
Value Flow Graph Analysis with SATIrE

Gergö Barany

Institute of Computer Languages, Vienna University of Technology
gergo@complang.tuwien.ac.at

Abstract. This work discusses implementation of partial redundancy
elimination using the value flow graph, a syntactic program representa-
tion modeling semantic equivalences. It allows the combination of simple
syntactic partial redundancy elimination with a powerful semantic anal-
ysis. This yields an optimization that is computationally optimal and
simpler than traditional semantic methods.
A source-to-source optimizer for C++ programs was implemented using
the SATIrE program analysis and transformation system. Two tools inte-
grated in SATIrE were used in the implementation: ROSE is a framework
for arbitrary analyses and source-to-source transformations of C++ pro-
grams, PAG is a tool for generating data flow analyzers from functional
specifications.

1 Introduction

Partial redundancy elimination is a common program optimization that attempts
to improve execution time by removing superfluous computations from a pro-
gram. There are two well-known classes of such techniques: syntactic and se-
mantic methods. Syntactic methods eliminate only redundant computations of
expressions that are syntactically equal, i. e., common subexpressions in the clas-
sical sense [1]. Semantic methods also consider expressions that are equivalent
due to the effects of assignment statements in the program; such techniques are
typically based on SSA form [2].

While semantic optimization is more powerful, traditional SSA-based algo-
rithms are complicated, heuristic in nature, and unable to perform certain useful
optimizations. The value flow graph is a syntactic program representation mod-
eling semantic equivalences; it allows the combination of simple syntactic partial
redundancy elimination with the power of a semantic analysis that character-
izes all equivalences that arise from assignments between program terms. The
result is an optimization that is both simpler and more powerful than traditional
semantic methods based on SSA form.

This work introduces the theory behind partial redundancy elimination using
the value flow graph. A source-to-source optimizer using the value flow graph
for C++ programs was implemented using two tools integrated in the SATIrE
program analysis and transformation system: ROSE is a framework for arbitrary
analyses and source-to-source transformations of C++ programs, PAG is a tool
for generating program analyzers.

Dagstuhl Seminar Proceedings 08161 
Scalable Program Analysis  
http://drops.dagstuhl.de/opus/volltexte/2008/1570

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Value Flow Graph Analysis

This section introduces the value flow graph, a program representation for opti-
mal code motion. It represents semantic equivalences in a syntactic way, which
allows the combination of a powerful program analysis with a simple optimizing
transformation.

2.1 The Value Flow Graph

The value flow graph (VFG) was introduced by Steffen et al. [3, 4] as a way
to unify syntactic and semantic approaches to partial redundancy elimination.
The graph’s nodes are associated with program points and represent equiva-
lence classes of expressions at each point. Equivalences are computed based on
assignments in the program; the classes can be represented efficiently by using
structured partition DAGs computed using data flow analysis.

A value flow edge connects two nodes if they belong to program points con-
nected by a control flow edge, and if they represent the same value. Figure 1
shows a small example of a value flow graph. Bold nodes and edges are used
to represent the program’s control flow graph. Each program point is associated
with a DAG denoting a partitioning of expressions into equivalence classes. Grey
edges represent the value flow between classes of complex expressions.

Since value flow edges follow control flow edges, there is a correspondence
between value flow paths and control flow paths. It is this property that allows
the use of a simple code motion algorithm on the VFG: The syntactic partial
redundancy elimination algorithm of Morel and Renvoise [1] can be lifted from
control flow graphs to value flow graphs. However, since VFG paths represent
semantic equivalence, the resulting optimization is semantic code motion, and
can be made at least as powerful as traditional SSA-based methods [3].

2.2 Inductive Partial Redundancies

The value flow graph allows the optimization of a special type of partial re-
dundancy called inductive partial redundancy [5]. This is a redundancy between
expressions that are evaluated in different iterations through the body of the
same loop.

Figure 2 illustrates an example of elimination of inductive partial redundan-
cies, showing the original and optimized programs side by side. The code models
two pointers r1 and r2 traversing an array a, with r2 always pointing one word
ahead of r1. Therefore, the computation of the new value for r1 inside the loop
will always yield the value stored in r2 at that time, so the addition can be
replaced by a simple copy. In the example, the redundant value is retained in
a temporary variable introduced by the optimizer. This optimization cannot be
realized in SSA-based approaches because SSA form does not offer any way to
represent the equivalence r2 = r1 + 4.



0

1

 a = e;

7

8

 y =(a + b);

6

 

 

4

5

 if (cond;)

 true

2

 false

3

 x =(a + b);

 

+

+, y

a

L

b

R

a

L

b

R

+

a

L

b

R

+

a, e

L

b

R

+

+

a

L

b

R

+ +

a

L

b

R

a

L

b

R

+, x

a

L

b

R

a

L

b

R

Fig. 1. Example value flow graph.

r1 = a;

r2 = a + 4;

do {

r1 = r1 + 4;

r2 = r2 + 4;

} while (r2 < end);

(a) Original code

r1 = a;

vfg_tmp_var_0 = (a + 4);

r2 = vfg_tmp_var_0;

do {

r1 = vfg_tmp_var_0;

vfg_tmp_var_0 = (r1 + 4);

r2 = vfg_tmp_var_0;

} while (r2 < end);

(b) Transformed code

Fig. 2. Example of inductive partial redundancy elimination using the automatically
derived loop invariant r2 = r1 + 4.



3 Implementation with SATIrE

An optimizer prototype was implemented using the Static Analysis Tool Integra-
tion Engine (SATIrE) [6]. SATIrE is a framework for integrating various tools
for static analysis and program transformation; it allows the exchange and com-
bination of analysis results from several tools and makes it possible to define
custom program transformations based on such analyses.

SATIrE is under development at Vienna University of Technology. At the
time of writing, it uses three toolchains for program analysis and transformation:

ROSE [7] is a source-to-source analysis and transformation framework for C,
C++, and Fortran programs. SATIrE uses the EDG C and C++ frontend
used by ROSE, and uses ROSE’s abstract syntax tree (AST) for representing
programs. ROSE allows arbitrary transformation of such ASTs.

PAG [8] is a tool for generating data flow analyzers. Analyzers are specified
in an equational language and translated to C code by PAG. PAG is con-
nected to SATIrE using components that build an interprocedural control
flow graph (ICFG) from the ROSE AST, and that map data flow analysis
results back to the AST.

Prolog term manipulators use components provided by SATIrE for convert-
ing the ROSE AST to Prolog terms and back. Such terms can be analyzed
and transformed using Prolog’s powerful unification and term manipulation
facilities.

In addition, program analysis and transformation tools that process source
code can be connected to SATIrE by exchanging annotated or transformed source
code. Figure 3 shows the overall architecture of the system. SATIrE is used in
teaching program analysis and in research projects for worst-case execution time
analysis [9].

The VFG optimizer implemented with SATIrE used the frontend available
via ROSE; expression equivalence classes were computed by a data flow analyzer
generated by PAG. The computation of VFG edges from these equivalence classes
and the computation of optimal computation points were implemented in C++.
The optimizing transformation based on this information was implemented using
ROSE’s AST transformation facilities, and the AST was unparsed to C++ source
code by ROSE’s backend.

4 Results

The source-to-source optimizer was tested by applying it to various small C++
programs. These programs were limited in size, due mainly to the fact that the
version of SATIrE available at the time was in a rather early stage of development
and contained some very inefficient parts. Current versions of SATIrE are much
more efficient, scaling up to hundreds of thousands of lines of C++ code.

The largest program that was successfully processed was the C version of
the Dhrystone benchmark [10], comprising about 720 lines of code. Only one of



SATIrE

Annotated
Program ’

Program
Annotator

Annotation
MapperProgram

Annotated

ICFG
Builder

ROSE
C/C++

Back End

Front End
C/C++
EDG

AST
ROSE

Annotated

AST ’

Annotated
ROSE

Builder
Term

Mapper
ResultsResults

Mapper

PAG
Prolog

Manipulator
TermAnalyzer

AST
Transformer

Analysis Prolog

Fig. 3. Architecture of the SATIrE framework.

the routines in the benchmark was significantly altered by the optimizer, but
profiling showed that this routine accounted for about 22.5 % of total execution
time. Compared to GCC with maximum optimization, the code optimized by
SATIrE was about 2 % faster.

This speedup is quite modest. This was to be expected as GCC itself offers
powerful partial redundancy elimination. Thus the only speedups we realized
were due to some complex array index computations that GCC did not optimize.
Partial redundancies that other compilers don’t eliminate are rare, particularly
at the source code level.

5 Related Work

The optimization discussed in this work is based on the value flow graph, a
program representation introduced by Steffen et al. [3]. The approach unifies
two different techniques for code optimization by motion of expressions: partial
redundancy elimination [1, 11] and global value numbering [2].

A similar optimization was implemented by Bod́ık and Anik [5]. Their ap-
proach is more aggressive in that it also considers expression equivalences due to
certain arithmetic identities. To reduce the complexity of the analysis, they only
consider certain restricted classes of expressions that arise from simple address
computations.

This paper is a short version of the author’s master’s thesis [12].



6 Conclusions

This paper presented the value flow graph (VFG), a program representation for
powerful semantic partial redundancy elimination. The value flow graph connects
equivalence classes of expressions at subsequent program points; code motion on
the VFG can be implemented using simple data flow analysis. The resulting opti-
mization can be made strictly more powerful than what is possible in SSA form.

A source-to-source optimizer prototype for C++ programs was implemented
using the SATIrE framework. The results of the prototype were modest due
to limitations of SATIrE at the time of the experiments, and because partially
redundant expressions are rare on the source code level.

Acknowledgements

Work on SATIrE was supported by the European Community under the FP6
ARTIST2 Network of Excellence on Embedded Systems Design, contract IST-
004527, and under the FP7 project ALL-TIMES, contract IST-215068.

References

1. Morel, E., Renvoise, C.: Global optimization by suppression of partial redundan-
cies. Communications of the ACM 22(2) (1979) 96–103

2. Rosen, B.K., Wegman, M.N., Zadeck, F.K.: Global value numbers and redundant
computations. In: POPL ’88. (1988) 12–27

3. Steffen, B., Knoop, J., Rüthing, O.: The value flow graph: A program representa-
tion for optimal program transformations. In: ESOP ’90. (1990) 389–405

4. Knoop, J., Rüthing, O., Steffen, B.: Code motion and code placement: Just syn-
onyms? Lecture Notes in Computer Science 1381 (1998) 154–169

5. Bod́ık, R., Anik, S.: Path-sensitive value-flow analysis. In: POPL ’98. (1998)
237–251

6. Schordan, M.: Combining tools and languages for static analysis and optimiza-
tion of high-level abstractions. In: 24. Workshop der GI-Fachgruppe “Program-
miersprachen und Rechenkonzepte”, Department of Computer Science, Christian-
Albrechts-Universitt zu Kiel (2007) 72–81

7. Schordan, M., Quinlan, D.: A source-to-source architecture for user-defined opti-
mizations. In: Proc. Joint Modular Languages Conference. (2003)

8. Martin, F.: PAG – an efficient program analyzer generator. International Journal
on Software Tools for Technology Transfer 2(1) (1998) 46–67

9. Prantl, A.: Source-to-source transformations for WCET analysis: The CoSTA ap-
proach. In: 24. Workshop der GI-Fachgruppe “Programmiersprachen und Rechen-
konzepte”, Department of Computer Science, Christian-Albrechts-Universitt zu
Kiel (2007) 51–60

10. Weicker, R.P.: Dhrystone: A synthetic systems programming benchmark. Com-
munications of the ACM 27(10) (1984) 1013–1030

11. Knoop, J., Rüthing, O., Steffen, B.: Optimal code motion: Theory and practice.
ACM TOPLAS 16(4) (July 1994) 1117–1155

12. Barany, G.: Semantics-based code optimization with SATIrE. Master’s thesis,
Vienna University of Technology (2008)




