
Current state of ASoC design methodology

Andreas Bernauer1, Dirk Fritz1, Björn Sander2, Oliver Bringmann2, and
Wolfgang Rosenstiel1,2

1 Wilhelm-Schickard-Institute of Computer Science,
Department of Computer Engineering
72076 Tübingen, Sand 13, Germany

bernauer@informatik.uni-tuebingen.de
2 Forschungszentrum Informatik

76131 Karlsruhe, Haid-und-Neu-Str. 10-14, Germany
bsander@fzi.de

Abstract. This paper gives an overview of the current state of ASoC
design methodology and presents preliminary results on evaluating the
learning classifier system XCS for the control of a QuadCore. The ASoC
design methodology can determine system reliability based on activity,
power and temperature analysis, together with reliability block diagrams.
The evaluation of the XCS shows that in the evaluated setup, XCS can
find optimal operating points, even in changed environments or with
changed reward functions. This even works, though limited, without the
genetic algorithm the XCS uses internally. The results motivate us to
continue the evaluation for more complex setups.

Keywords. Dagstuhl Seminar Proceedings, System-on-Chip, design method-
ology, system reliability, learning classifier system, XCS, ASoC

1 Introduction

The number of System-on-Chip (SoC) designs is expected to increase strongly ac-
cording to the International Technology Roadmap for Semiconductors [1]. Lower
power consumption, higher performance and simpler system integration are the
major advantages of SoC design in comparison with other design styles.

However, due to the continuing scaling of silicon technologies it is becoming
increasingly difficult for manufacturers to fulfill the expectations of their cus-
tomers with respect to the reliability of the products. This is because decreased
feature sizes not only lead to higher clock frequencies, lower supply voltages and
smaller die sizes but also cause some serious problems. In particular, changed
electrical circuit properties, the susceptibility to internal and external noises and
accelerated aging pose great challenges [2,3]. The accelerated aging is a conse-
quence of higher average on-chip temperatures which result from higher power
densities as well as of thermal cycles. Various failure mechanisms, like electromi-
gration or time-dependent dielectric breakdown, occur earlier in the lifetime of
a chip. Overall, this leads to a decrease in reliability. In the past, the reliability

Dagstuhl Seminar Proceedings 08141 
Organic Computing - Controlled Self-organization 
http://drops.dagstuhl.de/opus/volltexte/2008/1564

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 A. Bernauer, D. Fritz, B. Sander, O. Bringmann, W. Rosenstiel

of semiconductor devices was mainly seen as a manufacturing problem. First
approaches that tried to improve reliability by blind redundancy turned out to
be too expensive—at least for most market segments. This and the fact that it
is hardly possible to unfold the opportunities for increased reliability offered by
the functionality at the chip level, the functionality of the system comes into
focus with respect to reliability considerations and special attention is payed to
higher design levels.

The decreased feature sizes also lead to an increased design complexity, as
more and more transistors fit on an individual chip. This makes it difficult for a
designer to foresee all possible operating conditions and failure modes of a chip.
To alleviate the designer’s life, we foresee some intelligence on an Autonomic
System-on-Chip (ASoC), which takes at run time the decisions the designer for-
merly took at design time. In this paper, we present our first results on evaluating
how the learning classifier system XCS can be a candidate for this intelligence
and control the operating point of an ASoC.

This paper is organized as follows: Section 2 summarizes related work. In
Section 3, the developed methodology for system reliability estimation at design
time is presented in detail and experimental results are discussed. Section 4
shows the evaluation of XCS to control a SoC at run time. Finally, Section 5
concludes the paper.

2 Related work

Great efforts were made to be able to describe the effects of the aging semicon-
ductor devices through mathematical models. An overview is given in [4].

There exists a lot of work on structural reliability analysis based on Reliabil-
ity Block Diagrams (RBDs) and fault trees [5]. An RBD is a form of reliability
analysis using a functional diagram to portray and analyze the reliability rela-
tionship of components in a system. In doing so, each component is represented
by a block, which is generally interconnected with other blocks [6]. A system that
is described by a RBD fulfills its requirements if and only if there is a path from
the entrance of the RBD to the exit which exclusively comprises functioning
blocks.

In order to estimate the temperatures of semiconductor devices during oper-
ation, the power consumptions of the system components have to be known.For
this purpose, Power State Machines (PSMs) are frequently used as a model.
PSMs are graphs with a finite set of states which represent potential component
configurations. The performance and power consumption of the corresponding
configuration is associated with each state. An approach based on the modeling
of system components with PSMs was introduced in [2].

The effects of Dynamic Reliability Management (DRM) on the reliability of
single microprocessors were investigated by Srinivasan et al. [7]. They showed
that it is necessary to take the target application into consideration during re-
liability analysis, since otherwise the worst case behavior (of all possible appli-
cations) has to be chosen to assure that reliability guidelines are met. This can



ASoC design methodology 3

lead to high costs, for example for chip cooling solutions. Srinivasan et al.used
an instruction set simulator to determine the activity times of the microarchi-
tectural units. Neither structural redundancies nor power management methods
were taken into consideration.

The leakage contribution to the total power dissipation increases with each
new technology node. An approach which enables an leakage-aware design space
exploration at system level was presented in [8].

In this work, the impact of the power management, the placement and present
structural redundancies on the reliability of MPSoCs is examined during an early
design phase.

Our approach on estimating system reliability takes a middle position to the
methods discussed above, as we determine the activity of the system components
by executing a SystemC model, which is generated from an abstract represen-
tation of the system functionality. Methods based on instruction set simulators
allow determining the activity of the system parts on a fine-grained level, but
the simulation speed is potentially insufficient. In contrast, techniques that rely
on a synthetic load ensure a fast simulation speed, but the effects of the target
application cannot be taken into account.

Holland et al. [9] first proposed the learning classifier system (LCS). A learn-
ing classifier system consists of a set of condition-action pairs (the classifiers)
which are learned and executed in an environment. The LCS is supposed to
learn the necessary classifiers for a specific environment to reach some preset
goal. Wilson et al. [10] presented a specialized version of an LCS, the XCS, for
which studies showed [11] that it learns accurate, complete, and minimal repre-
sentations for boolean functions. Butz [12] wrote an implementation of XCS in
C, which we used as a reference implementation.

The only known application of learning classifier systems to control a machine
is AutonoMouse [13], where an robot mouse learned to approach a light source
under different noise and lesion conditions. To the best of our knowledge, XCS
has not yet been applied to control the state of a SoC.

3 Reliability estimation at design time

The reliability of a design is calculable with two major pieces of information:
how the individual components of the system depend on each other and how
reliable the individual components are. For the first major piece of information,
the dependence of the individual components, we use the standard approach of
a reliability block diagram (RBD) and fault tree generation and analysis [5].
In general, we assume that the reliability block diagram is given for a specific
design.

The reliability of the individual components of a design—the second major
piece of information to calculate overall system reliability—is more difficult to
obtain, as it depends on various run-time parameters, most notably temperature.
Section 3.1 shows the failure models we use. Section 3.2 presents our system
reliability estimation. Section 3.3 shows experimental results.



4 A. Bernauer, D. Fritz, B. Sander, O. Bringmann, W. Rosenstiel

3.1 Component reliability

Our analysis currently covers temperature as a source of influence on the re-
liability of semiconductor components. Most fault models describing the aging
of semiconductor components due to temperature are based on the Arrhenius
relationship, whose general form is [4]:

λ(T ) = c · e−
Ea
kT (1)

λ(T ) is the failure rate (in failures in time) with respect to the absolute tem-
perature T , Ea is a material dependent activation energy for the corresponding
failure mechanism (here: 1 eV which corresponds to the activation energy of alu-
minum for electromigration [4]), k is Boltzmann’s constant (8.62 · 10−5 eV/K),
and c a material specific constant.

To compare different design alternatives, we compute the acceleration factor
A(Ti) at temperature Ti, which is the ratio of the failure rate at temperature Ti

and some base temperature (here we use 333.3 K (60 ◦C)):

A(Ti) =
λ(Ti)

λ(333.3K)
= e

Ea
k

“
1

333.3K−
1

Ti

”
(2)

If the failure rate is regarded as fixed, the reciprocal value of λ corresponds to
the mean time to failure, MTTF. It would be desirable to determine the absolute
reliability of a system in form of a MTTF value from the operating temperatures.
For this, all material-dependent constants had to be known, which is seldom the
case. Assuming λ(333.3K) = 1 allows us to compare designs anyway, although
the actual failure rates are unknown.

Another fault model which describes semi-conductor aging due to tempera-
ture variation is the Coffin-Manson equation [4]:

Nf = C0(∆T )−q (3)

Nf is the average number of temperature cycles of range∆T a device can cope
with until an error occurs. C0 and the Coffin-Manson exponent q are material-
dependent constants. From equation (3) follows that a single temperature cycle
of range ∆T consumes

1
Nf

· 100 =
∆T q

C0
· 100 (4)

percent of the lifetime of the circuit. This means that ∆T q is proportional to
the lifetime consumed by a single cycle of range ∆T . Thus, by determining the
amount and size of the temperature cycles a component goes through, we can
calculate a value which is proportional to the consumed lifetime.

3.2 System reliability

The temperature of a system depends (besides the temperature of the environ-
ment) on the power consumption of the component, which in turn depends on its



ASoC design methodology 5

Fig. 1. System reliability estimation at design time.

activity, which in turn depends on its behavior at run time. Thus, the starting
point of our reliability analysis is an executable system specification, written in
SystemC [14].

Figure 1 gives an overview of our current system reliability analysis. In our
analysis, the components of a system are processes which perform a certain task.
We make the following simplifications to keep simulation time and complexity
bearable. First, we base our analysis on a static analysis of the processes, that is
we ignore the impact of input data. Second, we assume that each process runs on
its own processor, that is, the system has no task scheduler. With this, the run-
time behavior of a process depends only on its control flow and its communication
with other processes. Determining the execution time and the activity behavior
of a process still remains a hard problem, because the communication of the
process with other processes usually leads to cyclic dependencies.

The first step to obtain a processor’s temperature behavior is a static timing
and activity analysis of the process running on a selected processor. This results
in minimal and maximal execution times for each basic block of the process.
Based on these execution times, we use SysXplorer [15] to generate a commu-
nication dependency graph (CDG) of the whole system. A vertex in the CDG
corresponds to a communication point within a SystemC process at which the
SystemC process either receives or sends data to other processes. An edge either
represents the communication between two SystemC processes or, if it is within
one SystemC process, all possible control flows between the two connected com-
munication points. In the latter case, the edge is annotated with the minimal and
maximal execution time of the shortest and longest control flow path between
the connected communication points, respectively, which result from applying
the algorithm presented in [16].

Based on the activity analysis, the SysXplorer tool generates SystemC simu-
lation code which represents the activity of the analyzed system. This simulation
behaves like the analyzed system in terms of average waiting and computation
times, without computing anything actually. The simulation records the time
periods the process is waiting or computing, showing when the process is active.



6 A. Bernauer, D. Fritz, B. Sander, O. Bringmann, W. Rosenstiel

Fig. 2. Power state machine
adopted for the PowerPC 750.

Fig. 3. Assumed placements and fault
trees

Using the power state machine of the processor, we can determine when the
processor is taking which power saving state. This gives us an estimate of the
processor’s power consumption over time [17].

Given the power consumption over time and the floor plan of the final design,
which indicates the relative position of the processors, we can calculate the tem-
perature behavior of the system using the Hotspot tool [18]. Together with the
fault tree analysis mentioned at the beginning of this section and the reliability
equations presented in 3.1 this results in the overall system reliability.

3.3 Results of system reliability calculation

We applied the presented system reliability analysis to two multi-processor system-
on-chips (MPSoC) that both realize a 1/3,(14,12,3)-Viterbi decoder but that dif-
fer in their power management: one uses a full three-state power machine while
the other uses a two-state power state machine without a SLEEP state.

The forward, backward and stack processes of the Viterbi algorithm each
run on a dedicated PowerPC 750 processor. As the power management strategy
of the PowerPC 750 was unknown, we adopted the strategy of the StrongARM
SA-1100 [19] to the power values of the PowerPC 750 (Figure 2). Figure 3 shows
the assumed placement for both MPSoCs, with the size of the PowerPC taken
from [20].

Figure 4 shows the temperature behavior of both MPSoCs for the time inter-
val from 0.85 s to 1.5 s, after the temperature reached a stable state. The tem-
perature behavior for the MPSoC with three-state power management (labeled
“with power management”) shows some temperature variations, especially for
the forward processor. The temperature behavior for the MPSoC with two-state
power management (labeled “without power management”) does not exhibit
these large variations. The large temperature variations result from the large
transition time from the power saving state SLEEP to RUN: while the MPSoC
with three-state power management needs 160 msec to wake up, the MPSoC
with two-state power management can quickly change between RUN and IDLE
mode in about 10µsec.



ASoC design methodology 7

Fig. 4. Viterbi decoder temperature curves.

Table 1 shows the mean time to failure (MTTF) and consumed lifetime values
for both MPSoCs, standardized to the case with two-state power management.
From the table we conclude, that the power management does not lead to note-
worthy reliability gains, but the time to first failure due to temperature cycling
is decreased by a factor of about 40. Changing the placement of the processors
did not affect the reliability values (data not shown).

We applied our system reliability analysis also on two version of the Viterbi
decoder with hot and cold redundancy, shown in Figure 3. Table 2 shows the
resulting mean times to failure. We observe that the reliability increases, more
for cold redundancy than for hot redundancy as expected (in cold redundancy
the redundant component only ages when the other component fails).

4 Evaluation of XCS

The goal of this evaluation is to determine whether XCS can control the operat-
ing point of a SoC at run-time. For this evaluation, we define the operating point
as the operating frequency and voltage of the SoC; later setups may include more
complex parameters such as bus width or which processor is running.

The optimal operating point of a SoC is mainly influenced by the run-time
properties performance, temperature, power consumption, and (soft) error rate.
Section 4.1 describes the models from the literature we use to estimate these
properties.



8 A. Bernauer, D. Fritz, B. Sander, O. Bringmann, W. Rosenstiel

PSM

3-state 2-state

Temperature forward [◦C] 61.56 61.61
Temperature backward [◦C] 60.79 60.87
Temperature stack [◦C] 60.57 60.77

Mean Time To Failure 1.01 1.00
Consumed Lifetime 38.42 1.00

Table 1. Average temperatures, MTTF
and CLT values

Variation MTTF

no redundancy 1.00
hot redundancy 1.22
cold redundancy 1.36

Table 2. Results of the MTTF
analysis

4.1 Parameter models

This section describes the models we use to estimate the power consumption
and the soft error rate of the system. For the performance, we use the frequency
as a (rough) estimate. Later setups will include more sophisticated performance
measures. For the temperature, we feed the Hotspot tool [18] with the estimated
power values. See Section 3.2 for details on the Hotspot tool.

Power consumption The power consumption consists of the static and dynamic
power dissipation.

Ptotal = Ps + Pd (5)

For the static power dissipation, we use the model of Butts et al. [21]

Ps = VDD ×N × kdesign × Îleak (6)

where VDD is the supply voltage, N is the number of transistors, kdesign is a
design dependent parameter, and Îleak is a technology dependent parameter.
kdesign and Ileak are given in [21] (we use kdesign = 9 for the cores, kdesign = 1.2
for the caches, and Îleak = 10−8.

For the dynamic power dissipation, we use a modified version of the well-
known model [22] as used by Intel to estimate power dissipation in the Pen-
tium M [23]:

Pd = αCLV
2
DDfp (7)

where α (0 < α < 1) is the activity factor, CL is the lump capacitance, and fp is
the clock frequency. The activity factor gives an estimate on the average number
of zero-to-one transitions during a clock cycle and can be gained through logic
simulation.



ASoC design methodology 9

Timing errors Defining an accurate model for timing errors is difficult, as the
timing error depends on the actual path the signal is taking between the pipeline
stages. For this, we use a simple model where we assume a fixed set of inverters
between the two pipeline stages. The amount of inverters could be either the
longest or the average path between the pipeline stages. We model the average
switching time for an inverter as

tav =
(tdr + ttempdelay(T )) + (tdf + ttempdelay(T ))

2
(8)

where tdr and tdf are the well-known raise and fall delays of a signal on an
inverter [22] and ttempdelay models the influence of the temperature on the time
delay [24] as:

ttempdelay(T ) =
T − 218 K

418 K− 218 K
· tg (9)

where tg is the whole additional time delay due to raising the temperature from
218 K to 418 K.

Soft errors We use the model of Zhu et al. [25] to model the effect of frequency
and voltage scaling on fault rates:

λ(V, F ) = λ(f) = λ010
(1−f)d
1−fmin (10)

where λ0 is the average fault rate corresponding to Vmax and fmax and d is a
constant. Zhu normalizes the range of minimum and maximum voltage V and
frequency, that is Vmax = fmax = 1.0 (therefore, and because delay scales linearly
with 1

V [26], here V = f). The fault rate is used as a parameter in a Poisson
distribution describing the occurrences of faults.

As the mean time to failure due to hard errors is usually in the scale of several
years, we do not model the effect of hard errors.

4.2 Experimental setup

We used the AMD Opteron (Barcelona) Processor as the hardware, which is a
four-core general purpose processor with a three level cache hierarchy produced
on a single die in 65 nm technology. The advantage of using the Opteron as an
MPSoC was that most of the parameters which are necessary for simulation are
publicly available, and that the processor can adjust the frequency of each core
individually. Figure 5 shows the floor plan of the Opteron, as derived from [27].
Every core in the Opteron has its own L1-cache (not depicted) and L2-cache. All
cores share a common L3-cache. The caches are 2-, 16-, and 32-way associative,
respectively, that is each cache block is 32 KB in size and each cache line contains
64 bytes [27]. We adjust the activity factor of the cores so that we meet the
thermal design power and average CPU power.

We modeled the Opteron with libasoc, a simulation library written with
SystemC to model ASoC designs. We executed four algorithms: LR-decomposition,



10 A. Bernauer, D. Fritz, B. Sander, O. Bringmann, W. Rosenstiel

Fig. 5. Floorplan of the Opteron. Measurements are given in mm.

video filtering, matrix multiplication and a dual-core application. Figure 6 shows
the traces of the algorithms. LR[B] mult rows act describes the LR compu-
tation, where mult is the number of needed multiplications or divisions, rows
is the number of rows of the equality system, and act is the activity fac-
tor. [LOAD|STORE] CACHE mem act lines loads or stores lines lines of data
to/from mem . GR size pixels act describes the size xsize filter of a video
containing pixels pixels per image. ACT cycles act runs a core for cycles

cycles. READY and WAIT ON synchronize two cores.
We simulated the trace files for one second of simulated time, where the

cores repeatedly executed the algorithms. A single core could solve 7 417 linear
equality systems (LR-decomposition), filter 231 images per second, or calculate
101 698 matrix multiplications. When Core 1 and Core 2 do LR-decomposition,
Core 3 does matrix multiplication and Core 4 does video filtering, only 7 311
LR-decompositions, 223 images and 91 917 matrix multiplications could be com-
puted, indicating that access to main memory becomes the bottleneck. In the
latter case, power consumption lies at 83 W and temperature raises to 55 ◦C.
When all cores are idling, power consumption lies at 26 W. These simulated
values are comparable to the actual values of the Opteron [27].

For the environment of the XCS, the following parameters were available
(compare to Section 4.1): temperature, power dissipation, timing error (only
logic), frequency, voltage, and amount of soft-errors (only memory). We allowed
eleven different frequencies ranging from 500 MHz to 3000 MHz and five voltage
levels ranging from 0.8 V to 1.3 V. We encoded frequency with four bits, voltage



ASoC design methodology 11

LR:

LOAD CACHE MEM 0.02 1

LR 3 63 0.06

LRB 3 63 0.06

STORE CACHE MEM 0.02 8

VIDEO:

LOAD CACHE MEM 0.02 1

GR 3 11000 0.06

STORE CACHE MEM 0.02 512

LOOP VIDEO 28

MATRIX:

LOAD CACHE MEM 0.02 1

LRB 3 63 0.06

STORE CACHE MEM 0.02 8

PARA1:

LOAD CACHE MEM 0.02 1

LOAD CACHE MEM 0.02 0

LOAD CACHE MEM 0.02 0

ACT 4000000000 0.5

READY core2

LOAD CACHE L3 0.02 1

ACT 1000000000 0.3

STORE CACHE MEM 0.02 32

LOOP PARA 2000000

PARA2:

LOAD CACHE MEM 0.02 1

ACT 2000000000 0.5

STORE CACHE L3 0.02 512

ACT 0.0 0.0

WAIT ON core1

LOOP PARA 2000000

Fig. 6. Traces of the algorithms. LR LR-decomposition, VIDEO video streaming,
MATRIX matrix multiplication, PARA1 and PARA2 dual-core application.

with three bits, temperature, ranging from 50 ◦C to 90 ◦C, with five bits, and
used one bit to indicate an error (either timing or soft error). The action consisted
of setting frequency and voltage. For this evaluation, we treated frequency and
voltage separately, although a more realistic simulation would use only valid
frequency-voltage pairs.

We modeled the problem of controlling the operating point of the MPSoC as
a single-step problem of the XCS. We could not model the problem as a multi-
step problem, because the reinforcement program could not signal the end of the
problem, that is when the optimal operating point is reached.

4.3 Evaluation of XCS control

The XCS generates its classifiers during an initial training phase. In the training
phase, a random frequency and voltage was set, the system ran for 2 seconds
simulated time, the current state of the environment was reported to the XCS,
which then decided on an action (a frequency-voltage setting), and received
a reward for this decision after an additional two seconds of simulated time.
We repeated this training phase until all possible frequency-voltage pairs were
tested sufficiently often, in this case 50 000 times. Also, between the runs, tem-
perature was raised randomly by 5 K, 10 K, 20 K, or 30 K. The waiting period
of two seconds was needed to let temperature reach a stable state. During the
training phase, the XCS runs only on one core with an activity factor of 0.05
without cache access. The other cores were idling at 2000 MHz at 1.2 V. This
setup allowed a significantly smaller simulation time than running the traces.
During training, we set [28] the don’t-care probability P# = 1.0, the exploration



12 A. Bernauer, D. Fritz, B. Sander, O. Bringmann, W. Rosenstiel

Fig. 7. Timing errors dependency on temperature and voltage at 2000 MHz.

probability Pexplr = 1.0, the genetic algorithm threshold θGA = 25, the deletion
threshold θDel = 20, and the merging threshold θSub = 25.

The reward function for the training phase should reflect that the XCS should
minimize power consumption, maximize performance, while keeping the error
rate low. This resulted in the following reward function:

R(f, p, t, v) = w1
f

fmax
+ w2

(
1− p

pmax

)
+ w3rel(t, v, f) (11)

rel(t, v, f) models the reliability and is 0 in case of an error and 1 otherwise.
We chose w1 = 200, w2 = 35, and w3 = 200 to indicate that the system should
reach high frequency values while keeping power consumption low. Figure 7
shows the fault count depending on temperature and voltage at 2000 MHz. We
can see, that [2000 MHz, 1.2 V] is a safe setting in terms of faults at a usual
temperature range (up to 70 ◦C).

Simple control After training, we let XCS control an MPSoC running each algo-
rithm on a core. We set the explore probability Pexplr = 0 to inhibit exploration
and let the XCS always choose the classifier promising the highest reward. Setting
the thresholds θGA = 0, θDel = 0, and θSub = 0 inhibits the genetic algorithm
and avoids deleting or merging of classifiers. The only possibility for new classi-
fiers was through covering. Every 10 s a random frequency and voltage was set.
Figure 8 shows the resulting frequency and voltage settings. We observe that the
XCS resets the frequency and voltage to 2000 MHz and 1.2 V which leads to no
errors in the actual temperature range and is the optimal setting.



ASoC design methodology 13

Fig. 8. Control reaction of the XCS after setting random frequency and voltage
every 10 sec.

Control under changed environment We also evaluated XCS’ behavior to changed
environment settings. For this, we changed the rel(t, v, f) function in (11) to

rel(t, v, f) =


0 if timing error
( 70

t )2 if t > 70
1 otherwise

(12)

and changed the weights to w1 = 200, w2 = 35, and w3 = 200 if temperature
was below 70 ◦C and w1 = 100, w2 = 100, and w3 = 200 if temperature was
above 70 ◦C. This represents an emergency behavior which allows the XCS to
use a less performing setting and shows how the designer’s prior knowledge may
enter the XCS control mechanism. Figure 9 shows the result. We observe that
once the temperature raises above 70 ◦C, XCS changes the frequency and voltage
such that temperature falls again and timing errors stay low. However, we also
observe an oscillating behavior, as the XCS “forgets” that the previously chosen
setting makes the system temperature raise above limits. This will be a point of
future research.

Learning without genetic algorithm As the final ASoC probably won’t have a
genetic algorithm implemented (because of the large population size and thus
large memory requirement the genetic algorithm needs to operate), we evaluated
XCS’s capabilities to learn a different reward function while its genetic algo-
rithm is disabled. For this, we used the classifiers learned previously with (11)
and altered the training phase slightly to reduce the time needed for learning,



14 A. Bernauer, D. Fritz, B. Sander, O. Bringmann, W. Rosenstiel

Fig. 9. XCS’s behavior to a temperature raise of 15 K at t = 15 s.

by keeping the current frequency-voltage pair until the XCS finds a higher re-
warded one (instead of randomly setting frequency-voltage pairs). This restricts
the problem space to the more interesting frequency-voltage pairs. Furthermore,
we increased the learning rate β from 0.2 to 1.0 to help forgetting the original
reward function.

Figure 10 shows the frequency-voltage pairs the XCS tries out to learn the
following new reward function, which aims to minimize the waiting time w of
Core 2 for Core 1 (and thus keep total run time low):

R(f, p, t, v, w) = w1time(w) + w2

(
1− p

pmax

)
+ w3rel(t, v, f) (13)

Here, rel(t, v, f) is the same as in (12) and

time(w) =

{
1− w

wmax
if the waiting time of Core 1=0

0 otherwise

We observe that, despite the high learning rate, the XCS needs a long time
to learn the new reward function, but nonetheless succeeds.

5 Conclusion and future work

The paper showed the current state of ASoC design methodology. We can esti-
mate the reliability of a system at design time, allowing us to incorporate relia-
bility as an optimization criterion for designs. Applying our reliability analysis
on an example showed the impact of power management on system reliability.

Furthermore, this paper showed our first evaluation of the learning classifier
system XCS to control a SoC. The results show that XCS can control the op-
erating point of a SoC, even under changed environmental conditions. We also
showed that the XCS can learn new reward functions without a functioning ge-
netic algorithm, as it will be the case, once XCS is implemented on an ASoC.
The results encourage to further investigate the capabilities of XCS.



ASoC design methodology 15

Fig. 10. XCS learning different reward function with disabled genetic algorithm
and using initial classifiers.

Future work on evaluating the XCS will include the evaluation of realis-
tic applications, for example communicating applications or shared memory us-
age, a better measurement for performance, and choosing only from fixed set of
frequency-voltage pairs. We will also investigate how we can prevent the oscil-
lating behavior of the XCS we observed when we raised the temperature of the
environment.

6 Acknowledgments

This work is part of the Organic Computing initiative carried out by the Deutsche
Forschungs Gemeinschaft. We thank the Deutsche Forschungs Gemeinschaft for
their grant under which this work has been carried out. We also thank Johannes
Zeppenfeld for developing and coding large parts of libasoc (the ASoC simula-
tion library), and the team of Prof. Herkersdorf at the TU München for fruitful
discussions.

References

1. Edenfeld, D., Kahng, A.B., Rodgers, M., Zorian, Y.: 2003 Technology Roadmap
for Semiconductors. Computer 37 (2004) 47–56

2. Narayanan, V., Xie, Y.: Reliability Concerns in Embedded System Designs. Com-
puter 39 (2006) 118–120

3. Borkar, S.: Designing Reliable Systems From Unreliable Components: The Chal-
lenges of Transistor Variability and Degradation. IEEE Micro 25 (2005) 10–16

4. JEDEC: Failure mechanisms and models for semiconductor devices. Technical
Report JEP122C, JEDEC Solid state technology association (2006)

5. Shooman, M.L.: Probabilistic Reliability: An Engeneering Approach. 2 edn. Robert
E. Krieger Publishing Componay, Malabar, Florida (1990)

6. Neubeck, K.: Practical Reliability Analysis. Prentice Hall (2003)



16 A. Bernauer, D. Fritz, B. Sander, O. Bringmann, W. Rosenstiel

7. Srinivasan, J., Adve, S.V., Bose, P., Rivers, J.A.: Lifetime Reliability: Toward an
Architectural Solution. IEEE Micro 25 (2005) 70–80

8. Gupta, A., Dutt, N., Kurdahi, F., Khouri, K., Abadir, M.: Floorplan driven leak-
age power aware IP-based SoC design space exploration. In: CODES+ISSS ’06:
Proceedings of the 4th international conference on Hardware/software codesign
and system synthesis, ACM (2006) 118–123

9. Holland, J.H.: Adaptation. In Rosen, R., Snell, F.M., eds.: Progress in theoretical
biology, New York, Academic Press (1976) 263–293

10. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computation 3
(1995) 149–175

11. Kovacs, T.: XCS Classifier System Reliably Evolves Accurate, Complete, and
Minimal Representations for Boolean Functions. In Roy, Chawdhry, Pant, eds.: Soft
Computing in Engineering Design and Manufacturing, Springer-Verlag, London
(1997) 59–68

12. Butz, M.V.: An Implementation of the XCS classifier system in C. Technical
Report 99021, The Illinois Genetic Algorithms Laboratory (1999)

13. Dorigo, M.: ALECSYS and the AutonoMouse: Learning to Control a Real Robot
by Distributed Classifier Systems. Machine Learning 19 (1995) 209–240

14. Open SystemC Initiative (OSCI): SystemC. http://www.systemc.org (1999)
15. Forschungszentrum Informatik – Forschungsbereich Systementwurf in der

Mikroelektronik: SysXplorer. http://www.fzi.de/sim/sysxplorer.html (2008)
16. Li, Y.T., Malik, S., Wolfe, A.: Efficient microarchitecture modeling and path anal-

ysis for real-time software. In: Proceedings of the Real-Time Systems Symposium
(RTSS), Los Alamitos, CA, USA, IEEE Computer Society (1995) 298

17. Bergamaschi, R.A., Jiang, Y.W.: State-based power analysis for systems-on-chip.
In: DAC ’03: Proceedings of the 40th conference on Design automation, ACM
(2003) 638–641

18. Skadron, K., Stan, M.R., Huang, W., Velusamy, S., Sankaranarayanan, K., Tarjan,
D.: Temperature-aware microarchitecture. SIGARCH Comput. Archit. News 31
(2003) 2–13

19. Benini, L., Bogliolo, A., Micheli, G.D.: A survey of design techniques for system-
level dynamic power management. IEEE Trans. Very Large Scale Integr. Syst. 8
(2000) 299–316

20. IBM: PowerPC 750 Microprocessors. (2008)
21. Butts, J.A., Sohi, G.S.: A static power model for architects. In: MICRO 33:

Proceedings of the 33rd annual ACM/IEEE international symposium on Microar-
chitecture, New York, NY, USA, ACM (2000) 191 –201

22. Weste, N., Eshraghian, K.: Principles of CMOS VLSI Design: A Systems Perspec-
tive. 2nd edn. Addison-Wesley (1993)

23. Genossar, D., Shamir, N.: Intel R© Pentium R©M Processor Power Estimation, Bud-
geting, Optimization, and Validation. Intel Technology Journal 7 (2003) 44–49

24. Golda, A., Kos, A.: Temperature Influence on Power Consumption and Time
Delay. In: Proc. Euromicro Symposium on Digital Systems Design, IEEE Computer
Society (2003) 378

25. Zhu, D.: Reliability-Aware Dynamic Energy Management in Dependable Embed-
ded Real-Time Systems. In: 12th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS’06), Los Alamitos, CA, USA, IEEE Computer
Society (2006) 397–407

26. Burd, T., Brodersen, R.: Energy efficient CMOS microprocessor design. Hawaii
International Conference on System Sciences (1995) 288

http://www.systemc.org
http://www.fzi.de/sim/sysxplorer.html


ASoC design methodology 17

27. AMD: AMD Opteron Processor Family. http://www.amd.com/us-en/

Processors/ProductInformation/0,,30_118_8825,00.html (2008)
28. Butz, M., Wilson, S.W.: An Algorithmic Description of XCS. In Lanzi, P.L.,

Stolzmann, W., Wilson, S.W., eds.: IWLCS ’00: Revised Papers from the Third
International Workshop on Advances in Learning Classifier Systems. Number 2321
in Lecture Notes in Artificial Intelligence, London, UK, Springer-Verlag (2001)
253–272

http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_8825,00.html
http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118_8825,00.html

	Current state of ASoC design methodology
	Andreas Bernauer, Dirk Fritz, Björn Sander, Oliver Bringmann, and Wolfgang Rosenstiel 



