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Abstract. The search for train connections in state-of-the-art commer-
cial timetable information systems is based on a static schedule. Unfortu-
nately, public transportation systems suffer from delays for various rea-
sons. Thus, dynamic changes of the planned schedule have to be taken
into account. A system that has access to delay information of trains
(and uses this information within search queries) can provide valid al-
ternatives in case a train change breaks. Additionally, it can be used to
actively guide passengers as these alternatives may be presented before
the passenger is already stranded at a station due to a broken transfer.
In this work we present an approach which takes a stream of delay infor-
mation and schedule changes on short notice (partial train cancellations,
extra trains) into account. Primary delays of trains may cause a cascade
of so-called secondary delays of other trains which have to wait according
to certain waiting policies between connecting trains. We introduce the
concept of a dependency graph to efficiently calculate and update all pri-
mary and secondary delays. This delay information is then incorporated
into a time-expanded search graph which has to be updated dynami-
cally. These update operations are quite complex, but turn out to be
not time-critical in a fully realistic scenario. We finally present a case
study with data provided by Deutsche Bahn AG showing that this ap-
proach has been successfully integrated into our multi-criteria timetable
information system MOTIS and can handle massive delay data streams
instantly.

Keywords: timetable information system, primary and secondary de-
lays, dependency graph, dynamic graph update

1 Introduction and Motivation

In recent years the performance and quality of service of electronic timetable
information systems has increased significantly. Unfortunately, not everything
runs smoothly in scheduled traffic and the presence of delays is the norm rather
than the exception.
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Delays can have various causes: Disruptions in the operations flow, accidents,
malfunctioning or damaged equipment, construction work, repair work, and ex-
treme weather conditions like snow and ice, floodings, and landslides to name
just a few. A system that incorporates up-to-date train status information (most
importantly information about future delays based on the current situation) can
provide a user with valid timetable information in the presence of disturbances.

Such an on-line system can additionally be utilized to verify the current
status of a journey:

– Journeys can either be still valid (i.e., they can be followed as planned),
– can be affected such that the arrival at the destination is delayed,
– or may no longer be possible.

In the latter case a connecting train will be missed, either because the connecting
train cannot wait for a delayed train, or the connecting train may have been
canceled. In a delay situation, such a status information is very helpful. In the
positive case that all planned train changes are still possible, passengers can
be reassured that they do not have to worry about potential train misses. To
learn that one arrives x minutes late with the planned sequence of trains may
allow a customer to make arrangements, e.g. inform someone to pick one up
later accordingly. In the unfortunate case that a connecting train will be missed,
this information can now be obtained well before the connection breaks and
the passenger is stranded at some station. Therefore, valid alternatives may be
presented while there are still more possibilities to act. This situation is clearly
preferable over missing a connecting train and than going to a service point to
request an alternative.

As up to now the commercial systems do not take the current situation into
account (although estimated arrival times may be accessible for a given connec-
tion, these times are not used actively during the search), their recommendations
may be impossible to use, as the proposed alternatives already suffer from delays
and may even already be infeasible at the time they are delivered by the system.

Static timetable information systems. The standard approach to model
static timetable information is as a shortest path problem in either a time-
expanded or time-dependent graph. The recent survey [1] describes the models
and suitable algorithms in detail. We developed our timetable information sys-
tem MOTIS which performs a multi-criteria search for train connections in a
realistic environment using a suitably constructed time-expanded graph. Our
underlying model ensures that each proposed connection is indeed feasible, i.e.
can be used in reality. The criteria considered are travel time, number of in-
terchanges, ticket cost, and reliability of all interchanges of a connection. The
system is able to present many attractive alternatives to customers [2].

Our contribution and overview. Previous research on timetable information
systems has focused on the static case where the timetable is considered as fixed.
Here we start out a new thread of research on dynamically changing timetable
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data due to disruptions. We extended our timetable information system MOTIS
to use current train status information. Modeling issues have been discussed on a
theoretical level but no true to life system with real delay data has been studied
in the literature and to our knowledge no such system that guarantees optimal
results (with respect to even a single optimization criterion) exists.

We give first results of implementing such a system for a real world scenario
with no simplifying assumptions at all. The architecture we propose is intended
for a multi-server environment where the availability of search engines has to be
guaranteed at all times. Our system consists of two main components, the depen-

dency graph and the search graph. The dependency graph is used to efficiently
propagate primary delay information according to waiting policies. The overall
new status information is then incorporated into the search graph which is used
for customer search queries. Our dependency graph is similar to a simple time-
expanded graph model with distinct nodes for each departure and arrival event
of the whole schedule for the current and following days. This is a natural and
efficient model since every event has to store its own update information. For the
search graph, however, we are free to use either the time-expanded or the time-
dependent model. In this paper, we have chosen to use the time-expanded model
for the search graph since MOTIS is based on this. Although update operations
are quite complex in this model, it will turn out that they can be performed
very efficiently, in less than a millisecond per update message on average.

We will also discuss the difference between searches in an on-trip scenario,
where a passenger is either stranded at a station or in a train whose connecting
train will be missed, to classical pre-trip searches.

The rest of this paper is organized as follows: In Section 2, we will discuss
primary and secondary delays. We introduce our architecture in Section 3 and
its two components, the update of the search graph (in Section 4) and the prop-
agation algorithm on our dependency graph model (in Section 5). In Section 6,
we present our approach to perform on-trip as opposed to pre-trip searches. Af-
terwards, we provide our experimental results in Section 7. Finally, we conclude
and give an outlook.

Related work. Delling et al. [3] independently of us came up with ideas on
how to regard delays in timetabling systems. In contrast to their work we do
not primarily work on edge weights, but consider nodes with time stamps. The
edge weight for time follows, whereas edge weights for transfers and cost do not
change during the update procedures. This is important for the ability to do
multi-criteria search.

A related field of current research is disposition and delay management. Gatto
et al. [4,5] have studied the complexity of delay management for different sce-
narios and have developed efficient algorithms for certain special cases using
dynamic programming and minimum cut computations. Various waiting poli-
cies have been discussed, for example by Ginkel and Schöbel [6]. Schöbel [7] also
proposed integer programming models for delay management. Stochastic models
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for the propagation of delays are studied, for example, by Meester and Muns [8].
Waiting policies in a stochastic context are treated in [9].

2 Up-To-Date Status Information

2.1 Primary Delay Information

First of all, the input stream of status messages consists of reports that a certain
train departed or arrived at some station at time τ either on time or delayed
by x minutes. In case of a delay, such a message is followed by further messages
about predicted arrival and departure times for all upcoming stations on the
train route.

Besides, there can be information about additional special trains (a list of
departure and arrival times at stations plus category, attribute and name infor-
mation). Furthermore, we have (partial) train cancellations, which include a list
of departure and arrival times of the canceled stops (either all stops of the train
or from some intermediate station to the last station).

Moreover, we have manual decisions by the transport management of the
form: “Change from train t to t′ will be possible” or “will not be possible”.
In the first case it is guaranteed that train t′ will wait as long as necessary to
receive passengers from train t. In the latter case the connection is definitively
going to break although the current prediction might still indicate otherwise.
This information may depend on local knowledge, e.g. that not enough tracks
are available to wait or that additional delays are likely to occur, or may be
based on global considerations about the overall traffic flow. We call messages
of this type connection status decisions.

2.2 Secondary Delays

Secondary delays occur when trains have to wait for other delayed trains. Two
simple, but extreme examples for waiting policies are:

– never wait

In this policy, no secondary delays occur at all. This causes many broken
connections and in the late evening it may imply that customers do not
arrive at their destination on the same travel day. However, nobody will be
delayed who is not in a delayed train.

– always wait as long as necessary

In this strategy, there are no broken connections at all, but massive delays
are caused for many people, especially for those whose trains wait and have
no delay on their own.

Both of these policies seem to be unacceptable in practice. Therefore, train
companies usually apply a more sophisticated rule system specifying which trains
have to wait for others and for how long. For example, the German railways
Deutsche Bahn employ a complex set of rules, dependent on train type and local
specifics.
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In essence, this works as follows: There is a set of rules describing the max-
imum amount of time a train t may be delayed to wait for passengers from a
feeding train f . Basically, these rules depend on train categories and stations.
But there are also more involved rules, like if t is the last train of the day in
that direction, the maximum delay time is increased, or during peak hours, when
trains operate more frequently, the maximum delay time may be decreased.

The waiting time wt(t, s, f) is the maximum delay acceptable for train t at
station s waiting for a feeding train f . Let depsched(s, t) and dep(s, t) be the
departure time according to the schedule resp. the new departure time of train t

at station s, arr(s, t) the arrival time of a train and minct(s, f, t) the minimum
change time needed from train f to train t at station s. Note that in a delayed
scenario the change time can be reduced, as guides may be available that show
changing passengers the way to their connecting train. If the following equation
holds

arr(s, f) + minct(s, f, t) − depsched(s, t) < wt(t, s, f)

train t will incur a secondary delay because it waits for f at station s. Its new
departure time is determined by the following equation

dep(s, t) =

{

arr(s, f) + minct(s, f, t) if t waits
depsched(s, t) otherwise .

In case of several delayed feeding trains, the new departure time will be deter-
mined as the maximum over these settings.

During day-to-day operations these rules are always applied automatically.
If the required waiting time of a train lies within the bounds defined by the rule
set, trains will wait. Otherwise they will not. All exceptions from these rules
have to be given as connection status decisions.

3 System Architecture

Our system consists of two main components. One part is responsible for the
propagation of delays from the status information and for the calculation of
secondary delays, while the other component handles connection queries. The
core of the first part is a dependency graph which models all the dependencies
between different trains and between the stops of the same train (in Section 5 we
give more details on that). The obtained information is then sent to the search
graph which is updated accordingly. This decoupling of dependency and search
graph allows us to use any graph model for the search graph.

In a distributed scenario this architecture can be realized with one server
for the dependency graph that continuously receives new status information and
broadcasts the update information to a number of servers on which the query
algorithms run. Load balancing can schedule the update phases for each server.
If this is done in a round robin fashion, the availability of service is guaranteed.

Our design decision to work with two separate components also gives us ad-
ditional flexibility when to broadcast the update information. In this paper, we
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Fig. 1. The change level at a station (left) and changes if train t∗ arrives earlier
(middle picture) or train t arrives later (right).

broadcast the update information immediately when it becomes available. How-
ever, a reasonable alternative is to broadcast a consistent update state only every
∆ minutes, for some small ∆. This option may save many update operations in
the search graph which, in particular, result from small oscillations in forecasts
of trains with frequent comparisons of actual and scheduled times.

4 Updating the Search Graph

Time-Expanded graph model. Let us briefly recall the time-expanded graph
model. The basic idea is to introduce a directed search graph where every node
corresponds to a specific event (departure, arrival, change of a train) at a station.

A connection served by a train from station A to station B is called elemen-

tary, if the train does not stop between A and B. Edges between nodes represent
either elementary connections, waiting within a station, or changing between two
trains. For each optimization criterion, a certain length is associated with each
edge.

Traffic days, possible attribute requirements and train class restrictions with
respect to a given query can be handled quite easily. We simply mark train edges
as invisible for the search if they do not meet all requirements of the given query.
With respect to this visibility of edges, there is a one-to-one correspondence
between feasible connections and paths in the graph.

More details of the graph model can be found in [2].

Modeling interchanges in a time-expanded graph. To model non-constant
change times between pairs of trains, additional nodes and edges are required
besides the ones for arrival and departure events. In forward search (when the
desired departure is specified), for every departure time at a station there is a
change node connected via entering edges to all departure nodes at that time.
The change nodes are interconnected with waiting edges. Leaving edges link to
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the first change node which is reachable in the time needed for a transfer from
this train to any other. All possible shorter change times (e.g. for trains at the
same platform) are realized using special transfer edges. Additionally, we have
stay-in-train edges. Only entering edges carry the cost of a train change.

In Figure 1 (left) it is possible to change from train t to all trains departing
not earlier than t′′ using leaving edge g, any number of waiting edges and an
entering edge (e.g. h to enter t′′). A change to train t′ on the same platform is
also feasible using special interchange edge f and, of course, to stay in train t

via stay-in-train edge e. However, it is impossible to change to train t∗ although
it departs later than t′, because it requires more time to reach it.

Updates The update in the search graph does not simply consist of setting
new time stamps for nodes (primary and secondary delays), insertions (addi-
tional trains) and deletions (cancellations) of nodes and resorting lists of nodes
afterwards. Furthermore, all the edges present to model the changing of trains at
the affected stations have to be recomputed respecting the changed time stamps,
additional and deleted nodes, and connection status information. The following
adjustments are required on the change level (see Figure 1):

– Inserting change nodes or unhooking them from the waiting edges chain at
times where a new event is the only one or the only event is moved away or
canceled.

– Updating the leaving edges pointing to the first node reachable after a train
change.

– Updating the nodes reachable from a change node via entering edges.
– Recalculating special interchange edges from resp. to arrival resp. departure

nodes with a changed time stamp (either remove, adjust or insert special
interchange edges).

The result of the update phase is a graph that looks and behaves exactly as if
it was constructed from a schedule describing the current situation. Additionally
it contains information about the original schedule and reasons for the delays.

Next we give two examples for updating the search graph1: Suppose train t∗

manages to get rid of some previous delay and now arrives and departs earlier
than previously predicted (see Figure 1, middle part). In the new situation it is
now possible, to change to train t′′ using the new leaving edge n and the existing
entering edge h.

In our second example let train t arrive delayed as depicted in Figure 1
(right). As it now departs after t′, it is not only impossible to change to t′

(special interchange edge f is deleted), but also the change departure nodes for
the departures of t’ and t are in reverse order. Therefore, the waiting edges have
to be relinked. Furthermore, a change to t′′ is no longer possible, so the leaving
edge h points to a node later than the departure of t′′.

1 Note that we increased the station dependent interchange time from the middle to
the right extract to make this example work.
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5 Dependency Graph

5.1 Graph Model

Our dependency graph (see Fig. 2) models the dependencies between different
trains and between the stops of the same train. Its node set consists of four types
of nodes:

– departure nodes,
– arrival nodes,
– forecast nodes, and
– schedule nodes.

Each node has a time stamp which can dynamically change. Departure and
arrival nodes are in one-to-one correspondence with departure and arrival events.
Their time-stamps reflect the current situation, i.e. the expected departure or
arrival time subject to all delay information known up to this point.

Schedule nodes are marked with the planned time of an arrival or depar-
ture event, whereas the time stamps of forecast nodes is the current external
prediction for their departure or arrival time.

The nodes are connected by five different types of edges. The purpose of
an edge is to model a constraint on the time stamp of its head node. Each
edge e = (v, w) has two attributes. One attribute is a Boolean value, signifying
whether this edge is currently active or not. The other attribute τ(e) denotes a
point in time which basically can be interpreted as a lower bound on the time
stamp of its head node w, provided that the edge is currently active.

– Schedule edges connect schedule nodes to departure or arrival nodes. They
carry the planned time for the corresponding event of the head node (accord-
ing to the published schedule). Edges leading to departure nodes are always
active, since a train will never depart prior to the published schedule.

– Forecast edges connect forecast nodes to departure or arrival nodes. They
represent the time stored in the associated forecast node. If no forecast for
the node exists, the edge is inactive.

– Standing edges connect arrival events at a certain station to the following
departure event of the same train.
They model the condition that the arrival time of train t at station s plus
its minimum standing time stand(s, t) must be respected before the train
can depart (to allow for boarding and deboarding of passengers). Thus, for
a standing edge e, we set τ(e) = arr(s, t) + stand(s, t). Standing edges are
always active.

– Traveling edges connect a departure node of some train t at a certain station
s to the very next arrival node of this train at station s′. Let dep(s, t) denote
the departure time of train t at station s and tt(s, s′, t) the travel time
for train t between these two stations. Then, for edge e = (s, s′), we set
τ(e) = dep(s, t)+tt(s, s′, t). These edges are only active if the train currently
has a secondary delay (otherwise the schedule or forecast edges provide the
necessary conditions for its head node).
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Fig. 2. Illustration of the dependency graph model.

Due to various, mostly unknown factors determining the speed of trains in
a delayed scenario, e.g. speed of train, condition of the track, track usage
(by other trains and freight trains that are not in the available schedule),
used engines with acceleration/deceleration profiles, signals along the track
etc. we assume for simplicity that tt(s, s′, t) is the time given in the planned
schedule.

– Transfer edges connect arrival nodes to departure nodes of other trains at
the same station, if there is a planned transfer between these trains. Thus, if
f is a potential feeder train for train t at station s, we set τ(e) = wait(t, s, f),
where

wait(t, s, f) =

{

arr(s, f) + minct(s, f, t) if t waits for f

0 otherwise

(cf. Section 2.2) if we respect the waiting rules. Recall that t waits for f only
if the following equation holds

arr(s, f) + minct(s, f, t) − depsched(s, t) < wt(t, s, f)

or we have an explicit connection status decision that t will wait.
By default these edges are active. In case of an explicit connection status
decision “will not wait” we mark the edge in the dependency graph as not
active and ignore it in the computation.
For an “always wait” or “never wait” scenario we may simply always return
the resulting delayed departure time or zero, respectively.
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5.2 Computation on the Dependency Graph

The current time stamp for each departure or arrival node can now be defined
recursively as the maximum over all deciding factors: For a departure of train t

at station s with feeders f1, . . . fn we have dep(s, t) =

max{depsched(s, t), depfor(s, t), arr(s, t) + stand(s, t), maxn
i=1

{wait(t, s, fi)}}.

For an arrival we have

arr(s, t) = max {arrsched(s, t), arrfor(s, t), dep(s′, t) + tt(s′, s, t)}

with the previous stop of train t at station s′. Inactive edges do not contribute
to the maximum in the preceeding two equations.

If we have a status message that a train has finally departed or arrived at
some given time depfin resp. arrfin, we do not longer compute the maximum
as described above. Instead we use this value for future computations involving
this node.

We maintain a priority queue (ordered by increasing time stamps) of all
nodes whose time stamps have changed since the last computation was finished.
Whenever we have new forecast messages, we update the time stamps of the
forecast nodes and, if they have changed, insert them into the queue. As long as
the queue is not empty we extract a node from the queue and update the time
stamps of the dependent nodes (which have an incoming edge from this node).
If the time stamp of a node has changed in this process, we add it to the queue
as well.

For each node we keep track of the edge emax which currently determines the
maximum so that we do not need to recompute our maxima over all incoming
edges every time a time stamp changes. Only if τ(emax) was decreased or τ(e)
for some e 6= emax increases above τ(emax) the maximum has to be recomputed.

– If τ(e) decreases and e 6= emax nothing needs to be done.
– If τ(e) increases and e 6= emax but τ(e) < τ(emax) nothing needs to be done.
– If τ(e) increases and e = emax the new maximum is again determined by

emax and the new value is given by the new τ(emax).

When the queue is empty, all new time stamps have been computed and the
nodes with changed time stamps can be sent to the search graph update routine.

6 Search Types

Most timetable information systems consider a pre-trip scenario: The user is
at home and requests a connection from station s1 to s2 departing or arriving
around some time τ or inside an interval [τ1, τ2]. In such a scenario, it is important
that the search delivers all attractive connections with respect to several criteria
which suit the query. Even if you use information systems at a station or click
“Right-now” in an online system you will usually be offered several alternatives.

In an on-trip scenario one is much closer to an earliest arrival problem. We
differentiate two cases of the on-trip search:
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1. A customer is at a certain station and wants to travel right now. Either he
comes without a travel plan (for example, he was unable to plan the end of
some meeting) or he may have just missed a connecting train.

2. The customer sits already in a train and wants to search for alternatives,
for example, because he has been informed that a connecting train will be
missed.

In both cases travelers want to reach their destination as fast and conve-
nient as possible. In case of delays many railways even remove restrictions on
train-bound tickets, so it might be possible to completely forget about ticket
costs, since the ticket is already paid and the passenger may use any means of
transportation available. If there is a restriction like “no high speed train” (like
the German ICE or French TGV) which is not revoked, an on-trip search with
train category restrictions should be supported.

On-trip search at a station. In the example above one would not want to
spend too much time at a station to shorten the traveling time measured from the
departure with the first used train to the arrival at the destination (as calculated
in the pre-trip scenario), instead the total travel time counting from “now” is
one of the optimization goals. However, in the presence of delays it may become
more important to search for reliable connections.

On-trip search in a train. In case the user currently travels in a train the
on-trip search is different from the scenario at a station. Instead of leaving the
train and standing at a station with the connecting train long gone (or can-
celed), we can do much better if we know of this problem in advance. Interesting
alternatives may either leave the train before arriving at the station where the
connection breaks, or stay longer in the train to change trains at a subsequent
station.

Realization. Both on-trip searches can be realized in our timetable information
system using different starting events. Instead of creating start labels for all
departures in the departure interval (for forward search), we either

– create only a single start label at the change level of the source station
and count time including the waiting time before taking any train (on-trip
station), or

– create only a single start label at the arrival station of the train edge the
traveler uses when receiving the information about a connecting train that
will be missed (on-trip train).

Note that in the on-trip train case, using the arrival node of the train instead
of any of the departure nodes, the modeling of interchanges in the time expanded
graph guarantees that only valid train changes at the first stop after receiving the
information are used. It would not be feasible to solve the on-trip train case with
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a single departure at that station, because we need to ensure that the departure
of the train with which one arrives, all departures below the station dependent
change time (through special interchange rules) and all later departures are
considered and all but the first case are counted as an additional interchange.
Thus quite a lot of different departures with differing values for elapsed time at
start and number of interchanges used so far would have to be considered.

7 Evaluation of the Prototype

We implemented the dependency graph and the update algorithm described in
Section 5 and extended our time table information system MOTIS to support
updating the search graph (cf. Section 4). Although these update operations are
quite costly, we give a proof of concept and show that they can be performed
sufficiently fast for a system with real-time capabilities.

Our computational study uses the German train schedule of 2008. During
each operating day all trains that pass various trigger points (stations and im-
portant points on tracks) generate status messages. There are roughly 5000 sta-
tions and 1500 additional trigger points. Whenever a train generates a status
message on its way, new predictions for the departure and arrival times of all its
future stops are computed and fed into a data base. German railways Deutsche
Bahn AG provided delay and forecast data from this data base for a number of
operation days. The simulation results for these days look rather similar with-
out too much fluctuation neither in the properties of the messages nor in the
resulting computational effort. In the following, we present results for a standard
operating day with an average delay profile.

To test our system, we used five sets of waiting profiles. Basically, the train
categories were divided into five classes: high speed trains, night trains, regional
trains, urban trains, and class “all others.” Waiting times are then defined be-
tween the different classes as follows:

– standard High speed trains wait for each other 3 minutes,
other trains wait for high speed trains, night trains, and trains of class “all
others” 5 minutes,
night trains wait for high speed and other night trains 10 minutes, and 5
minutes for class “all others.”

– small All times of scenario standard are halved, but night trains do not wait
for train class “all others.”

– double All times of scenario standard are doubled.
– all5 All times of scenario standard are set to five minutes, in addition regional

trains wait 5 minutes for all but urban trains.
– extreme All times of the previous scenario are doubled.

It is important to keep in mind that the last two policies are far from reality
and are intended to strain the system beyond the limits it was designed to
handle. For each of these different waiting profiles we tested different maximum
distances of feeding and connecting trains δ ∈ {5, 15, 30, 45, 60}, with one hour
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search graph

event nodes 1.0 mil
change nodes 0.8 mil

edges 2.2 mil

dependency graph

events 977,324
standing edges 449,575
driving edges 488,662

Table 1. Properties of our search graph (left) and dependency graph (right).

being the periodicity for most types of trains, and compare them to a variant
without waiting for different trains (policy no wait). In this reference scenario
it is still necessary to propagate delays in the dependency graph to correctly
update the train runs. Thus the same computations as with waiting policies is
carried out, only the terms for feeding trains are always zero.

We constructed a search and dependency graphs from the real schedule con-
sisting of 37,000 trains operating on the selected day. The number of nodes and
edges in both graphs are given in Table 1. There is one event node, one schedule
node and one forecast node per train event in the dependency graph, the number
of forecast and schedule edges equals the number of events, too. The number of
standing and traveling edges are in one to one correspondence to the stay-in-
train and train edges of the search graph. The number of feeding edges depends
on the waiting policy and δ and can be found in the eighth column of Table 2.
There is a monotonous growth in the number of transfer edges depending on
the parameter δ. Additionally, the number of these edges increase as more trains
wait for other trains because of the additional rules for scenarios with more rules.

For the chosen simulation day we have a large stream of real forecast mes-
sages. Whenever a complete sequence of messages for a train has arrived, we send
them to the dependency graph for processing. 340,495 sequences containing a
total of 6,211,207 forecast messages are handled. Of all messages 2,471,582 fore-
casts are identical to the last forecasts already processed for their nodes. The
remaining 3,739,625 messages either trigger computations in the dependency
graph or match the current time stamp of the node. The latter require nei-
ther shifting of nodes nor a propagation in the dependency graph. The resulting
number of node shifts is given in the seventh column of Table 2.

At the end of the day 596,496 nodes have received at least one forecast. For
265,544 nodes the forecast differs from the scheduled time although there are
3,287,834 forecasts differing from the scheduled time for the event. Note that
the last number is much higher as trains whose prediction changes produce new
messages each time. A train with a large number of stops and a long travel time
thus can generate a large number of messages.

In Table 2 we give the results for our test runs for the different policies and
values of δ. All experiments were run on a standard PC (AMD Athlon 64 X2
4600+ 2.4 GHz with 4GB of RAM). The key figures for required computations,
stations with a delayed event and node shifts increase when changing to policies
for which trains wait longer or more trains have to wait. Increasing δ yields a
higher effect the more trains wait. The overall small impact of changing δ is due
to the majority of delays being rather small. Only for the less realistic scenarios
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we notice a significant growth in all key criteria when increasing δ from 5 to 15,
whereas all policies behave rather similarly for δ = 5.

Amongst the plausible policies there is only a 11% difference in the number
of moved nodes. It nearly doubles going to policy all5 and even increases by
a factor of 3.4 towards policy extreme. The increase in running time spent in
the search graph is equivalent. Of our simulation time roughly 3 minutes are
spent extracting and preprocessing the messages from the forecast stream. This
time is obviously independent of the test scenario. Interestingly, the time spent
in the dependency graph seems to be only minimally affected by exchanging
the profiles against those that incur more computations and node shifts. As the

Instance computation time for Number of Delayed at
policy δ SG DG IO total shifts feeding end of day

in min in s in s in s in s executed edges nodes stations

no wait - 807 133 177 1118 3,165,614 0 357,972 5,467

5 819 136 162 1118 3,253,980 8,792 359,105 5,511
15 860 137 167 1164 3,416,718 55,218 364,961 5,664

small 30 871 137 163 1171 3,430,189 124,141 365,179 5,664
45 875 139 157 1171 3,432,189 207,855 365,206 5,664
60 869 137 161 1167 3,434,041 267,638 365,231 5,664

5 817 135 170 1122 3,254,013 8,792 359,105 5,511
15 876 136 169 1180 3,426,272 55,284 365,110 5,711

standard 30 880 139 170 1189 3,445,019 124,305 365,353 5,723
45 878 138 158 1175 3,454,623 208,127 365,395 5,733
60 917 148 169 1234 3,460,210 268,002 365,452 5,738

5 813 133 164 1110 3,265,175 8,792 359,254 5,511
15 917 137 162 1216 3,557,572 55,284 367,171 5,731

double 30 931 136 171 1238 3,617,603 124,305 367,590 5,770
45 959 136 160 1255 3,646,080 208,127 367,863 5,782
60 979 137 161 1277 3,661,137 268,002 367,995 5,787

5 830 137 178 1,145 3,419,161 16,261 366,372 5,815
15 1,761 141 174 2,076 6,994,379 168,849 404,336 6,541

all5 30 1,776 146 157 2,078 7,095,897 400,114 405,827 6,557
45 1,796 148 166 2,110 7,112,681 665,811 406,214 6,561
60 1,793 150 170 2,113 7,121,351 874,649 406,433 6,561

5 815 137 173 1,124 3,446,965 16,261 367,303 5,818
15 3,090 159 175 3,424 12,090,373 168,849 422,119 6,648

extreme 30 3,111 164 178 3,453 12,155,547 400,114 434,040 6,676
45 3,134 170 177 3,480 12,257,936 665,811 438,645 6,684
60 3,306 178 179 3,663 12,285,623 874,649 440,233 6,684

Table 2. Computation time (propagation in the dependency graph (DG) and
update of the search graph (SG), IO and total) and key figures for the number
of feeding edges, node shifts in the search graph and the number of nodes and
stations with delay at the end of the day with respect to different waiting policies.
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overall running time is by far dominated by the reconstruction work in the search
graph we would rather try to improve the performance there, if necessary.

Even for the most extreme scenario a whole day can be simulated in one
hour. The overall simulation time for realistic policies lies around 20 minutes.
For the policy standard with δ = 45 we are below 1/5ms (189µs) per message,
at a rate of less than 75 messages arriving per second. This clearly qualifies for
live performance.

8 Conclusions and Future Work

We have built a first prototypal system which can be used for efficient off-line
simulation with massive streams of delay and forecast messages for typical days
of operation within Germany.

It remains an interesting task to implement a live feed of delay messages for
our timetable information system and actually test real-time performance of the
resulting system. Since update operations in the time-dependent graph model
are somewhat easier than in the time-expanded graph model, we also plan to
integrate the update information from our dependency graph into a multi-criteria
time-dependent search approach developed in our group (Disser et al. [10]).

Additionally, we would be interested in looking into speed-up techniques for
dynamic scenarios in the multi-criteria case. Since most of the existing speed-up
techniques focus on single criterion search, time-less edges, and usually require
bidirectional search, this is not at all easy in the multi-criteria static scenario
without delays. The recent SHARC algorithm [11,12] is a powerful speed-up
technique for uni-directional search which seems to be a promising candidate to
generalize to a dynamic scenario and multiple search criteria.
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