
Integrated Gate and Bus Assignment at
Amsterdam Airport Schiphol

G. Diepen?, J.M. van den Akker? J.A. Hoogeveen?

Department for Information and Computing Sciences
Utrecht University

P.O. Box 80089, 3508 TB Utrecht, The Netherlands
{diepen,marjan,slam}@cs.uu.nl

Extended abstract

Abstract. At an airport a series of assignment problems need to be
solved before aircraft can arrive and depart and passengers can embark
and disembark. A lot of different parties are involved with this, each of
which having to plan their own schedule. Two of the assignment problems
that the ’Regie’ at Amsterdam Airport Schiphol (AAS) is responsible for,
are the gate assignment problem (i.e. where to place which aircraft) and
the bus assignment problem (i.e. which bus will transport which passen-
gers to or from the aircraft). Currently these two problems are solved in a
sequential fashion, the output of the gate assignment problem is used as
input for the bus assignment problem. We look at integrating these two
sequential problems into one larger problem that considers both prob-
lems at the same time. This creates the possibility of using information
regarding the bus assignment problem while solving the gate assignment
problem. We developed a column generation algorithm for this problem
and have implemented a prototype. To make the algorithm efficient we
used a special technique called stabilized column generation and also col-
umn deletion. Computational experiments with real-life data from AAS
indicate that our algorithm is able to compute a planning for one day at
Schiphol in a reasonable time.
Keywords: gate assigment, integrated planning, airports, column gen-
eration, integer linear programming

1 Introduction

Between the time an aircraft lands at an airport and the time it departs again
many things must happen. One of the most obvious things is that passengers
needs to disembark the aircraft. Moreover, the aircraft needs to be refueled, new
passengers need to board, new supplies have to be put on board, the aircraft has
to get cleaned. All of the actions take place while the aircraft is standing at a
gate. We will consider the arrival of an aircraft until the following departure of
? Supported by BSIK grant 03018 (BRICKS: Basic Research in Informatics for Cre-

ating the Knowledge Society)

ATMOS 2008
8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2008/1591

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913542?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 G. Diepen et al.

the same aircraft as one flight. The gate assignment problem deals with assigning
a given set of flights to a set of gates such that certain criteria are met.

In this paper, we consider the gate assignment at Amsterdam Airport Schiphol
(AAS). We investigate the daily planning, i.e. the creation of a planning for the
upcomimg day on the basis of the available information about the flights of that
day. In Diepen et al. [4], we have presented a column generation algorithm to
create an assignment for aircraft to gates that is as robust as possible, meaning
that any small deviation from the scheduled arrival and departure times should
not result in lots of rescheduling.

Some flights are not assigned to a gate with an airbridge but to a so-called
remote stand. This implies that passengers have to be transported to and from
the aircraft by buses. We have shown how we can create a robust schedule
for these platform buses by a similar type of column generation algorithm (see
Diepen [3]) in case the gate assignment is given.

This approach resembles the way AAS is actually solving these two problems
currently. First the gate assignment problem is solved, the solution of which is
then used as input for the bus planning problem. Although the bus planner have
the possibility to influence the gate planning by providing preferences, in general
the two problems are solved in a sequential way.

Observe that this could imply that a schedule for the gate assignment results
in a very bad schedule for the bus planning. In many cases minor changes to the
original solution for the gate assignment problem would allow better assignments
for the buses. So although this would mean a sub-optimal solution for the gate
assignment problem to be used, the solution for both the gate and bus planning
as a whole would improve.

In this paper, we focus on the integration of gate assignment and bus planning.
Our goal is to achieve better overall robustness and a more efficient bus planning
without too much negative effects on the gate assignment. The airport authorities
at AAS have indicated that robustness is very important for them, in order to
limit the amount of gate changes during the day of operations.

During the last years, a signficant amount of research has been performed on
the integration of real-life scheduling problems. For example Freling, Huisman,
and Wagelmans [6] look into the integration of solving the combination of the
vehicle and crew scheduling problems that arise in the public transport schedul-
ing. They present two different models and algorithms for solving the integrated
version of the two problems, and compare the results to the results obtained by
using the standard sequential approach.

One of the areas where the integration of real-life scheduling problems is
investigated a lot, is in the airline industry. Cordeau et al. [2] investigate the
integration of the aircraft routing problem with the crew scheduling problem.
They propose a solution approach based on Benders decomposition and show
that solving these two problems as one integrated problem yields significant cost
savings. Other integrations that have been considered are schedule assignment
and the fleet assignment problems (see Rexing et al. [9] and Lohatepanont and

Integrated Gate and Bus Assignment 3

Barnhart [8]) and the integration of the fleet assignment and the crew scheduling
problems (see Gao [7], Clarke et al. [1], and Sandhu and Klabjan [10]).

At Amsterdam Airport Schiphol, the software package currently in use for
solving the gate assignment problem, uses a rule based approach for optimizing
the assignment. It includes many aspect, however, it does not support the main
thing we aim for, robustness. Furthermore, it is also capable of scheduling ad-
ditional processes besides the assignment of aircraft to gates. For instance, in
Vancouver the same program is used and there the scheduling of the push back
trucks is also handled by the program.

The purpose of the research described in this paper is to enable the use infor-
mation of regarding the bus planning problem while solving the gate assignment
problem. Instead of an iterative method in which the separate problems are
solved in turns and are allowed to send constraints or preferences to each other,
our approach is to combine the two assignment problems into one big problem
and solving this one big problem as a whole, where the objective is to maximize
overal robustness.

The outline for the remainder of the paper is as follows: In Section 2 we
will give the problem formulation and our model and in Section 3 we present
solution method. Furthermore, in Section 4 we will report on the results of the
experiments that we performed and finally, in Section 5 we give our conclusions.

2 Problem formulation

In this section, we describe the problem and present an integer linear program-
ming formulation. For the upcoming day we want to create a gate assignment
for a given set of flights and a planning for the platform buses transporting
passengers to and from flights at a remote stand.

For the gate asssignment several properties of the flights are important:

– Arrival and departure time
– Region of origin and destination (Shengen/EU/Non-EU)
– Size category
– Ground handler

At AAS the ground handlers are divided into two groups: KLM Ground Services
and other companies. Clearly, two flights cannot be assigned to the same gate
at the same time. At AAS the minimum amount of idle time between two con-
secutive flights at a gate is 20 minute. For each gate it is known which regions
(because of safety regulation), size categories, and grounds handlers it can serve.
This results in constraints to ensure that at a gate there are only flights maching
the properties of the gate with respect to region, size of the aircraft and ground
handler.

Moreover, certain preferences might be taken into account. For example, some
airlines such as KLM have their own gates or want their flights to be grouped
as much as possibe on certain gates, for example we could require that at least
5 out of 7 Swiss flights are on a specific gate.

4 G. Diepen et al.

Flights that stay on the ground for a longer period, eg. 3 hours, may have
to be sprit. This means that after some time the flight is removed from the gate
and later is moved back to some (possibly other) gate. We included this in our
model, but omit the description for reasons of brevity.

Our objective is to create an assignment schedule that is as robust as possible,
meaning that the resulting schedule is able to cope with minor disturbances
during the actual day as well as possible. The following picture shows an example
of a schedule that is typically non-robust and can be improved by interchanging
flights 3 and 4.

Flight 1 Flight 4

Flight 2 Flight 3

Gate 2

Gate 1

Fig. 1. Example of a non-robust schedule.

Observe that a schedule is best able to cope with disturbances if all idle times
between each pair of consecutive flights on a gate are as large as possible. We
model this with a cost function that greatly penalizes short idle times, while
giving very low cost to large, and thus favorable idle times.

For the cost of the idle time t between two consecutive flights v and w on a
gate we use the same cost function presented in [4]

cG(t) = conv(v, w)1000(arctan(0.21(−t)) +
π

2
),

where conv(v, w) denotes the convenience multiplier expressing the preference
of flight w directly succeeding flight v on a gate. For example, this multiplier is
large is v and w belong to the same airline since in this case the airline has a
clear incentive to make v depart on time.

If a flight is handled at a remote stand, the passengers are moved to and
from the terminal by bus. The number of buses needed depends on the number
of passengers. In this way, each flight assigned to a remote stand, results in a
number of bus trips. At arrival all trips takes place at the same time, and for
the departure there by rule have to be at least two trips and the first trip starts
already some time before the departure of the flight. When ordering buses and
drivers, AAS can specify the amount buses required per 15 minutes. As a results
the bus drivers (about 60) on a day work in about 20 types of shifts, where shifts
longer than 4.5 hours contain a mandatory break.

Integrated Gate and Bus Assignment 5

To maximize robustness, we make use of a similar cost function of the idle
times t between consecutive trips of the same bus. The exception is that at each
given time we have significantly lowered the total cost, this to resemble the fact
that the gate assignment is still the more important problems of the two:

cB(t) = 50(arctan(0.21(−t)) +
π

2
),

By taking the sum of the total cost of both sub problems, we now have a
representation for the quality of the robustness of a solution as a whole.

The ILP formulation. The model is obtained by combination and extension
of the separate models presented in [4] and [3] to solve the gate assignment and
the bus planning problems respectively.

Our model is based on so-called gate plans, which consist of a set of flights
assigned to one gate. We aggregate gates with the same properties into groups of
gates and each such group we refer to as a gate type. These properties contain at
least the origin/destination, size and ground handler. However, a trivial aggre-
gation in which each separate gate (except for the platform stands) is considered
a single type is also possible.

We define the decision variable

xi =
{

1 if gate plan i is selected
0 otherwise,

Since it might be non-trivial to assign all flights to a gate, allow a flight to be
unassigned at high cost. This is modelled by the binary variable UAFv. Let V
denote the number of flights, A the number of gate types, Sa the number of
gates of type a, and K the number of preferences. Now the robustness cost of
the gate assignment are given by:

Min
N∑

i=1

cGi xi +
V∑

v=1

QvUAFv

and the gate plan have to satisfy the following constraints:

UAFv +
N∑

i=1

gvixi = 1 v = 1 . . . V (1)

N∑
i=1

eiaxi ≤ Sa a = 1 . . . A (2)

N∑
i=1

V∑
v=1

A∑
a=1

pvakeiagvixi ≥ Pk k = 1, . . . ,K (3)

where

gvi =
{

1 if flight v is in gate plan i
0 otherwise,

6 G. Diepen et al.

eia =
{

1 if gate plan i is for gate type a
0 otherwise,

pvak =
{

1 if flight v has preference for gate of type a in preference k
0 otherwise,

Constraint (1) ensures that all flights are either present in one of the selected
gate plans, or the unassignment variable for the flight will have the value 1,
resulting in a penalty in the objective function.

Constraint (2) ensures that we select as many gate plans of a certain type
as there are gates of the type and Constraint (3) ensures that we fullfill all of
the preferences that are given with regards to the gate assignment. Here Pk is
the minimum required number of flights with a preference for gate type a that
we have to assign to a gate of type a to meet the preference constraints, e.g. the
constraint can be that at least 7 out of the 10 flights of a certain airline are at
a given gate.

In case we only need to solve the bus planning problem, we are given a
set of flights of which it is known where exactly they are standing. With this
information we can create the trips needed to transport all the passengers and
in the model we must ensure that each of these trips is either driven by a bus,
or it is left unassigned with a penalty cost.

For the combination of the two problems, we do not yet know which flights
will be placed on the platform (and also, on which platform) and therefore we
have to find a way to determine which trips we actually need to assign to buses.

To handle this problem, we generate all possible trips for flights that could
be assigned to the remote stands. This means that for each of these flights we
create the trips for each of the platforms that it can be assigned to. For example,
if an arriving flight requires two trips because of the number of passengers and
it can be assigned to the D/E platform, as well as the B platform it means
that we will create two trips from the D/E platform and two trips from the B
platform to the terminal building. Similarly, not only different platforms, but
also different destinations in the terminal building must be considered. For each
possible combination we would have to create the trips also. To allow for this
coupling we will work with all possible trips and determine which of these are
needed in a solution and which are not. For this purpose we will use the variables
NNTt for each trip t to denote whether the trip t needs to be assigned to a bus
or that the trip is irrelevant for the assignment problem.

Similar to the gate assignment, we define bus plans as the set of trips per-
formed by one bus. We define

yj =
{

1 if bus plan j is selected
0 otherwise,

and the binary variable UATt to signal if trip t is unassigned. Let T be the
number of trips, B be the number of shift types and Tb be the number of buses

Integrated Gate and Bus Assignment 7

with drivers available is shift b. We now obtain the following model:

Min
N∑

i=1

cGi xi +
V∑

v=1

QvUAFv +
M∑

j=1

cBj yj +
T∑

t=1

RtUATt

subject to

(1)− (3)
M∑

j=1

fjbyj ≤ Tb b = 1 . . . B (4)

NNTt + UATt +
M∑

j=1

htjyj = 1 t = 1 . . . T (5)

NNTt +
N∑

i=1

V∑
v=1

ttvigvirixi = 1 t = 1 . . . T (6)

xi ∈ {0, 1} i = 1 . . . N (7)
yj ∈ {0, 1} j = 1 . . .M (8)

where

fjb =
{

1 if bus plan j for a shift of type b
0 otherwise,

htj =
{

1 if trip t is in bus plan j
0 otherwise,

ttvi =
{

1 if assigning flight v to gate plan i implies trip t must be driven
0 otherwise,

ri =
{

1 if gate plan i is for a remote stand
0 otherwise,

Constraint (4) ensures that for each bus shift, we select at most the number
of buses present in that shift.

Constraint (5) states that either not needed, or, in case it is needed, must
either be assigned to a bus plan or it must be explicitly become unassigned at
high cost.

Without any further constraints on the NNTt variables, the easiest solution
would be to set the value of all of these variables to 1 and all of the trip constraints
would be satisfied right away. Constraint (6) ensures that this cannot happen
for trips that are defined for flights assigned to the remote stands. It is also this
constraint that actually links the gate and bus model into one large model.

3 Solving the problem

3.1 Assigning flights to gate plans and trips to bus plans

Observe that the above model determines for each group of gates and each
group of shifts an equal sized set of gate plans and bus plans respectively. To

8 G. Diepen et al.

approximate the optimal solution of the above ILP-formulation, we will first relax
the integrality constraints (7) and (8). After that we will solve the resulting LP
relaxation to optimality by making use of column generation.

The pricing problem. After each iteration of the column generation process,
we need to determine whether other columns exist that might improve the value
of the objective function, the so-called pricing problem. In our case we have to
solve two types of pricing problems, one for finding gate plans and one for finding
bus plans.

The pricing problem for the gate assignment part boils down to a set of
shortest path problems. For each gate type a we define a graph Ga, the nodes of
which are the flights that are allowed to be assigned to gate type a and there is
an arc between each pair of flights (v, w) such that w can directly succeed v on
that gate, i.e., the difference between the arrival time T arr

w of flight w and the
departure time T dep

v is at least 20 minutes. Furthermore we add a source vertex
s with an arc to every node v and a sink t and an arc from every node to t. Now
every path in Ga corresponds to a feasible gate plan and vice versa. To be able
to solve the pricing problem as a shortest path problem, we set the cost of arc
(v, w) equal to the contribution of flight v to the reduced cost as follows:

cG(T arr
w − T dep

v)− πv −
K∑

k=1

pvakψk −
T∑

t=1

ttvρt.

where the dual multipliers πv for flight v and ψk for preference k follow from
Constraint (1) and Constraint (3) respectively. Moreover, ρt is the dual multiplier
of Constraint (6), which only applies to gate plans that are for remote stands
(because only then ri = 1). The last term which incorporates the ‘coupling’
constraint is the only difference with the pricing problem for the gate assignment
problem. We may assume that the flights are sorted by their arrival times, which
implies a topological order on the vertices of the graph. Because we now have a
DAG with a topological order it is possible to find the shortest path in O(|V |+
|E|) time.

The pricing problem with regards to the bus problem boils down to a similar
type of shortest path problem and is the same as the pricing problem for solving
only the bus planning problem separately. The only difference is that the size of
the individual graphs is larger due to the increased number of trips.

Because solving all of the pricing problems in each iteration may be rather
time consuming, we have tried out different strategies with regards to which of
the pricing problems we solve during each iteration. One possible approach is to
interleave the solving of the pricing problems; one iteration we solve the pricing
problems for the buses and the other iteration we solve the pricing problems for
the gates.

Although, after some initial tests we found that searching for both gate and
bus plans with negative reduced cost from the beginning on turned out to work
better than the other possibilities.

Integrated Gate and Bus Assignment 9

In [4] and [3], we generated a pool of additional columns that can be added
to the ILP and enable us to solve the ILP in a reasonable amount of time.
For gate assignment these column are obtained by after the pricing problem
has been solved, forbidding one flight in the gate plan and resolve the shortest
path problem. We perform this step for every flight in the optimal solution
of the pricing problem. For bus planning we generate additional columns in
the same way. When solving the problems separately, the columns are added
when we start solving the ILP. However, when solving the integrated problem
all additional columns with negative reduced cost are already added during the
column generation process.

Improvements in solving the LP. During our first experiments, it turned
out that the LP problem tends to require a long solution time and be a very
degenerate. This degeneracy appears in two ways during the column generation
process. First, resolving the restricted master problem after new columns have
been added takes quite many iterations and second, new columns that are gen-
erated with negative reduced cost do not improve the objective function after
they have been added to the restricted master problem.

We have applied two different approaches to improve the solving of the LP.
The first approach we used is column deletion and consists of the removal of
columns with too large positive reduced cost after every given number of itera-
tions. The effect of this removal is not only that the model is simplified and some
degeneracy is removed, but also that the resulting model is smaller and therefore
it can be solved more quickly. For solving the problems separately, this approach
showed promising results for decreasing the computation required time when .

The second approach we implemented is so-called stabilized column gen-
eration. This technique was introduced in du Merle et al. [5] and consists of a
combination of two techniques. One technique is the addition of bounded sur-
plus and slack variables to the original primal problem to overcome degeneracy.
The second technique consists of adding surplus and slack variables that have
a positive coefficient in the objective function. Combining these two techniques
both stabilizes and accelerates the column generation procedure. It decreases
the amount of degeneracy a.o. because the slack and surplus variables give more
possibilities for assigning a positive value to a newly added column. Moreover,
it has a positive effect on the tailing-off effect, i.e. slow convergence. A more
elaborate explanation is omitted for reasons of brevity.

Solving the ILP. After the LP is solved to optimality by means of column
generation, we are not finished yet because this solution might be fractional.
In case it is integral, we are finished since we have an integral solution that is
optimal. If we do not have an integral solution, we proceed as follows:

1. first we add all unique extra gate and bus plans that were generated as extra
columns while solving the pricing problems.

2. we then add all the unique variables that were taken out during the column
generation

10 G. Diepen et al.

3. we reinstate the integrality constraints (7) and (8)

Solving the resulting ILP turned out to be still quite difficult. In order to
speed up this solving, we added additional constraints to the problem. These
constraints act as a rounding-heuristic. For each flight and for each bus these
additional constraints were created in the following way:

1. Determine if a flight or trip that is only present in selected gate plans and
bus plans respectively that are all of the same type, meaning that in the
fractional solution a flight or a bus trip is always assigned to one particular
gate type or one particular bus shift.

2. Create a constraint that ensures the flight or the trip has to be assigned to
that particular gate type or bus shift in an integral solution.

Although the above constraints might cause the optimal solution of our initial
ILP to be cut off, our experiments did not show any noticeable negative side
effects with regards to the cost of the integral solution compared to the optimal
fractional solution.

3.2 Assigning gate and bus plans to the actual gates and buses

After solving the ILP from the previous section, we have determined the set of
gate and bus plans that provide a (near) optimal solution. For each group of
gates and each group of shifts we have an equal size set of gate plans and bus
plans respectively. The one thing still left to do is to assign each gate plan and
each bus plan to each unique gate and bus respectively.

In case of the bus planning problem, this part is trivial since the buses within
one shift do not have any differences at all; it really does not matter to which of
these buses a particular bus plan is assigned to.

However, for the gate assignment problem it depends on the definition of the
gate types. If each single gate is a separate type, we already have an assignment
of flights to physical gates and this step is also trivial.

If we have grouped the gates with certain equal properties into types, the
individual gates within such a type still might be different on some other, less
important properties. These additional properties can be used for determining
to which physical gate a particular gate plan needs to be assigned.

Since the size of these problems is relatively small (in the order of 5 to 10
gates within one group) it is probably most effective to leave this up to the gate
planner to do this manually.

4 Experimental results

For testing our model, we wrote a prototype in C++ and ran numerous experi-
ments. All experiments were ran on on Pentium 4 2.8 GHz computer equipped
with 1GB of RAM. The solver we used for solving all (I)LP problems is Cplex 9.1.3
via the Concert Technology interface.

Integrated Gate and Bus Assignment 11

AAS provided us with both data regarding the gate assignment problem,
which consisted of all flight information for three high-season (HS) days and
three low-season (LS) days and data regarding the bus planning problem with
all information regarding buses for one complete month.

From the supplied gate data we created two types of instances. In one type
of instances we aggregate all gates with identical properties (e.g. size, region,
ground handler, pier) into groups of gates. We refer to this type of instances as
Grouped Gates (GG). Furthermore, we constructed instances where every gate
is considered as a group with size one except for the platform gates. Recall that
for these instances our algorithm directly assigns flights to physical gates. We
refer to this type of instances as Single Gates (SG). This deaggregation results
in over twice the number of gate types, as can be seen in Table 1. This way
we created 12 instances with regards to the gate and flight information. The
high-season instances contain about 600 flights and about 1000 arival/departure
events for the bus planning. For the low-season instances these numbers are 500
and 900 respectively.

To create a sufficiently large number of experiments, we combined each of
the 12 gate assignment instances with the buses and shifts of all 30 of the bus
planning problem instances. These instances contain about 60 buses and about
20 type of shifts (of which about 70 percent is long enough to contain a manda-
tory break). We may expect the set of buses available at each given time of the
day should roughly be enough for driving all trips.

Instance Gates Gate types Remote stands

Grouped 128 40 34
Single 128 94 34

Table 1. Sizes of the provided instances with regard to gates

In Table 2 we present the general results with regards to solving the LP
part of the problem. We combined each instance of the gate assignment problem
with the 30 available instances of the bus planning problem and we present the
average time over these 30 instances needed for solving each combination, the
minimum time, and the maximum time. We also present the average number
of iterations needed to solve the LP relaxation and finally, we also present the
average time needed in each iteration of the column generation process to solve
the pricing problem and the time needed for resolving the Restricted Master
Problem (RMP) after we have added the columns found when solving the pricing
problem.

Our experiments indicate that the LP can be solved within a reasonable
amount of time. From Table 2 we can see that a significant amount of the time
needed for solving the LP-relaxation is spent in solving all the separate pricing
problems. Since all parts of the pricing problem that need to be solved can
be solved completely independent from each other, we could easily bring down

12 G. Diepen et al.

Total time LP (s) Avg time (s)/iter
Instance Average Min Max Avg iter RMP Pricing

02-08-GG 1129.6 967.8 1472.0 161.67 2.8 3.9
02-08-SG 2070.1 1752.1 2657.7 171.90 4.8 6.8
03-08-GG 973.9 864.7 1213.2 148.27 2.6 3.7
03-08-SG 1847.4 1627.4 2337.8 163.07 4.4 6.5
04-08-GG 1142.6 1010.4 1641.3 157.50 3.2 4.0
04-08-SG 2575.2 2189.9 3970.3 212.77 4.6 7.2
15-03-GG 658.5 560.3 769.3 165.17 1.1 2.7
15-03-SG 1235.8 1094.6 1472.0 175.17 1.9 4.8
16-03-GG 710.0 623.8 850.4 161.90 1.3 2.8
16-03-SG 1383.4 1144.0 1661.5 175.87 2.5 5.0
17-03-GG 595.0 474.6 775.1 141.37 1.2 2.8
17-03-SG 1125.1 991.3 1422.4 151.70 2.2 4.9

Table 2. General LP results

the influence of the pricing problems on the total time needed for solving the
LP-relaxation by making use of parallel programming.

To investigate the effect of the column deletion and the stabilized column
generation, we also ran part of the instances without these enhancements. It
could be clearly seen that the time needed to solve the LP relaxation to opti-
mality explodes without the use of column deletion and stabilization. One part
responsible for this huge increase in time needed is the large increase in the aver-
age time needed for solving one iteration of the RMP. This can be explained by
the fact that after a couple of iterations, the model quickly becomes very large
due to the fact that all columns stay in the model.

It turns out that without column deletion and stabilized column generation,
the average number of iterations needed to solve the LP-relaxation to optimality
is higher than when both are enabled, while the average time needed for solving
the pricing problems is lower. The increase in number of iterations needed is
an example of the so-called tailing-off effect. In the beginning there are big
improvements in each iteration, while more and more iterations are needed when
closer by the optimum. Using the stabilized column generation has a positive
effect on this tailing-off effect, as can be seen by the number of iterations needed.

It turns out that the combination of column deletion and stabilized column
generation are responsible for a huge improvement, in our experiments by a factor
2.5 up 19, in the time needed for solving the LP-relaxation to optimality with
column generation. Interesting is the fact that the improvement seems larger
when the instances are larger (see HS versus LS)

The results for solving the ILP are given in Table 3. The table shows that we
were able to solve the very large ILP within a few minutes. In our experiments
the integrality gap turned out to be very small.

As mentioned in Section 3 we added additional constraints to the model
before solving the actual ILP. These additional constraints can be considered as
a kind of rounding-heuristic in the way that if in the optimal solution for the

Integrated Gate and Bus Assignment 13

LP-relaxation a flight is always assigned to a certain type of gate in all selected
gate plans, we add a constraint that enforces the flight to be assigned to a gate
plan of that type.

The average number of constraints that were added for flights as well as for
buses is shown in Table 3. These constraints result in ILP models that are a lot
smaller and hence in a much smaller solution time. From our experiments we
found that the additional constraints did not have a significant impact on the
value of the final ILP solution and did not result in infeasibility of the ILP.

Average additional constraints Average solving
Instance Flight constraints Trip constraints time ILP (s)

02-08-GG 121.4 57.6 43.5
02-08-SG 103.4 57.9 54.1
03-08-GG 117.8 57.1 42.0
03-08-SG 105.4 57.7 103.3
04-08-GG 119.3 57.2 82.7
04-08-SG 108.7 57.5 95.2
15-03-GG 108.9 58.4 86.5
15-03-SG 91.0 59.0 271.0
16-03-GG 107.0 59.1 45.8
16-03-SG 84.2 59.3 170.6
17-03-GG 118.5 59.9 20.6
17-03-SG 105.6 59.6 29.5

Table 3. General results ILP

One other way to speed up the process of solving the ILP we used is to
first only solve the root node relaxation. We then add a so called cut up limit
to the model that is 0.5% above the value of the root node. This cut up limit
acts for the ILP solver as if an integral solution with that particular value has
already been found, meaning that any node with a relaxation value greater than
this cut up value is automatically pruned. Strictly speaking this might result in
infeasibility of the ILP (when the optimal ILP solution exceeds the thhreshold),
but this never occured in our experiments.

Furthermore, when looking at the time needed for solving the various final
ILP models, we can see that these times are still within very acceptable ranges,
also for the Single Gate Problems. This indicates that it is feasible to assign
flights and trip directly to physical gates and buses respectively.

5 Conclusion and further research

We have investigated the combination of two assignment problems that in prac-
tice are solved in a sequential fashion. We formulated the combined problem in
one large model for which we approximate the optimal solution by means of an
approach based on column generation.

14 G. Diepen et al.

We implemented our algorithm and tested it with real-life data provided by
AAS. The results show that our approach is capable of solving these real-life
instances within acceptable time, especially given the fact that this approach
solves two problems within about the same time that currently is available at
AAS for the computer to present a solution for only the gate assignment problem.

We also showed that our approach is still capable of solving the instances
within acceptable running times if we create a single gate type for each separate
gate, except for the remote stands. This different model lead to over twice the
number of gate types which significantly increased the size of the instances.

We are currently performing a simulation study of the platform buses, to
evaluate the robustness of the column generation planning compared to a kind
of first-come-first-served method as used at AAS. We can clearly see that the
column generation schedule is more smooth, in the sense that the idle time
is spread more evenly. Currently, the gate assignment at AAS needs a lot of
replanning during the day of operation. However, comparing the quality of our
resulting schedules to the actual schedules in use at AAS is difficult for a variety
of reasons, the main one being the fact it is not possible to retrieve the schedule
we would like to compare to, namely the initial schedule as produced by the
computer for the upcoming day.

An interesting possibility of further investigation is to start looking at a more
operational type of planning. It would be interesting to see how our suggested
approach performs if we do not let it create a schedule from scratch but we
supply it with a schedule and some disturbances and let the program try to
resolve this updated problem.

One of the main things that would have to be considered for this approach is
the fact that any new solution should not deviate too much from the currently
existing solution. So when solving the problems after some parts are fixed (since
they already happened) and other events have changed properties (e.g. earlier or
later Estimated Time of Arrivals and Departures) the cost function would not
only have to consider the robustness of the schedule, but also the similarity to
the original-day-ahead schedule, since too many changes in a schedule will result
in a lot of confusion for the different parties dependent on the schedule.

References

1. L. Clarke, C. Hane, E. Johnson, and G. Nemhauser. Maintenance and crew con-
siderations in fleet assignment. Transportation Science, 30:249–260, 1996.

2. J.-F. Cordeau, G. Stojkovic, F. Soumis, and J. Desrosiers. Benders decomposition
for simultaneous aircraft routing and crew scheduling. Transportation Science,
35(4):375–388, 2001.

3. G. Diepen. Column Generation Algorithms for Machine Scheduling and Integrated
Airport Planning. PhD thesis, Utrecht University, (In preparation), 2008.

4. G. Diepen, J. M. v. d. Akker, J. A. Hoogeveen, and J. W. Smeltink. Using column
generation for gate planning at amsterdam airport schiphol. Technical Report
UU-CS-2007-018, Institute of Information and Computing Sciences, Utrecht, the
Netherlands, 2007.

Integrated Gate and Bus Assignment 15

5. O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column gen-
eration. Discrete Math., 194(1-3):229–237, 1999.

6. R. Freling, D. Huisman, and A. P. M. Wagelmans. Models and algorithms for
integration of vehicle and crew scheduling. Journal of Scheduling, 6(1):63–85, 2003.

7. C. Gao. Airline Integrated Planning and Operations. PhD thesis, Georgia Institute
of Technology, August 2007.

8. M. Lohatepanont and C. Barnhart. Airline schedule planning: Integrated models
and algorithms for schedule design and fleet assignment. Transportation Science,
38(1):19–32, 2004.

9. B. Rexing, C. Barnhart, T. Kniker, A. Jarrah, and N. Krishnamurthy. Airline fleet
assignment with time windows. Transportation Science, 34(1):1–20, 2000.

10. R. Sandhu and D. Klabjan. Integrated airline planning. In AGIFORS Symposium
2004, Singapore, 2004.

