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Abstract. Delay management is an important issue in the daily operations of any railway
company. The task is to update the planned timetable to a disposition timetable in such a
way that the inconvenience for the passengers is as small as possible. The two main decisions
that have to be made in this respect are the wait-depart decisions to decide which connections
should be maintained in case of delays and the priority decisions that determine the order
in which trains are allowed to pass a specific piece of track. They later are necessary in the
capacitated case due to the limited capacity of the track system and are crucial to ensure
that the headways between different trains are respected and that single-track traffic is
routed correctly. While the wait-depart decisions have been intensively studied in literature
(e.g. [Sch06,Gat07]), the priority decisions in the capacitated case have been neglected so
far in delay management optimization models.

In the current paper, we add the priority decisions to the integer programming formulation
of the delay management problem and are hence able to deal with the capacitated case.
Unfortunately, these constraints are disjunctive constraints that make the resulting event-
activity network more dense and destroy the property that it does not contain any directed
cycle. Nevertheless, we are able to derive reduction techniques for the network which en-
able us to extend the formulation of the never-meet property from the uncapacitated delay
management problem to the capacitated case. We then use our results to derive exact and
heuristic solution procedures for solving the delay management problem.

The results of the algorithms are evaluated both from a theoretical and a numerical point of
view. The latter has been done within a case study using the railway network in the region
of Harz, Germany.

1 Introduction

The delay management problem deals with (small) source delays of a railway system as they occur
in the daily operational business of any public transportation company. In case of such delays, the
scheduled timetable is not feasible any more and has to be updated to a disposition timetable. The
main question which has been treated in the literature so far is to decide which trains should wait
for delayed feeder trains and which trains better depart on time (wait-depart decisions).

A first integer programming formulation for the uncapacitated delay management problem has
been given in [Sch01] and has been further developed in [GHL08,Sch07b], see also [Sch06] for
an overview about various models. The complexity of the problem has been investigated in
[GJPS05,GGJ+04] where it turns out that the problem is NP-hard even in very special cases.
The online version of the problem has been studied in [GJPW07,Gat07]. In [BHLS07], it was
shown that the online version of the uncapacitated delay management problem is PSPACE-hard.
Further publications about delay management include a model in the context of max-plus-algebra
([RdVM98,Gov98]), a formulation as discrete time-cost tradeoff problem ([GS07]) and simulation
approaches ([SM99,SMBG01])
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However, these studies neglect the limited capacity of the track system while dealing with delay
management. Adding these constraints, the problem becomes significantly harder to solve. Some
first ideas on how to model these constraints in the context of delay management have been
presented in [Sch07a]. Capacity constraints are also taken into account in a real-world application
studied within the project DisKon supported by Deutsche Bahn (see [BGJ+05]). Here, the following
setting to apply delay management in practice is suggested: In a first step, a macroscopic approach
deals with the wait-depart decisions, while a second step ensures feasibility within a microscopic
model. This is done by postponing departures until the track to be used is available. It may however
yield rather bad solutions.

In the following, we will for the first time analyze the integer programming formulation of the
delay management problem for the capacitated case.

The remainder of the paper is structured as follows. In Section 2 we present an integrated integer
programming model including the priority decisions and hence respecting the limited capacity of
the track system. We analyze the formulation, present reduction techniques and extend the never-
meet property in Section 3. We then discuss in which cases the problem can be solved exactly
using the software Xpress. Four heuristic approaches are described and analyzed in Section 4. A
numerical evaluation of these approaches also is presented in Section 4. We finally conclude the
paper mentioning ideas for further research.

2 Integer Programming Formulation

The uncapacitated delay management problem is defined as follows: Given the public transporta-
tion network PTN = (V,E) (consisting of the set V of stations and the set E of direct links
between stations), the set F of trains, a set of connections and some source delays, decide which
connections should be maintained and which connections should be dropped such that the aver-
age delay of a passenger at his final destination is minimal. This problem was first introduced in
[Sch01].

In this paper, we take the limited capacity of the tracks into account to obtain the delay man-
agement problem with capacity constraints. This means we also have to decide which train should
drive first if two or more trains use the same piece of infrastructure (for example on single-track
lines or when two consecutive trains use the same track in the same direction). Note that it can
be better to change the originally scheduled order of the trains to reduce the delay. A first model
of this problem has been introduced in [Sch07a]. Here we present and analyze its formulation as
integer program.

To this end, we first introduce the corresponding event-activity network which is a directed graph
N = (E ,A) (see [Nac98,Sch07b]). E consists of arrival and departure events Earr and Edep, respec-
tively. A timetable π ∈ N|E| assigns a time πi to each event i ∈ E . If a delay occurs, we need to
update the given timetable π to a so called disposition timetable x ∈ N|E|. To present the con-
straints that have to be satisfied by a (disposition) timetable, we need the following four different
types of activities, A = Adrive ∪ Await ∪ Achange ∪ Ahead:

– driving activities Adrive ⊂ Edep×Earr modeling the driving of a train between two consecutive
stations (including turn-around edges),

– waiting activities Await ⊂ Earr × Edep,
– changing activities Achange ⊂ Earr × Edep which are used to model transfers from one train to

another one, and
– headway activities Ahead ⊂ Edep × Edep which model the limited capacity of the track system.

If two events i, j ∈ E are connected by an activity (i, j) ∈ A, then event i has to be performed
before event j can take place. In particular, each activity a = (i, j) ∈ A has assigned a duration. If
a is a driving, waiting, or changing activity, this duration is denoted by La = Lij , and we require

xj − xi ≥ Lij .
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The headway activities, on the other hand, appear in pairs: if (i, j) ∈ Ahead, then (j, i) ∈ Ahead,
too. This is used to model the disjunctive constraints xj−xi ≥ Lij or xi−xj ≥ Lji. The goal is to
choose exactly one activity of each such pair and to respect the resulting constraint. This means
that a priority decision has to be made.

In order to present the integer programming formulation, we need some more parameters:

First, we allow two types of source delays: The first is a delay di at an event i ∈ E (e.g. a driver
coming too late to his duty), which refers to a fixed point of time, such that xi ≥ πi+di is required.
The second is a delay da = dij which increases the duration of an activity a = (i, j) ∈ A, e.g. an
increase of traveling time between two stations due to construction work. Such a delay da has to
be added to the duration La of activity a. If an activity has no source delay (this is, for example,
the case for all headway activities as we do not allow activity delays on headway activities), we
assume da = 0 to simplify the notation.

Moreover, let wi be the number of passengers getting off at event i ∈ E and wa be the number of
passengers who want to use a connection a ∈ Achange. Throughout this paper, we assume wa > 0
for all a ∈ Achange (otherwise, nobody uses the connection, so it can be removed from the network).
We further assume that all lines have a common period T (this assumption can easily be relaxed
by introducing periods Ta for all changing activities a ∈ Achange).

To model the wait-depart decisions, we introduce binary variables

za =

{
0 if changing activity a is maintained
1 otherwise

gij =

{
0 if event i takes place before event j

1 otherwise

for all changing activities a ∈ Achange and for all headway activities (i, j) ∈ Ahead. The integer
programming formulation reads as follows:

(DM) min f(x, z, g) =
∑

i∈Earr

wi(xi − πi) +
∑

a∈Achange

zawaT (1)

such that

xi ≥ πi + di ∀i ∈ E (2)
xj − xi ≥ La + da ∀a = (i, j) ∈ Anice := Await ∪ Adrive (3)

Mza + xj − xi ≥ La ∀a = (i, j) ∈ Achange (4)
Mgij + xj − xi ≥ Lij ∀(i, j) ∈ Ahead (5)

xi ∈ N ∀i ∈ E (6)
za ∈ {0, 1} ∀a ∈ Achange (7)
gij ∈ {0, 1} ∀(i, j) ∈ Ahead (8)

gij + gji = 1 ∀(i, j) ∈ Ahead (9)

where M is a constant which is “large enough”. We will show in Corollary 2 that M can indeed
be chosen finitely beforehand. But let us first explain the meaning of the objective function and
of the constraints:

In the objective function, we minimize the sum of all delays passengers have when starting their
trips or at their final destinations plus the sum of all missed connections. It approximates the sum
of all delays over all customers. Furthermore, note that any optimal solution of this program is
a Pareto solution with respect to the two objective functions minimize the delay over all vehicles
and minimize the number of missed connections.

Constraints (3) make sure that the delay is passed on correctly along waiting and driving activities.
(4) and (5) do the same for changing activities that are maintained and for the headway activi-
ties which should be respected. Constraint (9) ensures that exactly one of each pair of headway
constraints is respected.
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Relaxing all constraints modeling the limited capacity of the tracks yields the uncapacitated delay
management problem:

(UDM) min f(x, z) =
∑

i∈Earr

wi(xi − πi) +
∑

a∈Achange

zawaT

such that (2), (3), (4), (6), (7) are satisfied.

Let us denote the objective value of the optimal solution of (DM) by FDM and let FUDM be the
objective value of the corresponding instance of (UDM). Since (UDM) is a relaxation of (DM), we
obtain FUDM ≤ FDM.

Later on, we will fix the priority variables heuristically and treat the resulting headway constraints
as the constraints in (3). We hence define for some set Afix ⊆ Ahead the problem

(UDM(Afix)) min f(x, z) =
∑

i∈Earr

wi(xi − πi) +
∑

a∈Achange

zawaT

such that
xj − xi ≥ La + da ∀a = (i, j) ∈ Afix (10)

and such that (2), (3), (4), (6), (7) are satisfied.

Note that UDM(Afix) yields a feasible solution of (DM) if Afix = {(i, j) ∈ Ahead : gij = 0} for
some g ∈ {0, 1}|Ahead| which satisfies (9) (and provided that UDM(Afix) is feasible). In this case
we obtain FUDM ≤ FDM ≤ fUDM(Afix).

We may also fix the variables za and gij and obtain Afix := {a ∈ Achange : za = 0 } ∪ {(i, j) ∈
Ahead : gij = 0 }. Determining the remaining variables xi in (DM) then reduces to a simple project
planning problem:

(PP(Afix)) min f(x) =
∑

i∈Earr

wi(xi − πi)

such that (2), (3), (10), and (6) are satisfied.

The version of (DM) in which Achange = ∅ has been shown to be NP-complete in [CS07]. This
yields NP-completeness of (DM). However, (PP(Afix)) can be solved in polynomial time, e.g. by
applying the forward phase of the critical path method (CPM) of project planning (see [Elm77])
as follows: We first sort E =

{
i1, . . . , i|E|

}
topologically and obtain an order ≺. Then we set

x̃i1 := πi1 + di1 (11)

for all k ∈ {i2, . . . , i|E|} : x̃k := max
{

πk + dk,

max
a=(i,k)∈Afix∪Anice

x̃i + La + da

}
. (12)

We now come back to the integer programming formulation of (DM) and show that M is finite
and can be chosen beforehand for any instance of (DM). To this end, we first give an upper bound
on the maximum time of each single event in an optimal disposition timetable. We denote the
slack time of an activity a = (i, j) as

sa = πj − πi − La,

i.e. sa gives the buffer time included in the scheduled duration of the activity.

Theorem 1. Let an instance of (DM) be given and let

D := max
i∈E

di +
∑

a∈Anice

(da − sa)+ +
∑

(i,j)∈Ahead:πi>πj

πi − πj + Lij . (13)

Then there exists an optimal solution (x, z, g) of (DM) such that xk ≤ πk + D for all k ∈ E.
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Proof. We show the following stronger statement: For any feasible solution (x̄, z, g) of (DM),
there exists a feasible solution (x̃, z, g) with x̃k ≤ x̄k (hence f(x̃, z, g) ≤ f(x̄, z, g)) that fulfills
x̃k ≤ πk + D for each k ∈ E .

Given (x̄, z, g), letAfix := {a ∈ Achange : za = 0}∪{(i, j) ∈ Ahead : gij = 0} . As (x̄, z, g) is a feasible
solution, N ′ := (E ,Anice ∪Afix) does not contain any directed circle, so we sort E =

{
i1, . . . , i|E|

}
topologically. We now solve TT(Afix) optimally and denote the solution obtained by x̃ (see (11)
and (12)). Then (x̃, z, g) is a feasible timetable satisfying x̃k ≤ x̄k.

Claim: For each k ∈ E we have x̃k ≤ πk + Uk where

Uk = max
i∈E:
i�k

di +
∑

a=(i,j)∈Anice:
j�k

(da − sa)+ +
∑

(i,j)∈Ahead:
gij=0,πi>πj,j�k

πi − πj + Lij . (14)

We prove the claim by induction. For the first event, we have x̃1 = π1+d1 ≤ π1+U1. Now consider
x̃k. We distinguish the following three cases depending on which term in the definition (12) of x̃
is maximal:

– x̃k = πk + dk. Since dk ≤ Uk, the claim is true.
– x̃k = x̃i + La + da for (i, k) ∈ Anice ∪ Afix. We assume that (i, k) ∈ Anice ∪ Achange or that

(i, k) ∈ Ahead with πi < πk. Then

x̃k = x̃i + La + da ≤ πi + Ui + La + da

≤ πi + La︸ ︷︷ ︸
≤πk

+ max
i′∈E:
i′�i

di′ + da +
∑

a′=(i′,j)∈Anice:
j�i

(da′ − sa′)+ +
∑

(i′,j)∈Ahead
g

i′j=0,π
i′>πj,j�i

πi′ − πj + Li′j

≤ πk + Uk, hence the claim is true.

– x̃k = x̃i +La + da for (i, k) ∈ Anice ∪Afix where (i, k) ∈ Ahead with πi > πk and gik = 0. Then

x̃k = x̃i + Lik ≤ πi + Ui + Lik

≤ max
i′∈E:
i′�i

di′ +
∑

a′=(i′,j)∈Anice:
j�i

(da′ − sa′)+

+πk + (πi − πk + Lik) +
∑

(i′,j)∈Ahead
g

i′j=0,π
i′>πj,j�i

πi′ − πj + Li′jd ≤ πk + Uk,

and again the claim follows.
ut

Using this result, we can give an upper bound on the minimal size needed for M :

Corollary 2. M ≥ D is “large enough”.

Proof. We show that each timetable that satisfies (2)-(3), (6)-(9), (4) for all a ∈ Achange with
za = 0 and (5) for all (i, j) ∈ Ahead with gij = 0 also satisfies (4) for all a ∈ Achange with za = 1
and (5) for all (i, j) ∈ Ahead with gij = 1 if M ≥ D.

For each changing activity a = (i, j) ∈ Achange, πj − πi ≥ La, hence (using Theorem 1)

M ≥ D ≥ xi − πi ≥ xi − πj + La

(2)

≥ xi − xj + La,

so (4) indeed is satisfied for all a ∈ Achange.

Now, let (i, j) ∈ Ahead with gij = 0. We have to show that M + xi − xj ≥ Lji
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Case 1: πi < πj. We use the proof of Theorem 1: For each j, each term that is added to Uj

also is added to D. As πi < πj and gij = 0, the term πj − πi + Lji is added to D, but not to Uj ,
hence D − Uj ≥ πj − πi + Lji and we obtain

xj ≤ πj + Uj ≤ πj + D − (πj − πi + Lji) = D + πi − Lji

(2)

≤ D + xi − Lji.

Case 2: πi > πj. As π is a feasible timetable, πi > πj implies πi − πj ≥ Lji . Using Theorem 1,

M ≥ D ≥ xj − πj ≥ xj − πi + Lji

(2)

≥ xj − xi + Lji.

Both cases show that (5) is indeed satisfied for all (i, j) ∈ Ahead. ut

3 Reducing the Complexity of the Integer Program

Headway constraints make the delay management problem hard to solve; due to headway con-
straints, a delay from a subsequent train might be carried over even to a train which has been
scheduled earlier if the order of both trains is switched. At a first glance, it seems that all of the
headway activities can carry over a delay to a previous train in an optimal solution. However,
there indeed are some headway activities that can be neglected beforehand as we will show in this
section. This reduction helps to solve (DM) more efficiently. We will introduce an algorithm to
reduce the network in time O(|A|) before solving the remaining NP-hard problem.

Definition 3. Let A′ ⊆ A. For i ∈ E, we define the successors of i in (E ,A′) and the predecessors
of i in (E ,A) as

suc(i,A′) := {j ∈ E \ {i} : there exists a directed path from i to j in (E ,A′)} ,

pre(i) := {j ∈ E \ {i} : there exists a directed path from j to i in (E ,A)} .

Using this notation, we introduce the following algorithm:

Algorithm mark:
Input: The event-activity network N = (E ,A) and source delays dj > 0 (da > 0) for some
events j ∈ E (and for some activities a = (i, j) ∈ Anice, respectively).
Step 1: Set Aπ := Anice ∪ Achange ∪ {(i, j) ∈ Ahead : πi < πj}.
Step 2: For each source delay dj > 0, j ∈ E (da > 0, a = (i, j) ∈ Anice): mark j and all
k ∈ suc(j,Aπ).

Note that we do not use all headway activities in the algorithm. The next theorem shows that
this is in fact correct. In its proof and throughout this paper, we use Aπ as defined in Step 1 of
algorithm mark.

Theorem 4. Let La > 0 ∀a ∈ Anice ∪ Achange, Lij > 0 ∀(i, j) ∈ Ahead and wi > 0 ∀i ∈ E. Let
(x, z, g) be an optimal solution of (DM). Then, the following holds:

i ∈ E is not marked by algorithm mark ⇒ xi = πi.

Proof. By contradiction. Assume ∃i ∈ E such that i does not get marked by algorithm mark and
xi > πi. Assume that i is an event with minimal x among all such events.

First, by the construction of algorithm mark, we have di = 0, and for each a = (k, i) ∈ Aπ, da = 0
and k isn’t marked as well (if i is not marked, also pre(i) is not marked). As k is not marked
and we assumed i to be the event with minimal x among all events j with xj > πj that are not
marked, we have xk = πk.

Now, we show that reducing xi to x̃i := πi < xi also yields a feasible solution for (DM):
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– As di = 0, x̃i = πi satisfies (2).
– For all incoming activities a = (k, i) ∈ Aπ we use xk = πk and da = 0 to derive x̃i − xk =

πi − πk ≥ La = La + da, hence (3)-(5) hold for each a = (k, i) ∈ Aπ.
– For all outgoing activities (i, k) ∈ A we obtain xk − x̃i > xk − xi ≥ La + da where the last

step holds since x is a feasible timetable. Consequently (3)-(5) hold for all a = (i, k) ∈ A.
– Now let (k, i) ∈ Ahead \ Aπ. If gki = 1, (5) is satisfied due to Corollary 2, so assume gki = 0.

We define g̃ki := 1 and g̃ik := 0; then

xk − x̃i = xk − πi ≥ πk − πi ≥ Lki

since (k, i) /∈ Aπ, i.e. πk > πi, so (5) holds for (i, k). Due to Corollary 2, (5) also holds for
(k, i).

So (x̃, z, g̃) is a feasible solution with strictly better objective value than (x, z, g) (as wi > 0), a
contradiction to the optimality of (x, z, g). ut

If we allow wi = 0, then the following modification of Theorem 4 holds:

Theorem 5. Let La > 0 ∀a ∈ Anice ∪ Achange, Lij > 0 ∀(i, j) ∈ Ahead and wi ≥ 0 ∀i ∈ E. Then
there exists an optimal solution (x, z, g) of (DM) with:

i ∈ E is not marked by algorithm mark ⇒ xi = πi.

Due to these results, we can use algorithm mark to reduce the size of the MIP formulation:

– Run algorithm mark on an instance of (DM).
– Delete events that are not marked (unless they have a source-delayed outgoing activity) and

activities whose start or end event is not marked (unless they are source-delayed).
– Solve (DM) for this reduced instance.
– Set xi = πi for all events i ∈ E that have been deleted in the second step.

Our numerical results show that reducing the network by algorithm mark as a preprocessing step
significantly decreases the time needed to solve the IP, see page 8.

The results from Theorem 4 and Theorem 5 also can be used to tighten the upper bound on the
minimal size needed for M from Corollary 2: It is sufficient to use the reduced network from above
to calculate M .

There is another advantage of our results: Using algorithm mark, we can extend the never-meet
property (see [Sch06,Sch07b]) to capacitated delay management problems, and show that – if this
property holds for a given instance of (DM) – our objective (1) coincides with the sum of all delays
that each passenger has at his or her final destination. The definition of this property is given next.

Definition 6. An instance of (DM) has the never-meet property if

– for each source delay dj > 0 with j ∈ E (or da > 0 with a = (i, j) ∈ A), suc(j,Aπ) is an
out-tree, and if

– for each pair of different source delays dj > 0 (da > 0, a = (i, j)) and dj̃ > 0 (dã > 0,
ã = (̃i, j̃)), we have suc(j,Aπ) ∩ suc(j̃,Aπ) = ∅.

This means that the never-meet property is satisfied if no event can be influenced (directly or
indirectly) by more than one source delay. Note that one could define the never-meet property in
any network (e.g. also in N ) but due to the circles of the headway constraints it would never be
satisfied. Hence it is crucial to use the results of Theorem 4.

Lemma 7. Given an instance of (DM) that satisfies the never-meet property and an optimal
solution (x, z, g), assume that za = 1 for some a = (i, j) ∈ Achange. Then, for each k ∈ suc(j,Aπ)∪
{j}, k is not marked by algorithm mark, applied to (E ,A \ {a}).
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Proof. By contradiction. Let a = (i, j) ∈ Achange and za = 1 in an optimal solution (x, z, g).
Assume that there exists k ∈ suc(j,Aπ) ∪ {j} that is marked by algorithm mark, applied to
(E ,A \ {a}). Then, by construction of algorithm mark, there exists a directed path p1 from j̃1 to
k in (E ,Aπ \ {a}) with either dj̃1

> 0 or dã1 > 0 for some ã1 = (̃i1, j̃1).

As za = 1 and wa > 0, there has to be a reason why a is not maintained, namely because of a delay
of i. Hence, according to Theorem 4, i is marked by algorithm mark, so there exists a directed
path p2 from j̃2 to i in (E ,Aπ \ {a}) with either dj̃2

> 0 or dã2 > 0 for some ã2 = (̃i2, j̃2). As
k ∈ suc(j,Aπ) ∪ {j}, p2 can be extended to a path p3 from j̃2 to k in (E ,Aπ) that contains a.

This is a contradiction to the never-meet property: either j̃1 = j̃2, then suc(j̃1,Aπ) is not an
out-tree as we have two different paths p1 (not containing a) and p3 (containing a) from j̃1 to k,
or j̃1 6= j̃2, then suc(j̃1,Aπ) ∩ suc(j̃2,Aπ) ⊇ {k} 6= ∅. ut

Corollary 8. Given an instance of (DM) that satisfies the never-meet property and an optimal
solution (x, z, g), assume that za = 1 for some a = (i, j) ∈ Achange. Then, for each k ∈ suc(j,Aπ)∪
{j}, xk = πk.

Proof. If, in an optimal solution, za = 1 for some a ∈ Achange, this solution is also an optimal
solution for the same instance with event-activity network (E ,A \ {a}). From Lemma 7 we know
that k is not marked for all k ∈ suc(j,Aπ). Theorem 4 hence completes the proof. ut

Theorem 9. If the never-meet property holds, (DM) is equivalent to minimizing the sum of all
delays of all passengers at their final destinations.

Proof. The proof can be done analogously to the result in [Sch07b] since the ingredient needed is
provided in Corollary 8. ut

Numerical Results

To test the efficiency of our reduction, we used railway data from the Harz region in the center of
Germany (in form of a periodic timetable, including headway and turnover activities), originally
used in [LSS+07]. We consider all passenger railway lines within this region as well as 9 long-
distance lines. The dataset contains 598 stations, 92 trains (vehicles) and 30 lines, each line with
two directions. We take into account all events and all activities that take place in an 8-hours time
window. Details on how the periodic timetable is expanded to an aperiodic event-activity network
are described in [LSS+07]. See Figure 1 for a sketch of the part of the German railway network
which we consider.

The resulting event-activity network contains 21 269 events and 39 985 activities. We generated
1 000 different delay scenarios. In each delay scenario, 25 randomly chosen driving or waiting
activities have been delayed by a random delay between 60 and 1 200 seconds. In both cases,
(DM) was solved using Xpress-MP 2007B on an AMD Opteron 275 system with 4 GB RAM.

The results clearly show the benefit of a preprocessing step based on algorithm mark: In 13 of
1 000 test cases, the original problem could not be solved due to an “out of memory” error – in
all those cases, we got an optimal solution for the reduced problem. In average, the time needed
to solve the reduced problems was only 19.1% of the time needed to solve the original problems.
Especially, in 929 cases, the computation time was reduced to less than 50%, and in 332 cases
(nearly one third of all cases), it was even reduced to less than 10%.

4 Heuristics

Although the results from Theorem 4 and Theorem 5 can be used for introducing a preprocessing
step that speeds up the computation of an optimal solution, very large instances of (DM) cannot
be solved exactly in a reasonable amount of time. To be able to provide at least some solution
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Fig. 1. The part of the German railway network which is considered for our numerical results. (The Figure
is taken from [LSS+07].)

for these cases, we introduce heuristics that can solve even large instances by approximation. The
idea of our heuristics is to fix the order of trains (i.e. the variables gij) in advance and solve the
remaining uncapacitated delay management problem (UDM). Such a fixing can be done in many
ways; four of them will be discussed next. In the first approach we fix the order of the trains
according to the original timetable.

Algorithm First scheduled, first served (FSFS):

1. Set Afix := {(i, j) ∈ Ahead : πi ≤ πj}.
2. Compute the exact solution of (UDM(Afix)).

In the next heuristic, we first neglect all capacity constraints and solve the uncapacitated de-
lay management problem (UDM). We then fix the order of the trains according to the optimal
disposition timetable x of (UDM).

Algorithm First rescheduled, first served (FRFS):

1. Solve the corresponding problem (UDM) and obtain disposition timetable x.
2. Set Afix := {(i, j) ∈ Ahead : xi ≤ xj}.
3. Compute the exact solution of the corresponding instance of (UDM(Afix)).

Solving an additional instance of (UDM) in the first step increases the running time of FRFS
compared to FSFS. In the third heuristic, we again start by solving the corresponding instance
of (UDM) and fix the order of trains according to an optimal disposition timetable, but here
we additionally fix the wait-depart decisions obtained from the solution of (UDM) such that we
can compute a feasible disposition timetable for (DM) by applying the critical path method. In
contrast to FRFS, Step 3 can now be solved very efficiently.

9



Algorithm FRFS with early connection fixing (EARLYFIX):

1. Solve the corresponding problem (UDM) and obtain a disposition timetable x and values
for z.

2. Set Afix := {a ∈ Achange : za = 0} ∪ {(i, j) ∈ Ahead : xi ≤ xj}.
3. Compute the solution of (PP(Afix)).

Since the first step in both FRFS and in EARLYFIX is to solve (UDM), we obtain from these
heuristics not only an approximation of the optimal solution, but also a lower bound on its objective
value, and hence their absolute errors can be bounded a posteriori by

FFRFS − FUDM and FEARLYFIX − FUDM,

respectively, where FFRFS and FEARLYFIX are the objective values of FRFS and EARLYFIX.
Comparing these heuristics we obtain the following result.

Lemma 10. FDM ≤ FFRFS ≤ FEARLYFIX.

The last heuristic we tested is the only one with polynomial runtime. It is a modification of the
FSFS heuristic we presented first. As we do in FSFS, we fix the order of trains according to
the original timetable π, but instead of solving the remaining problem exactly, we use a heuristic
approach to fix the wait-depart decisions. The idea is to maintain the“most important”connections
and do not care about the less important ones.

Algorithm FSFS with priority-based fixing (PRIORITY):

1. Maintain the “most important” connections:
– Sort the changing edges in descending order according to their weights wa.
– Set za = 0 for the first k% of the connections.

2. Set Afix := {a ∈ Achange : za = 0} ∪ {(i, j) ∈ Ahead : πi ≤ πj}.
3. Compute the exact solution of (PP(Afix)).

Comparing PRIORITY to FSFS, we obtain the following relation.

Lemma 11. Let FFSFS and FPRIORITY denote the objective values of the solutions computed by
FSFS and PRIORITY, respectively. Then FDM ≤ FFSFS ≤ FPRIORITY

Finding bounds on the relative error of these heuristics is in general not possible: the results of all
heuristics might get arbitrarily bad compared to the optimal solution. In our first result we prove
that fixing the priority decisions according to the original timetable might become arbitrarily bad,
while Lemma 13 shows that fixing the priority decisions according to the optimal solution of the
corresponding (UDM) might also become arbitrarily bad. Hence, both groups of heuristics FSFS
and PRIORITY as well as FRFS and EARLYFIX can become arbitrarily bad. However, we are
able to bound the relative error of EARLYFIX using the input data of the special instance in
Theorem 15.

Lemma 12. Let HEU be a heuristic that solves (DM), fixing the gij variables as they are set
in the original timetable, and let FHEU its objective value. Then for each k ∈ N, there exists an
instance of (DM) such that

FHEU − FDM

FDM
> k.

10
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Fig. 2. Event-activity network for the proof of Lemma 12.

Proof. Let k ∈ N. Assume that we have two stations A and B and k + 2 trains h0, h1, . . . , hk+1.
All trains drive from station A to station B. By (t, s, arr) and (t, s, dep), we denote the arrival of
train t at station s and its departure from that station. π(t, s, arr) denotes the time of such an
event in the original timetable. In the original timetable, the trains in our instance leave station
A in the order h0, h1, . . . , hk+1 at the times π(hi, A, dep) = i and arrive at station B at the times
π(hi, B, arr) = i + 1, i ∈ {0, . . . , k + 1}. For each i ∈ {0, . . . , k}, the departure of train hi and
the departure of train hi+1 are connected by a pair of headway edges. All weights and all lower
bounds are set to 1. The resulting event-activity network is shown in Figure 2.

Now, assume that (h0, A, dep) is delayed by d ≥ k + 2. In the optimal solution, the trains
h1, . . . , hk+1 leave and arrive on time, while train h0 has a delay of d, so FDM = d. If we solve the
problem by a heuristic that sets the gij variables as they are set in the original timetable without
delays, all trains get a delay of at least d, so FHEU ≥ (k + 2) · d, hence

FHEU − FDM

FDM
≥ (k + 2) · d− d

d
= k + 1 > k.

ut

Similarly, one can show the following result concerning FSFS and PRIORITY.

Lemma 13. Let HEU be a heuristic that solves (DM), fixing the gij variables as they are set in
the optimal solution of the corresponding problem (UDM). Then for each k ∈ N, there exists an
instance of (DM) such that

FHEU − FDM

FDM
> k.

However – as we will show at then end of this Section – the heuristics do not behave as bad as one
might think regarding the results above. Moreover, using the input data of the specific instance
we might be able to derive upper bounds. This is exemplarily done to bound the relative error of
EARLYFIX.

Lemma 14. Let xrelax be an optimal solution of (PP(Afix)) with events E and activities Afix =
Anice ∪ Afix

change and xcap an optimal solution of (PP(Afix)) with events E and activities Afix =
Anice ∪ Afix

change ∪ Afix
head. Let A1 := Afix

head ∩ Aπ and A2 := Afix
head \ Aπ. Then, we have

xcap
i ≤ xrelax

i +
∑

(k,l)∈A1:
k∈pre(i)

(xrelax
k − πk) +

∑
(k,l)∈A2
k∈pre(i)

(xrelax
k + Lkl) ∀i ∈ E . (15)
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Proof. An optimal solution of (PP(Afix)) can be computed by applying the critical path method
that has been introduced in Section 2. We prove (15) by induction and distinguish two cases
depending which term in (12) gets maximal. For k = 1 and for xcap

k = πk + dk, (15) is true. We
therefore assume xcap

k > πk + dk and that (15) is true for all j < k. Let

ã = (j, k) := argmax
a=(j,k)∈Afix

xcap
j + La + da.

Case 1: Assume that ã ∈ Anice ∪Afix
change. Then, xcap

k = xcap
j +Lã +dã, and using xrelax

k −xrelax
j ≥

Lã + dã, (15) to estimate xcap
j and pre(j) ⊂ pre(k), we see that (15) is satisfied.

Case 2: Assume that ã ∈ A1. Then, dã = 0 and xcap
k = xcap

j + Ljk. Using (15), we get

xcap
k ≤ xrelax

k +
∑

(l,m)∈A1:
l∈pre(j)

(xrelax
l − πl) +

∑
(l,m)∈A2:
l∈pre(j)

(xrelax
l + Llm) + xrelax

j − xrelax
k + Ljk. (16)

Using πk − πj ≥ Ljk, xrelax
k ≥ πk and pre(j) ⊂ pre(k), we see that (15) holds.

Case 3: Assume that ã ∈ A2. Then, dã = 0 and xcap
k = xcap

j + Ljk. As in the second case, we get
inequality (16). We use xrelax

k ≥ 0, move xrelax
j + Ljk to the second sum and use pre(j) ⊂ pre(k)

to prove the lemma for the third case. ut

We can use Lemma 14 to get an upper bound on the relative error of EARLYFIX: We replace
xrelax by xDM and xcap by xEARLYFIX, and define Afix

head =
{
(i, j) ∈ Ahead : xDM

i ≤ xDM
j

}
. Using

the delay yi = xi − πi of event i instead of its time xi in the disposition timetable, we have

yEARLYFIX
i − yDM

i ≤
∑

(k,l)∈A1:
k∈pre(i)

yDM
k +

∑
(k,l)∈A2:
k∈pre(i)

(yDM
k + πk + Lkl) ≤ FUDM +

∑
(k,l)∈Afix

head

(Lkl + πk),

where the second inequality holds if we assume wi ≥ 1∀ i ∈ E . With this assumption, we hence
obtain

FEARLYFIX − FDM ≤

FUDM +
∑

(k,l)∈Afix
head

(Lkl + πk)

 ∑
i∈E

wi.

If, in addition, A2 = ∅, we have FEARLYFIX − FDM ≤ FUDM
∑

i∈E wi. This yields the following
result.

Theorem 15. Consider an instance of (DM) with weights wi ≥ 1 for all i ∈ E.

a) If the solution xDM of (UDM) satisfies πi ≤ πj ⇒ xDM
i ≤ xDM

j ∀ (i, j) ∈ Ahead, then

FEARLYFIX − FDM

FDM
≤

∑
i∈E

wi.

b) If FDM ≥ 1, we have

FEARLYFIX − FDM

FDM
≤

1 +
∑

(k,l)∈A1

(Lkl + πk)

 ∑
i∈E

wi.

The theorem gives rise to the assumption that the quality of the solution depends on the size of∑
(k,l)∈A1 Lkl.
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Fig. 3. The relative error of FSFS, EARLYFIX, FRFS and of the combination of FSFS and FRFS (ob-
servation period of 3 hours, 7 104 events, 9 570 activities).

Numerical Results

The dataset on which our numerical results for the heuristics are based is the same dataset as in
Section 3. The sizes of the event-activity network for different observation periods are stated in
Table 2. The IP formulation was solved using Xpress-MP 2006 on a Pentium IV 3 GHz processor
with 2 GB RAM. We generated about 600 different delay scenarios; in each of them, we assigned
25 randomly generated source delays of 1-20 minutes to 25 randomly chosen driving and waiting
activities. We also know the weights w̃a of the changing activities a ∈ Achange. We hence set wi = 1
for all events i ∈ E and wa = w̃a

w̄ for all a ∈ Achange. w̄ is the arithmetic mean of the weights w̃a

which is used in order to prevent an overestimation of the missed connections.

In Figure 3, we present four histograms of the relative errors for the heuristics FSFS, EARLYFIX
and FRFS and for the approach running both FSFS and FRFS and taking the better solution. We
took into account all events and all activities that take place during a fixed observation period of
3 hours. On the x-axis we graphed intervals of 0.1 length describing the relative error. The first
interval corresponds to a relative error between 0 and 0.1, the second interval to a relative error
between 0.1 and 0.2, and so on. We show in how many of the about 600 different delay scenarios
the relative error of the respective heuristic takes a value in an interval of length 0.1 – for example,
in about 55 scenarios out of 600, the relative error of FSFS is in the interval [0, 0.1].

FRFS is slightly better than EARLYFIX concerning the quality of their solutions. For both of
them, the number of scenarios with a small relative error is significantly higher than for FSFS.
On the other hand, there are some scenarios in which EARLYFIX and FRFS have a very high
relative error – FSFS does not have these outliers. If we combine FSFS and FRFS – this means
that for each scenario, we take the solution with the smaller objective value – we benefit from the
large number of scenarios with a small relative error in FRFS and from the fact that FSFS does
not have outliers as FRFS does have.

13



observation period of
heuristic 3 hours 6 hours 10 hours

FSFS 141 (23.58%) 239 (39.97%) 263 (43.98%)

EARLYFIX 219 (36.62%) 83 (13.88%) 75 (12.54%)

FRFS 457 (76.42%) 361 (60.37%) 336 (56.19%)

Table 1. How often (out of 598 different scenarios) is FSFS, EARLYFIX and FRFS at least as good as
the two other heuristics, w.r.t different observation periods?

Table 1 shows the quality of FSFS, EARLYFIX and FRFS compared to each other. We specify
for each heuristic in how many cases it computes a solution at least as good as the solutions of
the other heuristics. We take into account different observation periods. For larger event-activity
networks, EARLYFIX performs quite bad, while the number of scenarios in which FSFS computes
the best solution grows significantly.
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Fig. 4. Average relative error of FSFS, EARLYFIX and FRFS for different observation periods between
two and five hours.

In Figure 4, we show how the relative errors of FSFS, EARLYFIX and FRFS grow with the length
of the observation period, i.e. with the size of the relevant event-activity network. The larger the
event-activity network, the larger the relative error of all heuristics.

In Table 2, we finally specify the runtime of the exact solution and of the heuristics FSFS, FRFS
and EARLYFIX for different observation periods (i.e. for different sizes of the event-activity net-
work). An observation period of k hours means that we considered events and activities during
a fixed k-hours time slot. It turns out that all heuristics are significantly faster than the optimal
solution (calculated via the ILP formulation by Xpress). EARLYFIX clearly outperforms FSFS
and FRFS by a factor of 3. FSFS and FRFS are nearly equal considering the computation time.
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size of the event-activity network runtime (in seconds) of algorithm

hours |E| |A| |Ahead| |Achange| exact FSFS EARLYFIX FRFS

2 4 726 5 865 1 110 125 19.45 0.24 0.11 0.26

3 7 104 9 570 2 378 187 185.33 0.46 0.17 0.49

4 9 446 14 079 4 428 307 584.66 0.69 0.25 0.74

5 11 824 18 605 6 514 369 1 075.52 0.91 0.31 1.00

6 14 166 23 396 8 846 489 - 1.16 0.39 1.26

8 18 888 32 673 13 260 632 - 1.65 0.53 1.83

10 23 596 41 992 17 656 852 - 2.04 0.68 2.34

15 33 718 61 944 27 138 1 209 - 3.01 1.01 3.63

Table 2. Average runtime for different sizes of the event-activity network.

5 Conclusion and Further Research

In this paper, we presented and analyzed an integer programming formulation for the capacitated
delay management problem. We suggest a reduction technique and four different heuristics. In
our analysis it turns out that the headway activities which are not in the same direction as in
the original timetable play a basic role. We were also able to give a reasonable definition of the
never-meet property and to extend properties known from the uncapacitated delay management
problem.

There are more properties of the never-meet property that are currently exploited, e.g. to extend
the linear-time algorithm of the uncapacitated problem to the capacitated case. We also work on a
deeper analysis of the heuristics and on new approaches such as machine-based learning techniques.
Moreover, other issues should be considered to make the approach applicable in practice. Some-
times a change of the vehicle routes is appropriate to reduce delays, and often it is necessary to
include the microscopic routes of the trains, in particular at large stations.

Acknowledgment. We want to thank Jens Dupont of Deutsche Bahn and Christian Liebchen of
TU Berlin for providing the data for the case study.
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