
A Generic Framework for the Engineering of
Self-Adaptive and Self-Organising Systems

Giovanna Di Marzo Serugendo1, John Fitzgerald2, Alexander Romanovsky2, Nicolas
Guelfi3

1 School of Computer Science and Information Systems, Birkbeck College, London, UK
dimarzo@dcs.bbk.ac.uk

2 School of Computing Science, University of Newcastle, Newcastle upon Tyne, UK
John.Fitzgerald@newcastle.ac.uk,

Alexander.Romanovsky@newcastle.ac.uk
3 Laboratory for Advanced Software Systems, University of Luxembourg, Luxembourg

Nicolas.Guelfi@uni.lu

Abstract. This paper provides a unifying view for the engineering of self-adaptive
(SA) and self-organising (SO) systems. We first identify requirements for design-
ing and building trustworthy self-adaptive and self-organising systems. Second,
we propose a generic framework combining design-time and run-time features,
which permit the definition and analysis at design-time of mechanisms that both
ensure and constrain the run-time behaviour of an SA or SO system, thereby pro-
viding some assurance of its self-* capabilities. We show how this framework
applies to both an SA and an SO system, and discuss several current proof-of-
concept studies on the enabling technologies.

1 Introduction

Research into artificial self-adaptive (SA) and self-organising (SO) systems is flourish-
ing, demonstrating that it is feasible to develop ad hoc self-* systems. However, if we
are to build SA and SO ecosystems at a large-scale or professional level, it is important
to tackle issues related to their design, development and control. Indeed the next ques-
tion to answer is: how can we build trustworthy SA and SO systems? Trustworthiness
encompasses dependability properties, plus evidence of dependability4. Thus, during a
system’s initial development, deployment and subsequent evolution, we must be able
to provide assurance that emergent behaviours will respect key properties, frequently
to do with safety, security or performance of the whole composed system, and that the
human administrator retains control despite the self-* capabilities of the system. This
paper is concerned with both parts of this question: what design-time techniques and
architectures and what run-time infrastructures would be most appropriate for building
reliable and controllable SA and SO systems?

We consider here the following definitions of SA and SO systems: “Self-adaptive
systems work in a top-down manner. They evaluate their own global behaviour and

4 Trustworthiness also requires acceptance by users, organisations and society at large. In this
paper, however, we concentrate on the challenge imposed by the technical system.

Dagstuhl Seminar Proceedings 08141 
Organic Computing - Controlled Self-organization 
http://drops.dagstuhl.de/opus/volltexte/2008/1563

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, N. Guelfi

change it when the evaluation indicates that they are not accomplishing what they were
intended to do, or when better functionality or performance is possible. Self-organising
systems work bottom-up. They are composed of a large number of components that
interact locally according to simple rules. The global behaviour of the system emerges
from these local interactions, and it is difficult to deduce properties of the global system
by studying only the local properties of its parts.” [1].

At first, SA and SO systems seem to be very different: SA systems tend to be more
hierarchic and top-down driven; SO systems tend to be decentralised and bottom-up
driven. However, there are some important points of contact between the two concepts.
The need for allowing more “freedom” to self-adapting systems, by allowing a degree
of decentralisation and self-organisation to the components, has already been advo-
cated [2]. Self-organising systems with pure decentralised control should nonetheless
provide assurance of their behaviour to potential customers or users prior to deployment
and should allow control to be imposed by an administrator. Examples of systems al-
ready encompassing both SA and SO aspects are found in socio-technical applications
involving both heterogeneous technical devices such as body or environmental sensors,
PDAs, software, servers, and human users such as doctors, nurses, rescue teams, end-
users, system administrators. Socio-technical systems encompass, among others, am-
bient intelligence and ubiquitous computing systems, emergency response or e-Health
applications. Each actor (human or device) in such systems is an autonomous element.
As a whole the system displays complexity, self-adaptation and self-organisation.

In this paper, we describe an attempt to unify these two views – trustworthiness
of SA and SO – from an engineering perspective. We first expose requirements that
need to be satisfied by such system architectures in order to make them amenable to
the kinds of analysis required to provide for dependable systems design (Section 2).
We then present elements of a generic framework supporting designers and developers
of SA and SO systems, relating them to our identified requirements (Section 3). Sec-
tions 4 and 5 show how the framework applies to an SA and an SO system respectively.
Finally, Section 6 discusses preliminary proofs of concept, and Section 7 provides some
discussion. Section 8 briefly describes related work.

2 Engineering Requirements

From an engineering perspective, the systems that we consider here are distributed sys-
tems on a potentially large scale consisting of components which may be physical de-
vices, services, or people. They have an emergent behaviour and have the capacity to re-
spond autonomously to events within the system and in the environment. This dynamic
character challenges traditional methods of engineering dependable systems, which typ-
ically rely on extensive static, design-time analysis to achieve a level of predictability.
At the same time, it brings the potential to develop systems that use dynamic reconfig-
uration to remain resilient to threats. Thus, an engineering view of SA and SO systems
must attempt to “square the circle” of achieving predictable, yet dynamic resilience in
self-adaptive and self-organising systems.

A framework for trustworthy SA and SO systems must take account of a number
of requirements arising from the engineering need to understand and validate system



Generic Framework for Self-Adaptive and Self-Organising Systems 3

models during design, as well as the need to deliver a dependable level of service.
Below we list these key requirements.

Autonomous individual components.

Robustness and self-* behaviour arise from the numerous (low-level) individual com-
ponents constituting the core functionality of the system and from their (local) interac-
tions. In SO systems, such components can be ant-like entities, agents, peers or cars.
In SA systems, autonomic elements, autonomic managers, and any element of the sup-
porting infrastructure (e.g. the service registry or sentinel monitoring mentioned in [3])
are all autonomous components.

R1: Components should be decoupled as far as possible so that it is possible to
detect and respond to failure/unavailability without fundamentally harming the global
system.

Interoperability.

The overall (global) behaviour of an SA or an SO system is obtained through the in-
teractions of the individual components. In real-world scenarios involving open and
dynamic systems, we must think at the individual components as heterogeneous both
in nature and in design: different vendors will be providing autonomic elements; differ-
ently owned elements will want to participate in some self-organising systems (e.g. P2P,
MANET, ambient intelligence scenarios). Interoperability lies at a semantic level and
encompasses understanding of functional and non-functional (QoS/Constraints) capa-
bilities, as well as coordination and interaction modes among components and between
components and their environment. It should be noted that “off-the-shelf” components
may have only poorly understood behaviours and hence weak specifications, entailing
the use of protective wrappers [4, 5].

R2: Components should be decoupled from descriptions of their capabilities, QoS,
Constraints, execution flows, interactions mode, or policies.

R3: Components should be decoupled from any underlying coordination infrastruc-
ture supporting the components interactions (e.g. decoupling the components from any
shared blackboard, an event bus, etc.).

Self-awareness.

Self-* properties and behaviour arise from the capability of the system or its individual
components to identify by themselves (internally) any new condition, failure, or prob-
lem; without specifically being instructed (from outside) by any human administrator.
Self-awareness requires “sensing” capabilities and triggers “reasoning” and “acting”.
SA systems are currently thought of as equipped with monitoring, planning and plan
execution capabilities at the level of the autonomic managers. SO systems sense their
environment in different ways (artificial pheromone, configurations, neighbours, etc.),
and take decisions accordingly (changing directions, role or links).

R4: Run-time capability of sensing/monitoring on-going activity at different levels
(individual components, part or whole system).



4 G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, N. Guelfi

R5: Run-time capability of reasoning and of acting/adapting at different levels (in-
dividual components, part or whole system).

R6: Run-time availability and usage of sensing/monitoring and acting/adapting poli-
cies at different levels (individual components, part or whole system).

Behaviour Guiding and Bounding.

The components of an SO system have their own local rules that direct their behaviour
towards some optimum. SA systems have both local rules (at the level of the compo-
nents) and global rules (at the different levels the system). We will refer to these rules
or policies as Guiding Behaviour.

In addition to guiding the system towards optimal functioning, it is also important
to introduce boundaries in the system behaviour limiting the scope of permitted actions
but freely allowing decentralised adaptive behaviour of individual components inside
the boundaries. For instance, a Grid environment may insert some limits in order to
avoid a component to get all the resources; a trust-based system may have an immutable
threshold below which no transaction is granted.

R7: Run-time availability and usage of individual and global goals under the form
of policies (Guiding).

R8: Run-time availability and usage of environmental constraints policies (Bound-
ing).

Development Process.

During the development process the analyst, designer and developers need in turn to
define and examine different views of the system from abstract descriptions to concrete
code or policies.

R9: Design-time description of expected system’s / components’ properties.
R10: Design-time description of self-* behaviour patterns.
R11: Design-time description of the different policies described above (R6, R7,

R8).
R12: Run-time enforcement of policies (described by R6, R7, R8).

3 A Generic Framework

In this section we propose component technologies that may be capable of meeting
the requirements imposed above. These have formed the basis of our proof of concept
studies (Section 6).

Service-Oriented Architecture

Service-oriented architectures are becoming widely accepted as architectural solutions
for systems involving autonomous components, dynamicity and heterogeneity [6]. A
wrapper around the autonomous components let them become services while keeping
their autonomous aspect. Middleware supporting services interactions can come into



Generic Framework for Self-Adaptive and Self-Organising Systems 5

different flavours (coordination spaces favouring indirect communication (SO) but also
discovery of services publishing and requesting services (SA)).

Addresses R1: handling of heterogeneous and autonomous components in a homo-
geneous, modular and in a loose coupling way.

Self-Describing Components/Services

As pointed out in [7], interoperability is fundamental when different service providers
are involved in the same system. Decoupling components (software program) from de-
scriptions of their capability, QoS, requirements and constraints is thus a solution for
solving interoperability and deriving run-time solutions in case of unexpected condition
or changing policies: such as replacing a failing autonomic manager with one that has
equivalent characteristics.

Addresses R2: interoperability aspects driven by heterogeneous design.

Acquired, Updated and Monitored Metadata

Sensing and acting is a fundamental activity of both SA and SO systems. This requires
appropriate metadata that may be published; that is permanently acquired, updated and
monitored at run-time by both the system’s components and the supporting infrastruc-
ture. Metadata is information about the running system (its components, infrastructure
and environment). It is distinct from the data used by components in the course of
their normal operation, and distinct from the code that implements component services.
Metadata may convey functional information (e.g. pre/post-conditions, known com-
ponent failure modes) and non-functional information (e.g. availability of resources,
reliability/adaptability measures).

Addresses R2, R4, R5: published metadata supports interoperability; updated meta-
data values support self-awareness (sensing, reasoning and acting on the basis of meta-
data values).

SA and SO Architectural/Design Patterns

Architectural patterns describe high-level coordination techniques such as the notion of
observer/controller [8], the notion of autonomic manager coupled with any autonomic
element, or coordination through stigmergy or field-based structures [9].

Addresses R3, R10: description of (high-level) coordination/adaptation architec-
ture.

SA and SO Adaptation Mechanisms

SA and SO Mechanisms are lower-level patterns defined at design-time whose purpose
is to describe how SA/SO adaptation is triggered on the basis of metadata, e.g. switching
coordination pattern, replacing a component with a functionally equivalent one if the
performance of the component is too low. These patterns are implemented in specific
applications through executable policies (see below).

Addresses R11: design-time specification of acting/adapting policies (in response
to monitored data).



6 G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, N. Guelfi

Executable Policies

As discussed in the previous section, policies come in many varieties, lie at differ-
ent levels (component, system, interactions, environment), and have different scopes.
Policies may include (re-)configuration aspects and may also include security-related
policies, such access constraints, or service delivery conditions. Policies are based on
monitored metadata; their enforcement at run-time triggers adaptation and implemen-
tation of SA/SO mechanisms. Essential policies are:

– Monitoring Policies (e.g. frequency, type of metadata monitoring);
– Guiding Policies (e.g. goal-driven or utility-driven behaviour);
– Bounding Policies (e.g. system/environmental constraints);
– SA/SO Mechanisms Policies (e.g. adaptation decision based on monitored meta-

data)

Addresses R6, R7, R8: description and run-time implementation of SA/SO mecha-
nisms and policies described above.

Formal Languages and Specifications

In order to support predictable dynamic reconfiguration, metadata, component descrip-
tions, and policies need to be available at run-time. The concept of “lingua franca”
frequently advocated in the literature for solving interoperability issues could be used
here for describing these different elements. It is likely that several different languages
for the various elements above will be required. Each could be an extension of an ex-
isting language, or could be brand new, but each should be as “formal” as possible,
in order to allow run-automated reasoning at the semantic level, for example in de-
termining substitutability of services, acceptable degraded performance characteristics
etc. The essential forms of specification are:

– Description of patterns;
– Self-description of components;
– Specification of metadata;
– Specification of policies.

Each of these forms of specification may be used in either design-time or run-time
decision-making processes.

Design-time Activities

Figure 1 represents the design-time activities of the designer: during the analysis phase,
properties of the overall system are identified, driven by these properties, the designer
then selects the architectural patterns and adaptation mechanisms that the system will
adhere to; she then instantiates the chosen patterns for the specific application, archi-
tecture and policies, designs the individual components, selects and describes the nec-
essary metadata.

Addresses R9, R10, R11: identification of system’s / components’ properties, and
corresponding patterns, and policies for enforcing them.



Generic Framework for Self-Adaptive and Self-Organising Systems 7

Application System Requirements
Self-*, Functional, QoS …

System 
Architect

Application System Design

Synthesis & 

Validation

Executable Policies

E.g. Action / Goal / Utility Function

Metadata

Reasoning

Coordination/ Adaptation

D
e

s
ig

n
 T

im
e

R
u

n
 T

im
e

Design of Application 

Components

E.g. Ants / Cars / Peers / 

Autonomic Elements

Run-time Infrastructure

SA / SO Architectural Design Patterns

Observer/Controller

Autonomic Manager

Stigmergy

SA / SO Adaptation Mechanisms

Replacement with equivalent service if QoS too low

Action / Goal / Utility Function 

Application 

Components

Pool of Patterns and Mechanisms

Choice and instantiation of:

SA / SO Architectural Design Patterns

E.g. Autonomic Manager

Metadata Description

Enforcement of Policies

Fig. 1. Design-time vs Run-time

Run-time Infrastructure

The run-time environment itself supports a service-oriented architecture. It exploits
metadata to support decision-making and adaptation based on the dynamic enforce-
ment of explicitly expressed policies. Metadata and policies are themselves managed
by appropriate services. Figure 2 shows the run-time infrastructure:

– Metadata is stored, published and updated at run-time both by the run-time infras-
tructure (monitoring activities) or by the components themselves (sensing/acting).
Different types of metadata are available: component descriptions (possibly in-
cluding interface information), environment-related metadata (possibly supporting
coordination), metadata related to either individual components (e.g. availability
level, efficiency) or to groups of components.

– Policies are also available at run-time to both the run-time infrastructure and the
components themselves. Policies come in different categories, and may apply at
system level or component level. Components can react directly to a low-level pol-
icy taking account of current values of metadata.

– Enforcement of Policies. The run-time infrastructure is equipped with services re-
sponsible for enforcing policies on the basis of current metadata values and changes
in metadata values. These services may act directly on components by perform-
ing replacements and reconfigurations. Each provides tasks related to the process-
ing of metadata, such as comparison/matching, determination of equivalence and
metadata composition. They also encompass automated reasoning over policies and
metadata. (Addresses R4, R5, R12).



8 G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, N. Guelfi

– Coordination/Adaptation. This service implements the SA/SO architectural pat-
tern chosen at design-time. It manages the list of components, seamlessly activates
or connects the ones that will be used according to specified coordination/adaptation
policies. It encompasses automated reasoning on adaptation policies. (Addresses
R3, R5, R12).

Self-* properties

Metadata

Metadata Acquisition

Enforcement of Policies
Service

Apply policy

Application 
Components
(Services)

Run-time Infrastructure

Self-description of 

Components Coordination/Adaptation 

Service

Coordination Space
Environment

Metadata

Guiding Policies

Coordination Policies

Bounding Policies

Policies

Sensing/Monitoring
Acting/Adapting

Policies

Apply coordination

Sensing / Acting Acquisition of 

policies

Fig. 2. Run-time Generic Infrastructure

It is worth noting that the run-time environment is not necessarily centralised; the
services providing access to the description of components, or monitoring and acquisi-
tion of metadata can reside at different locations and work autonomously. In addition,
metadata and policies have either a local or global scope, and can be locally attached to
a component. The actual implementation depends on the application.

Generic services necessary to build such a run-time infrastructure encompass: a
registry/broker that handles the service descriptions and services requests; an acquisi-
tion and monitoring service for the self-* related metadata; a registry that handles the
policies; and a reasoning tool that enforces the policies on the basis of metadata.

4 Application to a Self-Adaptive System

We consider the application of our proposed framework to a simplified version of a
well-known example of an adaptive system [10]. A finite set of resources is dynam-
ically allocated between several (say two) applications. Each application provides a
service, the demand for which varies over time. The performance of the applications
depends on the demand and on the resources allocated to each, and is subject to Service



Generic Framework for Self-Adaptive and Self-Organising Systems 9

Level Agreements (SLAs) which are generally defined in terms of metrics expressing
the quality of service provided to the consumer, e.g. maximum application-response
time, or minimum application throughput [11]. The performance of the overall system
depends on the performance of the individual applications with respect to their SLAs.
The goal of the system as a whole is to optimise overall system performance given the
set of SLAs governing the applications.

More precisely, according to Kephart and Walsh [10], two Application Managers (AM1
and AM2) each handle different resources (routers and servers). Each Application Man-
ager dynamically allocates its resources according to policies obtained from a Pol-
icy Repository. Whenever an Application Manager cannot implement its policy (e.g.
through lack of resources), it asks a Resource Arbiter (RA) for additional resources.
The Resource Arbiter may remove resources from one Application Manager to give
them to the other one. SLAs are contracts between service providers and consumers;
the policies define how the application has to adapt itself to changing demand and re-
sources availability.

We sketch out how this example can be instantiated within the framework of Sec-
tion 3. We will restrict resources to servers only. The components here are the two
Application Managers (AM1, AM2), the Resource Arbiter (RA) and two Servers (S1,
S2). The metadata here are S1 and S2 transaction response times and S1 and S2 CPU
availability. Metadata are permanently monitored and updated, the requests are directly
submitted by the corresponding AM to the RA according to the underlying SOA. The
“Action” policies defined in [10] are examples of SA Adaptation policies in our frame-
work. Both AM1 and AM2 have the same policies, the RA always give priority to AM1.

– AM-Policy1: “increase CPU by 5% if response for transaction is above 100 ms”
– AM-Policy2: “if transaction time above 100 ms and CPU usage is more than 98%

send Request to Resource Arbiter for more CPU”
– RA-Policy: “if Request for more CPU, Grant and give priority to AM1”.

This is an example of a top-down system with two autonomous components taking
local decisions on the basis of their individual metadata, and a third one taking deci-
sions regarding the other two. All components perform some reaction triggered by an
event (lack of CPU). As discussed in [10] this design solution is not necessarily scal-
able, and other policies, such as goal or utility-function policies, may be used instead.
These can be accommodated just as well within the generic framework described in this
paper (see the discussion of Guiding Policies above). Bounding policies could here be
added when the RA cannot find a good solution to allocate the resources, e.g. to stop
AM1 taking all the resources.

Let us now consider this system from an engineering perspective. The performance
of the individual applications is to provide response time below 100 ms. A system level
requirement may be to provide two services that both have a response time below 100
ms. A design-time validation of this latter property on the model and policies described
above reveals that there are cases when the system is likely to violate the requirement:
in particular, when the demand on AM1 is too high, then AM2 may fail to deliver its
service to the level required by the specified SLA. The problem stems from the fact that
resources are finite, and the system may not adapt indefinitely. This could then lead to
a revision of the SLAs.



10 G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, N. Guelfi

5 Application to a Self-Organising System

We now consider the application of our framework to a self-organising system. We will
consider a simple stigmergy-based system, where components communicate indirectly
with each other by modifying their local environment, by inserting virtual tags at their
local positions. We take the example of traffic light controllers inserting traffic flow
information observed at the 8 branches of a road intersection (4 paths and 2 directions
for each path). Cars arriving at road intersections sense the traffic flow and may decide
to change their route.

The components here are: the mobile entities (cars) and the traffic light controllers.
Cars are programmed to go from one source location to a destination location and are
equipped with an initial planned route. The metadata here are given by the traffic flow
(8 values) at each road intersection. These values are permanently updated by the traffic
light controllers sitting at each road intersection. Policies attached to the components
are:

– Car Policy: “if traffic flow down the path is above threshold, change direction and
recalculate route”

– TrafficLight Policy: “modify traffic lights duration according to traffic flow ob-
served”.

This is an example of a bottom-up system with several independent components
communicating indirectly and taking decisions on the basis of locally available meta-
data. Some external pressure or control could be inserted in this system by directly
modifying the metadata at different locations, such as inserting a diversion by blocking
a path. It is also interesting to note that the use of guiding policies is not necessary in a
pure bottom-up system. Indeed, the cars or traffic lights policies could as well be coded
into the components.

As for the previous example, let’s now consider this system from an engineering
point of view. The performance of the overall system is to maximise traffic throughput.
The performance of an individual car is to minimise the travel time given its origin and
destination point, while those of a traffic light controller is to maximise throughput.
These are the expected self-* properties of the overall system and of the individual
components identified at design-time.

The interesting point to note here is how the global property (maximising traffic
throughput) is broken down and implemented into local rules (cars and traffic-light
policies), and how this activity initiated at design-time is subsequently refined during
the development and implementation in order to derive the actual policies used at run-
time. The actual proof that the global properties are correctly broken down into local
rules in a decentralised schema is still a subject of research, and we do not consider this
here. research.

6 Proofs of Concept and Initial Experiments

We are conducting several proofs of concept studies on the enabling technologies needed
to realise the framework presented above.



Generic Framework for Self-Adaptive and Self-Organising Systems 11

Study 1: Acquisition and Use of Metadata. A Mediator system [12], aiming at
improving dependability of Web Services (WSs), is being developed in Newcastle Uni-
versity using the framework presented above. This introduces an intermediate overlay
network of the specialised SubMediator WSs. Each of these SubMediators records in
a local database the dependability metadata derived from continuous observations of
the target application WSs in the context of an e-Science application. It acts as a client
to these WSs and monitors them by tracking availability, functionality, performance,
faults and exceptions.

These metadata allow each SubMediator to make dynamic decisions improving the
dependability of the execution of the client requests by choosing the target WSs which
fits best to the required level of quality defined by the client. Some examples of such
requirements are the dynamic choice of the most reliable WS or of the WS with a quick-
est reply. If there are no individual WSs satisfying these requirements the SubMediator
dynamically chooses a suitable fault tolerance mechanism which can satisfy them, from
a repertoire of mechanisms that the Mediator system supports. This decision is made
using the metadata from the local database. The fault tolerance mechanisms and the
required level of dependability are defined by the clients using a policy language. Sup-
ported fault tolerance mechanisms include: retry of the request, multi-routing over the
Internet, various ways of using diverse target WSs (e.g. sequential requests in the man-
ner of recovery blocks, or concurrent requests with or without majority voting).

The distributed architecture of this system makes it possible to collect, publish and
make decisions using runtime dependability metadata specifically representing the end-
user’s perspective of the network and component WSs behaviour, therefore paving the
way to achieve dependability-explicit operation of WSs.

The first version of the system representing a monitoring tool for collecting meta-
data about a selected set of target WSs [13] is available for downloads5.

Study 2: Run-time infrastructure. A restricted version of the run-time environ-
ment in Section 3 has been implemented, supporting functional self-description of ser-
vices, and a limited form of non-functional QoS description. The underlying infras-
tructure is a service-oriented middleware allowing registration of formal service de-
scriptions and service requests, description matching and seamless binding of compo-
nents (self-assembly). Interoperability is supported without a specific API and is solely
based on service descriptions.

Two different implementations of the above architecture have been realised. The
first implementation has been realised for specifications expressing: signatures of avail-
able operators whose parameters are Java primitive types; and required quality of ser-
vice. Both operators name and quality of service are described using pre-defined key-
words [14]. In order to remove the need for interacting entities to rely on pre-defined
keywords, a second implementation of the above architecture has been realised. This
architecture allows entities to carry specifications expressed using different kinds of
specification language, and is modular enough to allow easy integration of additional
specification languages [15]. This prototype supports specifications written either in
Prolog, or as regular expressions.

5 http://www.students.ncl.ac.uk/yuhui.chen/#Download



12 G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, N. Guelfi

Study 3: Dynamically Resilient Systems. In our most recent study, a first instan-
tiation of our framework has been proposed in [16] supporting self-reconfiguration and
dynamically resilient systems. Resilience mechanisms at design-time are translated into
resilience policies enforced at run-time on the basis of monitored resilience metadata.

Conclusions. Study 1 has demonstrated the possibility of building a dynamically
self-configurable architecture able to deal with new services by observing them and
collecting metadata describing their characteristics for some period of time before they
become available for use (without any involvement of the e-Scientist). Study 1 has also
shown the interest of the approach of separately describing execution flows and policies
to dynamically adapt the system to high-level user needs, in this case the needs of the
scientist using the system. Study 2 has shown that it is possible to dynamically add
in the system and seamlessly use additional features; to dynamically replace updated
entities without the calling entities noticing the replacement (even during a call [14]).

7 Discussion

Predictability. The “Enforcement of Policies” services described above are intended to
support matching and replacement using automated reasoning on specifications, but are
not meant to work as an artificial intelligence tool. Therefore, predictability is primarily
obtained by the enforcement of explicitly defined policies. However, in a large-scale en-
vironment with many components from various suppliers, it may be difficult to ensure
conformance. There may be a need for a kind of “meta-policy” spanning the whole sys-
tem or application and to which individual policies would need to adhere. An alternative
would be to consider hierarchical policy schemas. In addition to the risk of conflicting
policies, it may also happen that a chosen emergent configuration is suboptimal. The
Bounding policies mentioned above are intended to prevent the system going beyond
its limit; they should have precedence over other policies whenever the boundaries of
systems behaviour are reached. However, this still remains an issue of further research
and study.

On metadata. In the framework outlined in Figure 2, the use of shared metadata
provides direct support for self-organising systems (which could work without policies),
while the use of policies supports more naturally self-adaptive systems. In the case of
SO systems, having both shared metadata and policies, in particular the use of Coor-
dination and Bounding policies, allow the designer to foresee and enforce at run-time
some form of overall control on the system. For SA systems, metadata shared among
components provides support for inserting self-organising and decentralised behaviour
into these systems that generally show central and hierarchic features.

The use of metadata can go far beyond what has been described so far, it could also
serve to monitor how well a certain decision has an impact on a self-* property (e.g.
self-optimisation), such as quantifying the degree of self-adaptation of a system.

Control and feedback loop. Metadata is either directly modified by components or
indirectly updated through monitoring. Metadata, together with the policies, cause the
reasoning tool to determine whether or not an action must be taken. The Enforcement
of Policies services act on both components and metadata, impacting components both
directly and indirectly.



Generic Framework for Self-Adaptive and Self-Organising Systems 13

Reasoning

Enforcement of Policies

Apply policy

Application 
Components
(Services)

Control and Feedback Loop

Metadata Policies

Sensing / Acting
Acquisition of 

policies

Control

Fig. 3. Control and Feedback Loop

Control is inserted in three different ways (Figure 3). First, the Reasoning and En-
forcement of Policies services directly act on components by dynamically reconfiguring
them, allocating more components, removing faulty ones, etc. Second, an indirect ac-
tion is performed by modifying the metadata used by the components to sense their
environment. This is a technique used for (externally) controlling self-organising sys-
tem working with stigmergy. Third, an additional way of controlling the system consists
of modifying the policies used by the components for driving their behaviour on-the-fly.
As described in Section 2, policies are decoupled from the components even if they are
locally attached to them: changing the policies will immediately affect the correspond-
ing component. Even though the control shown on Figure 3 is internal to the system,
external control is applied in the same way, by acting directly on the components, meta-
data or policies.

Dynamic policies. Policies are considered to be as much as possible decoupled from
the components themselves. This has the advantage, as shown in Figure 2, to provide
the possibility to the components to dynamically acquire policies at run-time. This may
be useful when devices change context (e.g. a PDA moving around), or when global
policies change (e.g. rights are denied to some user).

8 Related Work

The “Observer-Controller” is a generic paradigm architecture [8] attaching to individ-
ual components, or groups of components, an “observer” component responsible for
monitoring events and states, and a “controller” component responsible to take actions
whenever the observer part results let it consider appropriate. The implementation of
the “observer-controller” structure is dependent on the specific application. The ap-
proach proposed in this paper can be viewed as an instantiation of this paradigm, since
the enforcement of policies at run-time act as a controller, while the acquisition and
monitoring of metadata act as an observer.



14 G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, N. Guelfi

In the field of autonomic computing, a uniform representation and composition of
autonomic elements encompassing the use of a service-oriented architecture supporting
the interactions of these autonomic elements, preliminary design patterns and policies
is proposed in [3]. The notions of registry and brokers [3] are similar to those described
in our framework as the services handling component descriptions (matching requests,
retrieving services, creating appropriate workflows); the monitoring aspect of the sen-
tinels [3] relates to the monitoring of metadata.

Accord [17] is a programming framework for autonomic applications. It supports
the notion of rules controlling both the component and interaction behaviour, and allows
dynamic addition, deletion or replacement of components as well dynamic changing of
interactions. Our Study 2 (Section 6), from which the run-time aspect of our framework
is derived, does not use the notion of rules, but allows dynamic replacement, adjunc-
tion, or removal of services on the basis of their specification. Changes are enforced by
dynamically reconfiguring services and by modifying metadata.

Self-Managed Cells (SMC) [18] consist of a set of heterogeneous hardware and
software elements, a set of management services integrated through a common pub-
lish/subscribe event bus. The SMC concept is very close to the approach advocated in
this paper. The main differences are that SMC elements have well defined expected in-
terfaces, limiting the possibility for new elements to join the system, especially if they
have not been designed by the same team. SMCs do not specifically use metadata, even
though elements are monitored, which implies some metadata is collected about their
behaviour.

Design-time concerns have given rise in recent years to diverse proposals defining
design patterns for coordination of SO systems [9], design patterns for self-managing
systems [3], and bio-inspired design patterns for distributed systems [19]. Our paper
does not propose any design pattern, however our proposal encapsulates the use of
design patterns.

A proposal similar to the one provided in this paper is discussed in [20]. It is in-
tended specifically for autonomic systems, and shares the same ideas of a service-
oriented architecture, of description of services, and use of metadata. The proposed
autonomic service-oriented architecture is a three layer architecture (process, service,
and application) driven by the process layer, and services are autonomous and mon-
itored by the system. To this extent, an interface for services is proposed that allows
monitoring of and interaction with the services.

9 Conclusion

We have discussed a generic framework supporting the development of trustworthy
self-adaptive and self-organising systems, derived from a consideration of engineering
requirements. The framework encompasses support for decision-making at design-time
and at run-time. We have briefly described the key elements of architectures required
to implement this framework and initial proof-of-concept studies on the component
technologies. Leveraging the studies, we plan to build a “seed” run-time infrastructure
based on our framework. We will emphasise three areas: resilience, self-reconfiguration,
and control of SA or SO systems (using e-Science applications); establishment of self-*



Generic Framework for Self-Adaptive and Self-Organising Systems 15

properties and their verification; and adaptation of applications involving digital rights
management.

Acknowledgements

We are grateful to Yuhui Chen for his work on the Mediator system. This work is par-
tially supported by the EC Network of Excellence on Resilience for Survivability in
IST (ReSIST: www.resist-noe.org).

References

1. Babaoglu, O., Shrobe, H., eds.: First IEEE International Conference on Self-Adaptive and
Self-Organizing Systems (SASO 2007) 9-11 July, Boston, MA, USA, IEEE (2007)

2. Kephart, J.: Research challenges of autonomic computing. In: 27th International Conference
on Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA, ACM
(2005) 15–22

3. White, S., Hanson, J., Whalley, I., Chess, D., Kephart, J.: An architectural approach to auto-
nomic computing. In Kephart, J., Parashar, M., eds.: International Conference on Autonomic
Computing (ICAC’04), IEEE Computer Society (2004) 2–9

4. Anderson, T., Randell, B., Romanovsky, A.: Wrapping the future. In: IFIP 18th World
Computer Congress 2004, Toulouse, France. (2004)

5. van der Meulen, M., Riddle, S., Strigini, L., Jefferson, N.: Research challenges of autonomic
computing. In: COTS-Based Software Systems: 4th International Conference, ICCBSS 2005
2005, Bilbao, Spain, Springer-Verlag (2005)

6. Singh, M., Huhns, M.N.: Service-Oriented Computing - Semantics, Processes, Agents. John
Wiley & Sons, Ltd, UK (2005)

7. Rana, O.F., Kephart, J.O.: Building effective multivendor autonomic computing systems.
IEEE Distributed Systems Online 7 (2006) art. no. 0609-o9003.

8. Müller-Schloer, C.: Organic computing: on the feasibility of controlled emergence. In:
Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2004, ACM (2004) 2–5

9. De Wolf, T., Holvoet, T.: Design Patterns for Decentralised Coordination in Self-Organising
Emergent Systems. In: Engineering Self-Organising Systems. Volume 4335 of LNAI.,
Springer-Verlag (2007) 28–49

10. Kephart, J.O., Walsh, W.E.: An artificial intelligence perspective on autonomic computing
policies. In: IEEE International Workshop on Policies for Distributed Systems and Networks
(POLICY 2004). (2004) 3–12

11. Leff, A., Rayfield, J.T., Dias, D.M.: Service-level agreements and commercial grids. IEEE
Internet Computing 7 (2003) 44–50

12. Chen, Y., Romanovsky, A.: A mediator system for improving dependability of web services.
In: The International Conference on Dependable Systems and Networks (DSN-2006). (2006)

13. Li, P., Chen, Y., Romanovsky, A.: Measuring the dependability of web services for use in e-
science experiments. In: International Service Availability Symposium (ISAS 2006). (2006)
193–205

14. Oriol, M., Di Marzo Serugendo, G.: A disconnected service architecture for unanticipated
run-time evolution of code. IEE Proceedings-Software, Special Issue on Unanticipated Soft-
ware Evolution (2004)



16 G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, N. Guelfi

15. Di Marzo Serugendo, G., Deriaz, M.: Specification-carrying code for self-managed systems.
In Martin-Flatin, J.P., Sventek, J., Geihs, K., eds.: IEEE International Workshop on Self-
Managed Systems and Services. (2005)

16. Di Marzo Serugendo, G., Fitzgerald, J., Romanovsky, A., Guelfi, N.: A Metadata-Based
Architectural Model for Dynamically Resilient Systems. In: ACM Symposium on Applied
Computing (SAC’07), to appear. (2007)

17. Liu, H., Parashar, M., Hariri, S.: A component-based programming model for autonomic
applications. In Kephart, J., Parashar, M., eds.: International Conference on Autonomic
Computing (ICAC’04), IEEE Computer Society (2004) 10–17

18. Dulay, N., Lupu, E., Sloman, M., Sventek, J., Badr, N., Heeps, S.: Self-managed cells for
ubiquitous systems. In: Proceedings of the Third International Workshop on Mathematical
Methods, Models, and Architectures for Computer Network Security, MMM-ACNS 2005,
St. Petersburg, Russia, September 25-27, 2005, Proceedings. Volume 3685 of Lecture Notes
in Computer Science., Springer (2005) 1–6

19. Babaoglu et al., O.: Design patterns from biology for distributed computing. ACM Transac-
tions on Autonomous and Adaptive Systems 1 (2006)

20. Liu, L., Schmeck, H.: A roadmap towards autonomic service-oriented architectures. In:
International Service Availability Symposium (ISAS 2006). (2006) 193–205




