
Dynamic Algorithms for Recoverable

Robustness Problems⋆

S. Cicerone1, G. Di Stefano1, M. Schachtebeck2, and A. Schöbel2

1 Department of Electrical and Information Engineering, University of L’Aquila,
Italy. {cicerone,gabriele}@ing.univaq.it

2 Institute for Numerical and Applied Mathematics, Georg-August-University
Göttingen, Germany. {schachte,schoebel}@math.uni-goettingen.de

Abstract. Recently, the recoverable robustness model has been intro-
duced in the optimization area. This model allows to consider disruptions
(input data changes) in a unified way, that is, during both the strategic
planning phase and the operational phase. Although the model repre-
sents a significant improvement, it has the following drawback: we are
typically not facing only one disruption, but many of them might appear
one after another. In this case, the solutions provided in the context of
the recoverable robustness are not satisfying.
In this paper we extend the concept of recoverable robustness to deal not
only with one single recovery step, but with arbitrarily many recovery
steps. To this aim, we introduce the notion of dynamic recoverable ro-
bustness problems. We apply the new model in the context of timetabling
and delay management problems. We are interested in finding efficient
dynamic robust algorithms for solving the timetabling problem and in
evaluating the price of robustness of the proposed solutions.

Key words: Robustness, optimization problems, dynamic algorithms,
timetabling, delay management.

1 Introduction

In many applications of optimization, the input data is subject to uncertainties
and disruptions (input data changes). Thus, in most cases, it is desirable not
to have a solution that is optimal for the undisturbed input data, but that is
feasible even for disturbed input – at the cost of optimality.

Disruptions have to be considered both in the strategic planning phase and
in the operational phase. The latter phase aims to have immediate reaction to
disruptions that can occur when the system is running, while the former one
aims to plan how to optimize the use of the available resources according to
some objective function before the system starts operating.

To face disruptions in the operational phase, the approaches used are mainly
based on the concept of online algorithms [5]. An online recovery strategy has

⋆ Work partially supported by the Future and Emerging Technologies Unit of EC (IST
priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

ATMOS 2008
8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2008/15871

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel

to be developed when unpredictable disruptions in daily operations occur, and
before the entire sequence of disruptions is known. The goal is to react fast,
while retaining as much as possible of the quality of an optimal solution, that
is, a solution that would have been achieved if the entire sequence of disruptions
was known in advance.

To face disruptions in the strategic planning phase, the approaches used are
mainly based on stochastic programming and robust optimization.

Within stochastic programming (e.g., see [4, 14, 16]), there are two different
approaches: chance constrained programming aims to find a solution that sat-
isfies the constraints in most scenarios (i.e. with a high probability) instead of
satisfying them for all possible realizations of the random variables, while in
multi-stage stochastic programming, an initial solution is computed in the first
step, and each time when some new random data is revealed, a recourse action
is taken. However, stochastic programming requires detailed knowledge on the
probability distributions of the random variables.

In robust optimization (e.g., see [1–3, 7]), the objective – in contrast to
stochastic programming – is purely deterministic. In the concept of strict ro-
bustness, the solution has to be feasible for all admissible scenarios from a set
of input scenarios. The solution gained by this approach can then be fixed since
by construction it needs not to be changed when disturbances occur. However,
as the solution is fixed independently of the actual scenario, robust optimiza-
tion leads to solutions that are too conservative and thus too expensive in many
applications. One approach to compensate this disadvantage is the idea of light
robustness introduced in [8]. This approach adds slacks to the constraints. A
solution is considered as robust if it satisfies these relaxed constraints.

All the approaches above do not allow to consider disruptions in a unified
way, that is, for both the strategic planning and the operational phases. Re-
cently, a first contribution in this direction has been proposed in [15], where
the recoverable robustness model has been presented. It starts from the practical
point of view that a solution is robust if it can be recovered easily in case of a
disturbance. This means the solution no longer has to be feasible for all possible
scenarios, but a recovery phase is allowed to turn an infeasible solution into a
feasible one. However, some limitations on the recovery phase have to be taken
into account. For example, the recovery should be quick enough and the quality
of the recovered solution should not be too bad.

The initial model of [15] has been extended and applied to shunting problems
in [6]. There, the price of robustness is defined as the maximum ratio between
the cost of the provided robust solution and the optimal solution. According to
their price, robust algorithms may also be exact or optimal.

Although the recoverable robustness model represents a significant improve-
ment in the optimization area, it has the following drawback: We are typically
not facing only one disruption, but many of them might appear one after another.
In this case, the solutions provided in the context of the recoverable robustness
are not satisfying. In this paper we extend the concept of recoverable robust-
ness presented in [6] to deal not only with one single recovery step, but with

Dynamic Algorithms for Recoverable Robustness Problems 3

arbitrarily many recovery steps. To this aim, we introduce the class DRRP(σ),
σ ∈ N, containing all the dynamic recoverable robustness problems which have
to be solved against σ possible disruptions, appearing one by one. The model
in [6] captures exactly the problems in DRRP(1), that is, the static recoverable
robustness problems.

A concrete example of real world systems, where our model plays an impor-
tant role, is the timetable planning. It arises in the strategic planning phase for
transportation systems, and it requires to compute a timetable with e.g. minimal
passenger waiting times. However, many disturbing events (caused by delays)
might occur during the operational phase, and they might completely change
the schedule. The problem of deciding which connections from a delayed train
to a connecting train should be guaranteed is known in the literature as delay
management problem [13, 17, 18]. This problem has been shown to be NP-hard
in the general case, while it is polynomial solvable in particular cases (see [9–12,
17, 18]).

In this paper, we apply the recoverable robustness model in the context
of timetabling and delay management problems. We are interested in finding
efficient dynamic robust algorithms for solving the timetabling problem and in
evaluating the price of robustness of the proposed solutions. In detail, we take two
particular timetabling problems and turn them into problems in DRRP(σ) by
defining specific modifications and recovery strategies. For one of such problems
we show that finding a solution which minimizes the objective function of the
corresponding timetable problem is NP-hard. In general, we propose dynamic
robust algorithms and evaluate their prices of robustness. We also prove that
such algorithms are optimal with respect to some specific instances.

The remainder of this paper is structured as follows: In Section 2, we show
how the concept of recoverable robustness from [15] can be extended to the
dynamic framework. Section 3 shows how this framework can be applied to
the delay-resistant timetables. In Sections 4 and 5, we propose dynamic robust
algorithms, evaluate their prices of robustness and prove optimality in specific
instances.

Due to space limitations, some proofs have been omitted.

2 The model

In this section, we extend the model concerning robustness for optimization prob-
lems introduced in [6, 15]. We consider minimization problems P characterized
by the following parameters:

– I, the set of instances of P ;
– F (i), the set of all (potential) feasible solutions for i ∈ I;
– f : S → R>0, the objective function of P that has to be minimized, where

S =
⋃

i∈I F (i).

In the dynamic robust optimization problem, we want to find a robust plan
for some given initial instance i ∈ I of P . Additional concepts to describe the
robustness for the minimization problem P are needed:

4 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel

– M : I → 2I – a modification function for instances of P . This function
models disturbances of the current scenario due to the following case. If
i ∈ I is the considered input (or scenario) of problem P , a disturbance is
meant as a modification of i leading to another input scenario i′ ∈ I. Such a
modification i′ depends on the current input i. In order to model this fact,
we define the set M(i) as the set of all instances which are modifications of
the instance i, i.e. instances that can occur if i is disturbed. Note that the
set of modifications may also depend on other information, e.g. on the data
of the initial instance.
Let s be the planned solution for the input i. When a disturbance i′ ∈ M(i)
occurs, a new solution s′ ∈ F (i′) has to be recomputed for P .

– σ – maximum number of expected modifications. In a practical scenario,
several disruptions i1, i2, . . . , iσ may occur. In this case, a task is to devise
recovery algorithms that can recompute the solution for P after each dis-
ruption.

– Arec – a class of recovery algorithms for P . Each element Arec : S × I → S
works as follows: given a solution s0 ∈ S of P (for the current instance i0)
and a modification i1 ∈ M(i0), then Arec(s

0, i1) = s1, where s1 ∈ F (i1) ⊆ S
represents the recovered solution for P . We remark that s0 and i1 define the
minimal amount of information necessary to recompute the solution. How-
ever, for specific cases, Arec could require additional information. In general,
when Arec is used at the k-th step, it can use everything that has been
processed in the previous steps (in particular, i0, ..., ik−1, and s0, ..., sk−1).

In general, a class of recovery algorithms Arec is defined in terms of some
kind of limitation. In what follows we provide two examples for the class
Arec.
A1

rec: this class is based on a constraint on the solutions provided by the re-
covery algorithm. In particular, the new (recovered) solutions computed
by an algorithm must not deviate too much from the original solution s,
according to a distance measure d. Formally: given a real number ∆ ∈ R
and a distance function d : S × S → R, we define A1

rec as the class of
algorithms Arec that satisfy the following constraint:
• ∀i ∈ I, ∀s ∈ F (i), ∀i′ ∈ M(i), d(s, Arec(s, i

′)) ≤ ∆.
A2

rec: this class is formulated by bounding the computational power of re-
covery algorithms. Formally: given a function f : I×S×I → N, we define
A2

rec as the class of algorithms Arec that satisfy the following constraint:
• ∀i ∈ I, ∀s ∈ F (i), ∀i′ ∈ M(i), Arec(s, i

′) can be computed in
O(f(i, s, i′)) time.

2.1 Static model

We first recall the basic definitions concerning robustness for optimization prob-
lems introduced in [6, 15].

Definition 1. [6] A recoverable robustness problem is defined by the triple
(P, M, Arec). All the recoverable robustness problems form the class RRP.

Dynamic Algorithms for Recoverable Robustness Problems 5

Definition 2. [6] Let P = (P, M, Arec) be an element of RRP. Given an in-
stance i ∈ I for P , an element s ∈ F (i) is a feasible solution for i with respect
to P if and only if the following relationship holds:

∃Arec ∈ Arec : ∀i′ ∈ M(i), Arec(s, i
′) ∈ F (i′).

In other words, s ∈ F (i) is feasible for i with respect to P if it can be recovered
by applying some algorithm Arec ∈ Arec for each possible disruption i′ ∈ M(i).
Hence, s is called robust solution. We define FP(i) as the set of robust solutions
for i with respect to P .

Definition 3. [6] Given P = (P, M, Arec) ∈ RRP, a robust algorithm for P is
any algorithm Arob : I → S such that, for each i ∈ I, Arob(i) is robust for i with
respect to P.

2.2 Dynamic model

Here we extend the static model in order to deal with a sequence of σ ≥ 1
modifications.

Definition 4. A dynamic recoverable robustness problem is defined by
(P, M, Arec, σ), σ ∈ N. The class DRRP(σ) contains all the problems that have
to be solved against σ possible disruptions.

Definition 5. Let σ ∈ N and P = (P, M, Arec, σ) be an element of DRRP(σ).
A pair of algorithms (Arob, Arec) is called dynamic robust recovery pair for σ
and P if for each instance i0 ∈ I, Arec ∈ Arec and the following relationships
hold:

s0 := Arob(i
0) ∈ F (i0) (1)

sk := Arec(s
k−1, ik) ∈ F (ik), ∀ik ∈ M(ik−1), ∀k ∈ [1..σ], (2)

i.e. in the k-th step, for any possible modification ik ∈ M(ik−1) and for any
feasible solution sk−1 computed in the previous step, the output sk of algorithm
Arec is a feasible solution for ik with respect to P.

Note DRRP(1) = RRP. As a consequence, we refer to a static problem as a
problem in DRRP(1). We use the notation FP(i) to represent all robust solutions
for i with respect to P ∈ DRRP(σ) If Arec is the class of algorithms that never
change the solution s for the input i, i.e., if each algorithm Arec ∈ Arec satisfies

∀i ∈ I, ∀s ∈ S, ∀i′ ∈ M(i), Arec(s, i
′) = s,

then dynamic recovery robustness reduces to strict robustness. In this case, a
robust algorithm Arob for P must provide a solution s0 for i0 such that, for each
possible modification ik ∈ M(ik−1), we have s0 ∈ FP(ik) for all k ∈ [1..σ]. The
meaning is the following: If Arec has no recovery capability, then Arob has to
find solutions that “absorb” any possible sequence of disruptions.

6 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel

2.3 Price of robustness

For every instance i ∈ I, the price of robustness of Arob is given by the maximum
ratio between the cost of the solution provided by Arob and the optimal solution.

Definition 6. The price of robustness of a robust algorithm Arob for a problem
P ∈ DRRP(σ) is

Prob(P , Arob) = max
i∈I

{
f(Arob(i))

min{f(x) : x ∈ F (i)}

}

.

The price of robustness of a problem P ∈ DRRP(σ) is given by the minimum
price of robustness among all possible robust algorithms. Formally,

Definition 7. The price of robustness of a problem P ∈ DRRP(σ) is given by

Prob(P) = min{Prob(P , Arob) : Arob is a robust algorithm for P}.

If there are many robust algorithms possible for P , we want to identify the “best”
one:

Definition 8. Let P ∈ DRRP(σ) and let Arob be a robust algorithm for P.
Then,

– Arob is exact if Prob(P , Arob) = 1;
– Arob is P-optimal if Prob(P , Arob) = Prob(P). The solution computed by a

P-optimal algorithm is called P-optimal.

Note that the definition of an exact robust algorithm refers to the problem P .
We state a simple observation concerning the price of robustness.

Lemma 1. For fixed P , M , and Arec, consider a family of problems Pσ =
(P, M, Arec) for different values of σ, i.e. these problems vary in the expected
number of recoveries only. For σ1 < σ2, we have

– FPσ2
(i) ⊆ FPσ1

(i) for all instances i ∈ I,
– Prob(Pσ1

) ≤ Prob(Pσ2
), i.e. the price of robustness grows in the number of

expected recoveries.

Proof. Let s ∈ FPσ2
, i.e. there exist (Arob, Arec) such that (2) holds for all

k = 1, . . . , σ2, hence also for all k = 1, . . . , σ1. This yields s ∈ FPσ1
. Moreover, it

shows that Arob is robust for Pσ1
if Arob is robust for Pσ2

, hence also the second
statement holds. ⊓⊔

3 Application to Delay Management

In this section we apply the concept of dynamic robustness to a (simplified
variant) of the timetabling problem in public transportation. Timetabling is a
real-world problem which suffers a lot from disturbances or delays. Whenever an
unexpected source delay occurs, the timetable has to be recovered to a disposition
timetable. Recovering a given timetable in case of delays is known as the delay
management problem. Usually, there is not only one (source) delay but many
such delays during a day which occur one after another. Our concept of dynamic
recoverable robustness is hence important for this application.

Dynamic Algorithms for Recoverable Robustness Problems 7

3.1 Notation and Definition

We first introduce the specific timetabling problem which we will consider, and
describe the delay scenarios and the restrictions for the recovery we are looking
at. We then investigate the recovery restrictions in detail.

The Initial Planning Problem. Let G = (V, A) be a directed acyclic graph (DAG)
with one specified node v1 such that there exists a directed path from v1 to each
other node.

Referring to the notation common in timetabling in public transportation,
let us call the nodes in V events and the edges A activities. The nodes refer to
arrival and departure events and the activities to driving, waiting and changing
activities. Moreover, we say a DAG G = (V, A) is a tree, if it is an out-tree to
some source node v1 (i.e. the path from v1 to each other node is unique), and a
linear graph if V = {v1, v2, . . . , vn} and A = {(v1, v2), (v2, v3), . . . , (vn−1, vn)}.

In order to define the timetabling problem, let us assume that we have given
weights wu ∈ R for each u ∈ V representing the importance of the corresponding
event and lower bounds L0

a ∈ R>0 indicating the minimal duration that is needed
for activity a ∈ A.

We are looking for a timetable π : V → R≥0 assigning a point of time to each
event u ∈ V . π is feasible if it respects the minimal duration of each activity (see
(3)), i.e. our initial planning problem P can be stated as

(P) min f(π) =
∑

u∈V

wuπu s.t.

πv − πu ≥ L0
a ∀a = (u, v) ∈ A (3)

πu ∈ R≥0 ∀u ∈ V. (4)

An instance i of P is specified by i = (G, w, L0). Given a = (u, v) ∈ A, the
amount πv −πu −La is called slack time for the activity a. (P) can be solved in
polynomial time by linear programming. We will consider two special cases of
(P), both having the same constraints (3) and (4), but differ in their objective
functions.

P1 Here we consider the objective which is usually used in timetabling, namely
to minimize the sum of all activity lengths (or equivalently to minimize the
slack times). The objective of this problem is

(P1) min f(π) =
∑

a=(u,v)∈A

wa(πv − πu),

with wa ∈ R≥0 for all a ∈ A. It is a special case of (P), namely if wu =
∑

a=(v,u)∈A wa −
∑

a=(u,v)∈A wa for each u ∈ V .

P2 Here we consider the problem (P) but require wu ≥ 0 for all u ∈ V .

8 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel

Note that (P2) can be efficiently solved by the forward phase of the critical path
method of project planning (CPM): given an instance i = (G, w, L0) of (P2),
the solution π = CPM(i) for i can be computed as follows:

CPM(i) =

{
πv = 0 if v = v1

πv = max {πu + La : a = (u, v) ∈ A} otherwise

The following lemmata can be proven by induction.

Lemma 2. Given an instance i = (G, w, L0) of (P1), CPM(i) is optimal if G
is a tree.

Note that this needs not to be true if G is not a tree: It often makes sense to
schedule events that do not belong to the critical path later than necessary to
avoid slack on activities with high weights wa.

Lemma 3. Given an instance i = (G, w, L0) of (P2), CPM(i) is optimal.

In the next sections we will use these lemmata to give a general solution
approach for some robustness versions of both (P1) and (P2).

The Static Problem. We first describe the problem Pσ=1 = (P, M, Arec, 1) ∈
DRRP(1), where P corresponds to one of the timetabling problems (P1) or (P2)
defined above, while M and Arec are defined as follows:

- The modification function M for an instance i0 = (G, w, L0) and a constant
α ∈ R>0 is defined as:

M(i0) =
{
(G, w, L1) : ∃a ∈ A : L0

a < L1
a ≤ L0

a + α and L1
a = L0

a∀a 6= a
}

.

Using this function, we represent the delay of an activity a by increasing the
initial value L0

a to some value L1
a > L0

a. The definition ensures that only one
delay is allowed (and bounded by α) and that nothing changes on all other
activities.

- The feasible set of recovery algorithms Arec. We are going to investigate the
following two limitations:

– limited-events: here we assume that there are resources to change the time
for a limited number of events only. In particular, if π is a solution for P and
x1 is a disposition timetable computed by any recovery algorithm in Arec,
then x1 must satisfy

d(x1, π) :=
∣
∣{u ∈ V : x1

u 6= πu}
∣
∣ ≤ ∆ (5)

for some given ∆ ∈ N.
– limited-delay: as second limitation of the recovery algorithm, we again

require that x1 must not deviate “too much” from the initial timetable π,
but this time we consider the sum of all deviations of all events. I.e. x1 must
satisfy

d(x1, π) :=
∥
∥x1 − π

∥
∥

1
≤ ∆ (6)

for some given ∆ ∈ N.

Dynamic Algorithms for Recoverable Robustness Problems 9

In both cases, ∆ = 0 means strict robustness.

We are looking for a feasible pair (Arob, Arec) for Pσ=1 (according to Defi-
nition 5). The result of Arob is a robust solution π = Arob(i

0) ∈ FPσ=1
for each

instance i0 = (G, w, L0) of P . It has to satisfy the following constraints:

πv − πu ≥ L0
a, ∀a = (u, v) ∈ A

∀ (G, w, L1) ∈ M(i0), ∀u ∈ V, ∃ x1
u ∈ R≥0 : (7)

x1
v − x1

u ≥ L1
a, ∀a = (u, v) ∈ A (8)

x1
u ≥ πu, ∀u ∈ V (9)

d(x1, π) ≤ ∆. (10)

In Section 4.1 we show that it is NP-hard to compute the Pσ=1-optimal solution
for (P2) and the limited-delay case.

Concerning Arec, let us assume that π is a solution computed by any robust
algorithm Arob with respect to the instance i0. Let i1 = (G, w, L1) ∈ M(i0).
We know that (7)–(10) hold, i.e. a disposition timetable x1 exists. It can be
computed by an updating version of CPM:

CPM(i0, π, i1) =

{
x1

v = 0 if v = v1

x1
v = max

{
πv, max

{
x1

u + L1
a : a = (u, v) ∈ A

}}
otherwise.

This recovery algorithm computes the disposition timetable x1 with the mini-
mum value of d(x1, π) for both limitations, i.e. it minimizes

∣
∣{u ∈ V : x1

u 6= πu}
∣
∣

and
∥
∥x1 − π

∥
∥

1
at the same time. Hence it is able to recover (if a recovery solution

exists) or to find out that such a solution does not exist. Additionally, among all
timetables satisfying constraints (8)–(10), the recovery algorithm provides the
disposition timetable with the optimal value for (P2) and, if G is a tree, also for
(P1).

The Dynamic Problem. We already remarked that in real-world operation, we
have to expect more than one delay. We hence consider Pσ≥1 = (P, M, Arec, σ) ∈
DRRP(σ), σ ∈ N. We formalize M and Arec as follows:

- The modification function for an instance ik−1 = (G, w, Lk−1) and a constant
α ∈ R>0 is:

M(ik−1) =
{
(G, w, Lk) : ∃a ∈ A : Lk

a = Lk−1
a ∀a 6= a and L0

a ≤ Lk
a ≤ L0

a + α
}

.

- Arec is based on the same two limitations as in the static case. In particular, we
require that a solution xk computed by an algorithm in Arec satisfies d(xk, π) ≤
∆, where d is defined according to (5) or according to (6).

Let i0 = (G, w, L0) be an instance of Pσ≥1. Again, each robust solution sat-
isfies the (generalized) constraints (7)-(10). Analogously to the static case, the
updating version of CPM can be used as recovery algorithm.

In Section 4 we address the problem of designing robust algorithms for
Pσ≥1 = (P, M, Arec, σ) where P ≡ P2 and Arec is based on limited events

10 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel

(see Eq. (5)). Similarly, in Section 5 we investigate the case in which P ≡ P1
and Arec is based on the overall delay according to Eq. (6). In both sections we
provide robust algorithms by using the following general approach: first, add an
additional slack time sa to the lower bounds L0

a of each activity a ∈ A; then,
compute an optimal solution of the resulting instance and take it as a robust
solution. Formally, we obtain an algorithm Alg+

s for each value of s:

Algorithm Alg+
s

input: An instance i0 = (G, w, L0) of (P)
algorithm: 1. Define L̄a := L0

a + s
2. Solve ī = (G, w, L̄) optimally.

The variant Alg∗s differs from Alg+
s at Step 1: L̄a := s · L0

a, that is, instead of
adding the slack time, all lower bounds are multiplied by some value.

According to Lemma 2, in the case of (P1), Step 2 can be done efficiently by
the critical path method CPM when G is a tree. Otherwise, linear programming
can be used. According to Lemma 3, in the case of (P2), Step 2 can be done
efficiently by the critical path method CPM when G is a DAG.

For the recoverable robustness problems addressed in Sections 4 and 5, al-
gorithms Alg+

s and Alg∗s are robust if s is large enough. Moreover, the price of
robustness increases in s. In particular:

– Alg+
s is strictly robust if s ≥ α. Alg∗s is strictly robust if s ≥

L0
a+α

L0
a

for all

a ∈ A.
– Let Alg+

s (Alg∗s) be robust. Then Alg+
s′ (Alg∗s′) is robust for all s′ ≥ s.

– Let Alg+
s1

and Alg+
s2

(Alg∗s1
and Alg∗s2

), s2 ≥ s1, be robust. Then

Prob(Pσ≥1, Alg+
s1

) ≤ Prob(Pσ≥1, Alg+
s2

), and

Prob(Pσ≥1, Alg∗s1
) ≤ Prob(Pσ≥1, Alg∗s2

).

According to the above algorithmic approach, in order to minimize the price of
robustness, the goal is to find the smallest value for s such that the respective
algorithms are robust. However, in Section 4 we also provide robust algorithms
based on a different approach (adding slack times only to specific activities).

4 Dynamic recovery with number of events as limitation

In this section we consider the first case of limitation: we have to find a timetable
π such that in each recovered solution xk, the times of up to ∆ nodes may deviate
from the original timetable, i.e. xk must satisfy (5) for some given ∆ ∈ N and
for all k = 1, 2, . . . , σ. Moreover, we consider the problem Pσ≥1 based on the
initial planning problem (P2).

It is clear that each timetable is robust if ∆ ≥ |V | − 1, so in the following,
we will always assume ∆ ≤ |V | − 2. If σ > ∆, we need strict robustness to get a
robust solution:

Dynamic Algorithms for Recoverable Robustness Problems 11

Lemma 4. If σ > ∆, then a timetable is robust if and only if the slack s satisfies
sa ≥ α for each a ∈ A. In this case, we have strict robustness.

From Lemma 1 we know that FPσ≥1
(i0) ⊆ FPσ=1

(i0) ⊆ F (i0). Since the
set of robust solutions in the dynamic case is smaller than the same set in the
static case, the price of robustness for Pσ≥1 is smaller than or equal to the
price of robustness for Pσ=1. Now, we present an example showing that even
FPσ≥1

(i0) $ FPσ=1
(i0) $ F (i0) holds.

Example 1. Consider a simple instance i0 = (G, w, L0) of (P2), where: G =
(V, A) is a linear graph with four events and three activities, wu = 1 for each
u ∈ V , and L0

a = 1 for each a ∈ A. Concerning Pσ≥1, we fix α = 1 and ∆ = 1.
Figure 1 shows different solutions (timetables) for the instance i0. It is easy

to see that timetable πCPM (computed by CPM) is feasible for (P2). Conversely,
any delay on the first activity implies that all the subsequent three events must
be delayed. Hence, since ∆ = 1, then πCPM is not in FPσ=1

(i0).
A solution belonging to FPσ=1

(i0) is π. In fact, each possible delay on the
three activities, in order, is recovered by the three disposition timetables x, x′,
and x′′, respectively. Note that these timetables differ from π by at most ∆ = 1
events. On the other hand, π is not in FPσ≥1

(i0). This fact can be observed by
assuming that two delays, both of α time, occur on the first two activities. The
best disposition timetable that recovers these delays starting from π is x′′′, but
d(π, x′′′) = 3 > ∆.

0

1

2

3

4

5

πCPM π x′′′x′′x′x

d(π, x) = 1

d(π, x′′) = 1
d(π, x′′′) = 3

d(π, x′) = 0

Fig. 1. A graphical representation of different timetables described in Example 1. Bul-
lets represent events and arrows represent activities. Time assigned to each event cor-
responds to the integer associated to the horizontal line on which the event lies to. The
dotted part of arrows represents slack times.

12 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel

The following lemma implies that FPσ≥1
(i0) = FPσ=1

(i0) for ∆ = 0.

Lemma 5. Let Pσ=1 and Pσ≥1 defined with ∆ = 0. If Arob is a robust algorithm
for Pσ=1, then Arob is robust for Pσ≥1.

Proof. Let Arob be a robust algorithm for Pσ=1, and let π = Arob(i
0). We first

show that π assigns a slack time of at least α time to each activity. By con-
tradiction, let us assume that there exists an activity a = (u, v) ∈ A such that
πv − πu − La < α. Now, if a modification i1 ∈ M(i0) is such that L1

a = La + α,
namely a delay of α time occurs on a, then πv − πu < L1

a. This means that π is
not feasible for i1, a contradiction for ∆ = 0.

Since π assigns a slack of at least α time to each activity, it follows that Arob

is a robust algorithm for Pσ≥1. ⊓⊔

4.1 The complexity of computing the price of robustness

We show that the problem of computing the FPσ=1
-optimal solution is NP-hard

for (P2) (and hence also for (P)). This implies that computing the FPσ≥1
-optimal

solution is NP-hard.
To capture the concept of events affected by a delay, that is, those events

that must be postponed as a consequence of a given delay, we give the following
definition.

Definition 9. Given a DAG G = (V, A), a function s : A → R≥0, and a
number α ∈ R≥0, a vertex y is α-influenced by (u, v) ∈ A (equivalently (u, v)
α-influences y) if there exists a path p = (u ≡ u0, v ≡ u1, . . . , uk ≡ y) in G such

that
∑k

i=1 s(ui−1,ui) < α.

Remark 1. If x is α-influenced by a according to a path p, then all the vertices
belonging to p but the source are α-influenced by a.

In the above definition, function s represents slack times associated to activ-
ities able to (partially) absorb a delay. Note that every robust algorithm Arob

must provide a timetable π such that each arc cannot influence more than ∆ ver-
tices, otherwise there exists no Arec algorithm. In order to show the NP-hardness
of computing the FPσ=1

-optimal solution, we introduce a corresponding decision
problem called MRS (Minimum Robust Solution) that uses the concept of α-
influence.

MRS Problem

given: DAG G = (A, V), a function L : A → R>0, a function w : V → R≥0,
and three numbers α ∈ R>0, ∆ ∈ N, K ∈ N

problem: Find a timetable π : V → R≥0 such that each arc α-influences at
most ∆ vertices, according to the function s : A → R defined as
sa=(i,j) = πj − πi − La, and such that

∑

u∈V wuπu ≤ K.

Theorem 1. MRS is NP-complete for any fixed ∆ ≥ 3.

Dynamic Algorithms for Recoverable Robustness Problems 13

Proof. Omitted. ⊓⊔

Corollary 1. The problem of computing Prob(Pσ≥1) with number of events as
limitation is NP-hard.

4.2 Robust algorithms for σ = 1 on an arbitrary DAG.

We use the idea described in Section 3.1 (page 10) and add a slack to the minimal
durations of all activities or multiply them with some number >1. To this end,
let i = (G, L, w), α ∈ R≥0 and γ ∈ R>0, we denote iα = (G, L + α, w) and
iγ = (G, γL, w). We use the critical path method to define robust solutions for
Pσ=1 and Pσ≥1. In particular, we use the algorithms Alg+

α and Alg∗γ defined as

– Alg+
α (i) = CPM(iα);

– Alg
∗
γ(i) = CPM(iγ).

Let Lmin be the minimum value assigned by the function L with respect to all
the possible instances of Pσ≥1. In the following, let α be as in the definition of
the modification function M of Pσ≥1 and γ = (1 + α

Lmin
). We use α and γ to

get concrete instances of Alg+
α and Alg∗γ . According to the proof of Lemma 5, if

Pσ=1 is defined with ∆ = 0, then every robust algorithm for Pσ=1 must provide
solutions that assign a slack time of at least α to each activity. Then, it follows
that Alg+

α is a robust algorithm for Pσ=1. To show that also Alg∗γ is a robust
algorithm for Pσ=1, it is sufficient to observe that for each activity a ∈ A,

γLa = (1 +
α

Lmin

)La = La + α
La

Lmin

≥ La + α.

The following lemma shows the price of robustness of Alg∗γ .

Lemma 6. Let Pσ=1 be defined with ∆ = 0. Then, Prob(Pσ=1, Alg∗γ) = 1 +
α/Lmin.

Proof. By definition,

Prob(Pσ=1, Alg∗γ) = max
i∈I

{
f(Alg∗γ(i))

min{f(x) : x ∈ F (i)}

}

.

Let i = (G, L, w) be an instance of Pσ=1. Denoting by πγ the solution provided
by Alg∗γ(i), and by π the solution provided by CPM(i), then

Prob(Pσ=1, Alg∗γ) = max
i=(G,L,w)∈I

∑

u∈V wuπγ
u

∑

u∈V wuπu

.

Now we show that for each v ∈ V , πγ
v = γπv. By contradiction, let v ∈ V be an

event such that πγ
v 6= γπv and πγ

v is minimum. Clearly, v must be different from
v1 and hence there exists an activity a = (u, v) ∈ A such that πγ

v = πγ
u +γLa. As

14 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel

πγ
v is minimum and πγ

u < πγ
v , then πγ

u = γπu. It follows πγ
v = γπu + γLa = γπv,

a contradiction. Hence,

Prob(Pσ=1, Alg∗γ) = max
i=(G,L,w)∈I

∑

u∈V wuπγ
u

∑

u∈V wuπu

= max
i=(G,L,w)∈I

∑

u∈V wuγπu
∑

u∈V wuπu

= γ.

⊓⊔

Lemma 7. For each instance i ∈ I, f(Alg+
α (i)) ≤ f(Alg∗γ(i)).

Proof. Let i = (G, L, w) ∈ I. Let us denote by πγ the solution provided by
Alg∗γ(i), by πα the solution provided by Alg+

α (i), and by π the solution provided
by CPM(i). To prove the statement, it is sufficient to show that

πα
u ≤ πγ

u, ∀ u ∈ V.

By contradiction, let us assume that there exists an event u such that πα
u >

πγ
u. In the proof of Lemma 6, it is shown that πγ

u = γπu. Then,

πα
u > πγ

u = γπu = (1 +
α

Lmin

)πu.

Since, by contradiction hypothesis πα
u > πγ

u, then u 6= v1. It follows that there
exists a path (v1, . . . , u) in G such that its length ℓ is greater than 0. By definition
of Alg+

α , then
πα

u = πu + αℓ.

In conclusion,

πα
u = πu + αℓ > (1 +

α

Lmin

)πu = πu + α
πu

Lmin

.

It follows that ℓLmin > πu, a contradiction. ⊓⊔

Lemmata 6 and 7 imply the following results.

Corollary 2. Let Pσ=1 be defined with ∆ = 0. Then, Prob(Pσ=1, Alg+
α) ≤ 1 +

α/Lmin.

4.3 Robust algorithms for σ = 1 on a linear graph.

In this section, we present an algorithm that computes an optimal robust
timetable for the problem (P2) for the case σ = 1 on a linear graph. The idea of
the algorithm is to add each slack “as late as possible”. Let V = {v1, . . . , v|V |}
be ordered such that A = {a1 = (v1, v2), . . . , a|A| = (v|V |−1, v|V |)}. Define sα by

sα
aj

:=

{

α if (∆ + 1)|j

0 else
(11)

for all arcs aj ∈ A. We then add sα
a to L0

a for each a ∈ A and calculate a solution
of (P2) by applying CPM. We denote this algorithm by Alg+

sα . The following
lemma states that a timetable π is robust if and only if the slack time of each
∆ + 1 consecutive arcs is large enough to let vanish the delay.

Dynamic Algorithms for Recoverable Robustness Problems 15

Lemma 8. If σ = 1 and ∆ ≤ |V | − 2, a timetable π for a linear graph G is
robust if and only if

∆∑

k=0

saj+k
≥ α for each j = 1, . . . , |A| − ∆. (12)

Theorem 2. Alg+
sα is an optimal robust algorithm for Pσ=1 based on the initial

problem (P2).

Proof. Omitted. ⊓⊔

Corollary 3. If G is a linear graph, there exists a linear time algorithm that
computes Pσ=1-optimal solutions.

Proof. Running algorithm Alg+
sα on a linear graph needs time O(|A|), checking

whether the output satisfies
∑

u∈V wuπu ≤ K needs time O(|V |). As Alg+
sα is

an optimal robust algorithm, it finds a feasible timetable if and only if (MRS)
is feasible. ⊓⊔

4.4 Robust algorithms for arbitrary σ on a linear graph.

We now present an algorithm for an arbitrary σ if G is a linear graph. It assigns
the same slack

s∗ = min

{

α,
σα

∆ + 1

}

(13)

to each arc. In the following, we will show that Alg+
s∗ is robust and that it is

optimal compared to all robust algorithms that add an equal slack s to all arcs.
We need the following two lemmata for the proof:

Lemma 9. If sa < α for all arcs a ∈ A, then the number of nodes affected
by a single delay of σα on arc aj = (vj , vj+1) is equal to the number of nodes
affected by σ single delays of α on the σ consecutive arcs aj+k = (vj+k, vj+k+1),
k = 0, . . . , σ − 1.

Proof. Let sa < α for all arcs a ∈ A. If, on the one hand, aj is delayed by
σα, then vj+1 has a delay of σα − saj

, vj+2 has a delay of σα − saj
− saj+1

and so on, and vj+σ has a delay of σα −
∑σ−1

k=0 saj+k
. If, on the other hand,

aj , . . . , aj+σ−1 are delayed by α, then vj+1 has a delay of α − saj
, vj+2 has a

delay of 2α − saj
− saj+1

and so on, and vj+σ has a delay of σα −
∑σ−1

k=0 saj+k
.

As sa < α for all arcs a ∈ A, all these delays are positive.

So in both cases, the nodes vj+1, . . . , vj+σ are affected, and as the delay of
vj+σ is the same in both cases, the total number of subsequent affected nodes is
the same, too. ⊓⊔

Lemma 10. If all arcs a ∈ A have the same slack sa = s, then the number of
nodes affected by σ delays of α on σ consecutive arcs is always greater than or
equal to the number of nodes affected by σ delays of α on σ non-consecutive arcs.

16 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel

Proof. Omitted. ⊓⊔

Now, we can prove that Alg+
s∗ is robust and that it is optimal for (P2):

Theorem 3. Let G be a linear graph. Assume that we add the same slack time
s to all arcs. Then Alg+

s is a robust algorithm for Pσ≥1 if and only if s ≥ s∗. If
s > s∗ and |V | > 1, then f(Alg+

s (i)) > f(Alg+
s∗(i)) if wu ≥ 0 for all nodes u ∈ V

and wu > 0 for at least one node u ∈ V .

Proof. Omitted. ⊓⊔

Theorem 4. Let s∗ be defined as in Eq. (13), and let G be a linear graph. If,
for each (G, w, L0) ∈ I, wa > 0 for at least one a ∈ A, then Prob(Pσ≥1, Alg+

s∗) ≤
1 + s∗/Lmin.

Proof. Omitted. ⊓⊔

5 Dynamic recovery with sum of delays as limitation

In this section we consider the second case of limitation: We have to find a
timetable π such that each recovered solution xk must not deviate too much
from the initial timetable π, i.e. xk must satisfy

d(xk, π) :=
∥
∥xk − π

∥
∥

1
≤ ∆ (14)

for some given ∆ ∈ N and for all k = 1, 2, . . . , σ. Throughout this section, we
consider the problem Pσ≥1 based on the initial planning problem (P1) which
implies that all weights wa are nonnegative.

Again, our strategy to make a timetable robust against delays is to add an
amount s of slack time to all the arcs, i.e. to use the algorithm Alg+

s .
We first investigate how much we loose in the optimal solution if we use Alg+

s

instead of an algorithm that computes the optimal (but not robust) solution of
(P1), i.e. without the additional slack s. Again, let Lmin be the minimum value
assigned by the function L with respect to all the possible instances of Pσ≥1.

Lemma 11. Let G be a tree and let wa > 0 for at least one a ∈ A. If Alg+
s is

robust, its price of robustness is Prob(Pσ≥1, Alg+
s) ≤ 1 + s/Lmin.

Proof.

Prob(Pσ≥1, Alg+
s) = max

i=(G,w,L0)∈I

∑

a=(u,v)∈A wa(L0
a + s)

∑

a=(u,v)∈A waL0
a

= 1 + s · max
i=(G,w,L0)∈I

∑

a=(u,v)∈A wa
∑

a=(u,v)∈A waL0
a

≤ 1 + s · max
i=(G,w,L0)∈I

∑

a=(u,v)∈A wa
∑

a=(u,v)∈A waLmin

≤ 1 + s/Lmin.

⊓⊔

Dynamic Algorithms for Recoverable Robustness Problems 17

Now we discuss how much slack time s is needed to guarantee robustness
of Alg+

s . Our first result deals with strict robustness, i.e. if ∆ = 0. In this case
we have to make sure that any delay can be compensated by the slack time on
the corresponding edge. Since Lk

a never differs from L0
a by more than α in any

scenario, it suffices to add an additional slack of α to each L0
a for all a ∈ A. Then

the resulting disposition timetable in each step equals the original timetable π,
i.e. a recovery step is in fact not necessary.

Lemma 12. The algorithm Alg+
α is strictly robust (i.e. it is robust for the case

∆ = 0) for any graph G. Furthermore, if G is a tree, its price of robustness is
Prob(Pσ≥1, Alg+

α) ≤ 1 + α/Lmin.

Proof. The robustness of Alg
+
α is clear. The price of robustness follows from

Lemma 11. ⊓⊔

Now we turn our attention to the case ∆ > 0, but first only look at one
recovery step (i.e. σ = 1). If ∆ ≤ α

2 , a robust solution can be found as follows:

Lemma 13. Let σ = 1 and ∆ ≤ α
2 . Then Alg

+
α−∆ is robust. Furthermore, if G

is a tree, its price of robustness is Prob(Pσ≥1, Alg+
α−∆) ≤ 1 + (α − ∆)/Lmin.

Proof. Let π be a solution computed by Alg+
α−∆ and let x be the solution after the

recovery phase. Assume that arc (u, v) ∈ A is delayed by α. Let wj , j = 1, . . . , l,
be the set of nodes directly connected to v by an arc (v, wj) ∈ A, see Figure 2.
We calculate the delays as

...u v

w1

wl

Fig. 2. The DAG for the proof of Lemma 13.

xv − πv = α − (α − ∆) = ∆

xwj
− πwj

≤ [∆ − (α − ∆)]+ = 0 for all j = 1, . . . , l,

the latter using ∆ ≤ α
2 . Hence,

∑

u∈V

(xu − πu) = ∆.

The price of robustness follows from Lemma 11. ⊓⊔

18 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel

Next, we simplify the network and look at a linear graph. However, this
simplification allows to drop the restrictions on ∆ and σ from the previous
lemmata.

Theorem 5. Let G be a linear graph. Then Alg+
s is robust for Pσ≥1 if and only

if

s ≥ s∗ :=
2σα

(⌈
2∆
σα

⌉
+ σ

)
− σα(σ + 1) − 2∆

(⌈
2∆
σα

⌉
+ σ

) (⌈
2∆
σα

⌉
+ σ − 1

) .

Proof. Omitted. ⊓⊔

Corollary 4. It holds that s∗ ≥ σ2α2

2∆+σ2α
where equality holds if s∆

σα
is integer.

Proof. One can compute that s∗ ≥ σ2α2

2∆+σ2α
if and only if

⌈
2∆

σα

⌉

σα

︸ ︷︷ ︸

:=A

(

4∆ + σα − σα

⌈
2∆

σα

⌉)

︸ ︷︷ ︸

:=B

≥ 2∆
︸︷︷︸

:=C

(2∆ + σα)
︸ ︷︷ ︸

:=D

.

For the latter expression note that A, B, C, D ≥ 0 and that A + B = C + D and
that A − B ≤ D − C. Hence AB ≥ CD and the lower bound is established.

Plugging in s∗ in the case that s∆
σα

is integer shows (after some calculations)
that equality holds. ⊓⊔

The price of robustness of algorithm Alg+
s∗ can finally be written down.

Corollary 5. Let G be a linear graph. Then Prob(Pσ≥1, Alg+
s∗) = 1 + s∗ where

s∗ is the minimal slack time of Theorem 5.

Note that for a concrete scenario, a slack smaller than s∗ might also give a
robust timetable. This might happen for example if no two source-delayed arcs
follow each other or if the size of the network is limited such that at least one
node u ∈ V with a delay of (xu − πu) > s∗ has no outgoing arc. However, we
are not interested in one special scenario, but in all possible scenarios from the
set of admissible scenarios.

We also remark that this is a discussion of Prob(P , Alg+
s) only. The question

if there exists an approach which does better in the worst case is still open. But
note that it need not be optimal to add the same slack s to all arcs when the
weights wa are different from each other. This can be seen in the following

Example 2. Consider G = (V, A) with V = {v1, v2, v3, v4}, A =
{(v1, v2), (v2, v3), (v3, v4)}, weights w = (1, 100, 1) and lower bounds L0 =
(1, 1, 1), see Fig. 3. Let α = 4, ∆ = 5 and σ = 1. If we add the same slack
to all arcs, we need at least a slack of 2. With s = (2, 2, 2), we have

∑

a=(u,v)∈A

wa(πv − πu) =
∑

a=(u,v)∈A

wa(L0
a + s) = 306

Dynamic Algorithms for Recoverable Robustness Problems 19

(if we schedule each node as early as possible, i.e. πj := πj−1 + Lj−1 + sj−1,
j = 2, . . . , 4). If we allow different slacks on the arcs and set s = (2, 0, 3), we get
a robust timetable with

∑

a=(u,v)∈A

wa(πv − πu) = 107.

v1
wa = 1

La = 1
v2

wa = 100

La = 1
v3

wa = 1

La = 1
v4

Fig. 3. The DAG for example 2.

0 10 20 30 40 50 60
0

5

10

15

20

upper bound on PoR (Section 5)
upper bound on PoR (Section 4.4)

Fig. 4. The price of robustness, depending on the actual restrictions on the recovery
algorithm, for α = 20 and ∆ = 1000 as a function of σ.

6 Conclusions

In this paper, we showed how the concept of recoverable robustness from [15] can
be extended to the concept of dynamic recoverable robustness. We showed how
this concept can be applied to the delay management problem and suggested
different concrete restrictions of the recovery algorithm.

Depending on the concrete restrictions on the recovery algorithms, the price
of robustness is very different. In Figure 4, we give the price of robustness for a
linear graph if we either restrict the number of nodes being affected by a delay
or if we restrict the allowed deviation from the original timetable.

References

1. H. G. Bayer and B. Sendhoff. Robust Optimization - A Comprehensive Survey.
Computer Methods in Applied Mechanics and Engineering, 196(33-34):3190–3218,
2007.

20 S. Cicerone, G. Di Stefano, M. Schachtebeck, and A. Schöbel

2. A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Mathematical Programming: Special
Issue on Robust Optimization, volume 107. Springer, Berlin, 2006.

3. D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–
53, 2004.

4. J.R. Birge and F.V. Louveaux. Introduction to Stochastic Programming. Springer
Verlag, New York, 1997.

5. A. Borodin and R. El-Yaniv, editors. Online Computation and Competitive Anal-
ysis. Cambridge University Press, 1998.

6. S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and A. Navarra. Robust
Algorithms and Price of Robustness in Shunting Problems. In Proc. of the 7th
Workshop on Algorithmic Approaches for Transportation Modeling, Optimization,
and Systems (ATMOS07), 2007.

7. M. Fischetti and M. Monaci. Robust optimization through branch-and-price. In
Proceedings of the 37th Annual Conference of the Italian Operations Research So-
ciety (AIRO), 2006.

8. M. Fischetti and M. Monaci. Light robustness. Research Paper ARRIVAL-TR-
0066, ARRIVAL project, 2008.

9. M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Widmayer. Railway delay man-
agement: Exploring its algorithmic complexity. In Algorithm Theory - Proceedings
SWAT 2004, volume 3111 of LNCS, pages 199–211. Springer, 2004.

10. M. Gatto, R. Jacob, L. Peeters, and A. Schöbel. The Computational Complexity
of Delay Management. In Proc. of the 31st International Workshop on Graph-
Theoretic Concepts in Computer Science (WG), volume 3787 of Lecture Notes in
Computer Science, 2005.

11. M. Gatto, R. Jacob, L. Peeters, and P. Widmayer. Online Delay Management on
a Single Train Line. In Proc. of the Algorithmic Methods for Railway Optimization
(ATMOS04), volume 4359 of Lecture Notes in Computer Science, 2007.

12. A. Ginkel and A. Schöbel. The bicriteria delay management problem. Transporta-
tion Science, 41(4):527–538, 2007.

13. L. Giovanni, G. Heilporn, and M. Labbé. Optimization models for the delay man-
agement problem in public transportation. European Journal of Operational Re-
search, 2006. to appear.

14. P. Kall and S.W. Wallace. Stochastic Programming. Wiley, Chichester, 1994.
15. C. Liebchen, M. Lüebbecke, R. H. Möhring, and S. Stiller. Recoverable robustness.

Technical Report ARRIVAL-TR-0066, ARRIVAL Project, 2007.
16. A. Ruszczynski and A. Shapiro, editors. Stochastic Programming, Handbooks in

Operations Research and Management Science Volume 10. North-Holland, 2003.
17. A. Schöbel. A model for the delay management problem based on mixed integer

programming. Electronic Notes in Theoretical Computer Science, 50(1), 2001.
18. A. Schöbel. Book Chapter: Integer programming approaches for solving the delay

management problem. volume 4359 of Lecture Notes in Computer Science, pages
145–170, 2007.

