 

These two concerns are linked together by the underlying process of industrialization of conceptual 

modeling. 

Conceptual models as social constructs 

An early source pointing out the social determination of knowledge and science is Ludwik Fleck [Fl35]. 

Using the example of syphilis Fleck shows how scientific ideas and facts depend on the community that 

uses them and how they are changed in the course of scientific progress. Further respective papers of 

Fleck are collected in [Fl83]. Presupposing that dependency of knowledge and fact on the respective 

community shows that computing suffers from a specific problem. That emerging discipline, which at its 

begin was determined by mathematicians, physicians, and engineers continued to attract and involve 

folks with different mindset and education. It is well-known that nowadays many involved in computing 

do not have any kind of appropriate formal education. I think that condition is not likely to change in the 

near future. The most obvious indicator for that change of folks involved in computing is the so-called 

software crisis. Guys with a mindset of management and control noticed that the level of control could 

not be achieved that appeared to them as necessary. An attempt was then made to make software 

development follow more strictly more detailed software process models. Also the size of projects was 

reduced and projects were sourced out for increasing the achievable level of control. Finally, with the 

invention of so-called agile techniques at least for technically less challenging projects the importance of 

software process models was reduced again. 

Two fundamental and non-trivial observations that result from the social nature of models are that (1) 

experience is required for choosing the model most appropriately in a given situation; and (2) that 

models not necessarily have to be correct. In [KT07] it has been shown in detail that these two 

observations originate from the philosophy of science debate of model use in the natural sciences. It is 
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obvious that these observations apply to computing, as (1) respective experience is needed for knowing 

that a formal model of, say, a database application often will not be of much help in solving any of the 

problems for solution of which a company might have implemented that application in the first place; 

and (2) the cost for removing a given error from the software as being in use might be prohibitive and so 

workarounds might be used for the time being. Such errors would only be documented rather than 

removed.  

Throughout the evolution of conceptual modeling folks of new kind came into computing. The usage of 

conceptual models has to be considered from a number of respective perspectives. Several of these 

were not considered as relevant in a time when mathematical models were created and used by the 

same person, when that model was essentially handled manually by the model creator, and when the 

model was not expected to be used interactively2. For example traditionally the single point of concern 

was getting right the so-called functional requirements of an application. Certainly it was and remains 

important that using a given software system the required functions can be computed. However, other 

qualities of a software system such as learnability, maintainability, memorizability, portability, 

reusability and others (see e.g. [G*04]) became important. It turns out that what I call (conceptual) 

usage model has become important. That model gives an account of how the software system should be 

used. While it has profound impact on the success with which a software system is going to be used it is 

relatively independent from the functions provided. Furthermore any formal semantics of that kind of 

model is likely to be not of much help in using the software system since (in many cases) its intended 

users are neither willing nor in a position to understand that semantics. It, by the way, turns out that the 

conceptual usage model not only is important for “high tech”. Rather it plays an important role in 

everyday things [No02], see also [No04]. 

Language games 

If computing and, along with it, conceptual modeling has turned into a social phenomenon or activity 

and if formal semantics cannot be used as the sole foundation of conceptual modeling what then could 

possibly be used instead? Above I have already stated that conceptual models functionally are 

utterances by means of which one refers to one of the model’s originals. For finding a sensible 

theoretical foundation of conceptual modeling one therefore might want to look at explanations of how 

language and its use work. One of the approaches that might work well together with Stachowiak’s GMT 

is Wittgenstein’s language games [Wi53]. Wittgenstein points out that in learning natural language 

training is involved and that the purpose of that training is the acquisition of the vocabulary. 

Wittgenstein furthermore points out that this training is different from explaining. He uses the term 

language game for types of activity sequences the purpose of which is vocabulary acquisition. He uses 

the term language game also in a more general sense as the unit of language use that is interwoven into 

activity. 

Wittgenstein has explicitly mentioned a number of language games. Among these are: describe or 

create an item based on a given description, invent a story, make a conjecture, state and check a 

                                                           
2
 The latter is, however, not entirely accurate since it is believed widely that some interactive models such as the 

Antikythera mechanism in astronomy were already used more than 2000 years ago [Ch06, F*06]. 
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hypothesis. In computing we have identified six basic roles of agents: requirements engineer, business 

(or application) expert, (software) developer, tester, maintainer, and project manager. It appears as 

clear that what they do can be conceptualized as a language game. The consequence of this is obvious 

as well as lucky. One can have a formal semantics governing parts of the language game of developers 

while other concerns govern the other language games. That not necessarily excludes mathematical or 

logical tools from being used in these games. The description of these language games at the required 

level of detail is, however, beyond the scope of this paper. 

Conceptual modeling completeness 

In this paper I assume that the evolution of conceptual modeling continues to change it such that it 

becomes an ever more social concept and that for major parts of it very high level programming 

languages are available that resemble modeling and design languages such as the UML. Then computer 

applications happen to be media and implementing these thus must address the main characteristics of 

media. Since media are entities that intermediate actors each medium is characterized by a number of 

actor interfaces and the properties of the actor interaction channel provided. An actor may be 

considered as a stimulus-state-response relation. That actor’s state can be used for specifying an actor’s 

intentionality. The system concept thus still seems to be a conceptual framework expressive enough for 

the conceptual modeling of the future. An entity qualifies as a system (for more detail se e.g. [AN90]) if 

one reasonably can refer to it in terms of the following concepts: 

• Quality; i.e., a particular way of responding to stimuli. Different responses may be generated to 

repeated stimuli. 

• Intentionality; i.e. a theory conceptualizing the artifact’s quality. 

• Consistency; i.e., any structure of operational artifact parts that by exchanging and processing a 

so-called flow implement the artifact. 

• Constraint; i.e. any set of conditions on the artifact’s quality.  

System stimuli often are called inputs and responses to them are called outputs. The operational artifact 

parts are usually called component. An interface of a system S is a component of S that is capable of 

directly exchanging a flow with a system S’ not belonging to S. In [AN90] the term subsystem is used for 

distinguishing those system components that are considered as a system from those that are not 

considered that way.  

Turing machines originally were a model for conceptualizing the quality of stateless systems. Relational; 

machines (see for example [Va98]) and persistent Turing machines (see for example [Go00, G*01]) are 

models for conceptualizing the quality of state bearing systems. Wegner [We97] has claimed the 

expressiveness of interactive computing be higher than the one of algorithms. As is customary he has 

associated the latter with Turing machines. Looking at Turing machines as predicate evaluators reveals 

that there is in fact something peculiar about them. While it is fine that they always and under all 

circumstances evaluate the predicate “1 > 2” to “false” there are other predicates that should be 

evaluated differently. Consider for example “I am taller than Jose”. It depends on who the evaluator is 

and when they actually do the evaluation whether or not that predicate will be evaluated it to “true”.  

Of course I have presupposed here that it is known who “Jose” is. The brief discussion of Fleck’s work 
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above shows that one cannot help making such assumptions, as it rests on the decision of a community 

which phenomena are taken into account and how they are conceptualized. Computing not only has 

turned into a social phenomenon. It, moreover, depends on the world that it acknowledges, i.e. the 

computation device interacts with. In fact Goldin and Keil say [GK01, p. 809] “[w]hat is feasible in one 

environment is not so in others …” when they mention that an intrusion of the environment into 

computation has happened. 

Following the general idea of [Or97] I call a language formal if the outcome of evaluating of each of its 

utterances is invariant against the actual evaluator, the evaluation conditions, and the utterance’s 

subject area. I call then further a language material if evaluating its utterances may depend on the 

actual evaluator, the evaluation conditions, or the utterance’s subject area. What happens then by 

means of the feedback incorporated into Turing machines by considering persistent Turing machines is 

that a material language becomes the subject of machine processing. There are at least two ways of 

looking at modern computing if one focuses on expressiveness. The first one is the language used and 

the second the mode of interaction with computational devices. While I have here focused on the 

language [We97, Go00, GK01, G*01] focus on the mode of interaction. In [Go00] it was shown that 

sequences of interaction with non-state bearing devices cannot exhaust the interaction sequences with 

state-bearing devices. That result was to be expected, as it was, in a piece of art, already anticipated, for 

example, in the 1993 film “Groundhog Day” directed by Harold Ramis. In that film the main character 

Phil (embodied by Bill Murray) comes into a situation in which he is stuck at Groundhog Day (i.e. 

February 2nd in Punxsatawney) and everyone but himself keeps no memory of that day, which happens 

to happen all over again. The film shows then how Phil makes use of that condition in educating himself 

in various forms of art, expertise, and knowledge which in the end makes him capable of winning the 

love of Rita (embodied by Andie McDowell). In this setting it is obvious that an agent (Phil) equipped 

with memory can take advantage of others (such as Rita) without memory of that day because Phil, 

presupposed to have all the time he wants, can check out any finite interaction sequence with any 

character he wants, learn about them, and use that knowledge for pursuing his goals. Note the 

refreshing discussion of relationships between literature and advanced technology simulating human 

cognitive functions in [Stro]. 

Certainly, presupposing more conventional views of the world, in which one can have knowledge of the 

world only by inquiring it, there is a connection between evaluating material phrases (such as material 

predicates, collections, and functions) and interaction. However, interaction of computational devices 

not necessarily implies use of such phrases since the interacting devices could be restricted to using 

formal language. It seems, for example, that Turing machines with oracle could be seen that way. I 

consider thus the language aspect as being more fundamental than the interaction aspect. I therefore 

consider the evolution of computing as taking a pragmatic turn, as what distinguishes material 

languages from formal ones is deixis (i.e. using indexing terms or phrases the resolution of which is 

actually determined by the conversation in which it is used), which in linguistics is discussed under 

language pragmatics. Additionally to material predicates also material collections ( i.e. classes) have 

been added to the computing toolbox. For example the set “my_houses.set” that I define right now and 

that contains as element exactly the houses I own now unfortunately is and stays empty for all time 

9



since sets (of the Zermelo-Fraenkl set theory) are immutable. However, the class “my_houses.cls” that I 

define right now and that likewise contains all the houses I own now has the chance of getting more 

substantial in the (unlikely) event that I mature sufficiently. Anyway, that class not necessarily stays 

empty for all time. Obviously I could consider that class as a sequence of sets and could consider 

material predicates as sequences of formal predicates. Considering associations between classes that 

way suggests that functions between sets cannot exhaust material functional associations between 

classes.  
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