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Abstract

We propose a simple variant of kd-trees, called rank-based kd-trees, for sets of points in Rd. We
show that a rank-based kd-tree, like an ordinary kd-tree, supports range search queries in O(n1−1/d +
k) time, where k is the output size. The main advantage of rank-based kd-trees is that they can be
efficiently kinetized: the KDS processes O(n2) events in the worst case, assuming that the points
follow constant-degree algebraic trajectories, each event can be handled in O(log n) time, and each
point is involved in O(1) certificates.

We also propose a variant of longest-side kd-trees, called rank-based longest-side kd-trees (RBLS
kd-trees, for short), for sets of points in R2. RBLS kd-trees can be kinetized efficiently as well and like
longest-side kd-trees, RBLS kd-trees support nearest-neighbor, farthest-neighbor, and approximate
range search queries in O((1/ε) log2 n) time. The KDS processes O(n3 log n) events in the worst case,
assuming that the points follow constant-degree algebraic trajectories; each event can be handled
in O(log2 n) time, and each point is involved in O(log n) certificates.

Background. Due to the increased availability of GPS systems and to other technological advances,
motion data is becoming more and more available in a variety of application areas: air-traffic control,
mobile communication, geographic information systems, and so on. In many of these areas, the data are
moving points in 2- or higher-dimensional space, and what is needed is to store these points in such a
way that range queries (“Report all the points lying currently inside a query range”) or nearest-neighbor
queries (“Report the point that is currently closest to a query point”) can be answered efficiently. Hence,
there has been a lot of work on developing data structures for moving point data, both in the database
community as well as in the computational-geometry community.

Within computational geometry, the standard model for designing and analyzing data structures for
moving objects is the kinetic-data-structure framework introduced by Basch et al. [3]. A kinetic data
structure (KDS ) maintains a discrete attribute of a set of moving objects—the convex hull, for example,
or the closest pair—where each object has a known motion trajectory. The basic idea is that although
all objects move continuously there are only certain discrete moments in time when the combinatorial
structure of the attribute—the ordered set of convex-hull vertices, or the pair that is closest—changes. A
KDS contains a set of certificates that constitutes a proof that the maintained structure is correct. These
certificates are inserted in a priority queue based on their time of expiration. The KDS then performs an
event-driven simulation of the motion of the objects, updating the structure whenever an event happens,
that is, when a certificate fails. Kinetic data structures and their accompanying maintenance algorithms
can be evaluated and compared with respect to four desired characteristics. A good KDS is compact if
it uses little space in addition to the input, responsive if the data structure invariants can be restored
quickly after the failure of a certificate, local if it can be updated easily when the flight plan for an
object changes, and efficient if the worst-case number of events handled by the data structure for a given
motion is small compared to some worst-case number of “external events” that must be handled for that
motion—see the surveys by Guibas [8, 9] for more details.
Related work. There are several papers that describe KDS’s for the orthogonal range-searching prob-
lem, where the query range is an axis-parallel box. Basch et al. [4] kinetized d-dimensional range trees.
Their KDS supports range queries in O(logd n + k) time and uses O(n logd−1 n) storage. If the points
follow constant-degree algebraic trajectories then their KDS processes O(n2) events; each event can be
handled in O(logd−1 n) time. In the plane, Agarwal et al. [1] obtained an improved solution: their KDS
supports orthogonal range-searching queries in O(log n + k) time, it uses O(n log n/ log logn) storage,
and the amortized cost of processing an event is O(log2 n).
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Although these results are nice from a theoretical perspective, their practical value is limited for several
reasons. First of all, they use super-linear storage, which is often undesirable. Second, they can perform
only orthogonal range queries; queries with other types of ranges or nearest-neighbor searches are not
supported. Finally, especially the solution by Agarwal et al. [1] is rather complicated. Indeed, in the
setting where the points do not move, the static counterparts of these structures are usually not used
in practice. Instead, simpler structures such as quadtrees, kd-trees, or bounding-volume hierarchies
(R-trees, for instance) are used. In this paper we consider one of these structures, namely the kd-tree.

Kd-trees were initially introduced by Bentley [5]. A kd-tree for a set of points in the plane is obtained
recursively as follows. At each node of the tree, the current point set is split into two equal-sized subsets
with a line. When the depth of the node is even the splitting line is orthogonal to the x-axis, and when
it is odd the splitting line is orthogonal to the y-axis. In d-dimensional space, the orientations of the
splitting planes cycle through the d axes in a similar manner. Kd-trees use O(n) storage and support
orthogonal range searching queries in O(n1−1/d + k) time, where k is the number of reported points.
Maintaining a standard kd-tree kinetically is not efficient. The problem is that a single event—two points
swapping their order on x- or y-coordinate—can have a dramatic effect: a new point entering the region
corresponding to a node could mean that almost the entire subtree must be re-structured. Hence, a
variant of the kd-tree is needed when the points are moving.

Agarwal et al. [2] proposed two such variants for moving points in R2: the δ-pseudo kd-tree and
the δ-overlapping kd-tree. In a δ-pseudo kd-tree each child of a node ν can be associated with at most
(1/2 + δ)nν points, where nν is the number of points in the subtree of ν. In a δ-overlapping kd-tree
the regions corresponding to the children of ν can overlap as long as the overlapping region contains
at most δnν points. Both kd-trees support orthogonal range queries in time O(n1/2+ε + k), where k
is the number of reported points. Here ε is a positive constant that can be made arbitrarily small
by choosing δ appropriately. These KDS’s process O(n2) events if the points follow constant-degree
algebraic trajectories. Although it can take up to O(n) time to handle a single event, the amortized cost
is O(log n) time per event. Neither of these two solutions is completely satisfactory: their query time is
worse by a factor O(nε) than the query time in standard kd-trees, there is only a good amortized bound
on the time to process events, and only a solution for the 2-dimensional case is given. The goal of our
paper is to developed a kinetic kd-tree variant that does not have these drawbacks.

Even though a kd-tree can be used to search with any type of range, there are only performance
guarantees for orthogonal ranges. Longest-side kd-trees, introduced by Dickerson et al. [7], are better in
this respect. In a longest-side kd-tree, the orientation of the splitting line at a node is not determined
by the level of the node, but by the shape of its region: namely, the splitting line is orthogonal to the
longest side of the region. Although a longest-side kd-tree does not have performance guarantees for
exact range searching, it has very good worst-case performance for ε-approximate range queries, which
can be answered in O(ε1−d logd n + k) time. (In an ε-approximate range query, points that are within
distance ε·diameter(Q) of the query range Q may also be reported.) Moreover, a longest-side kd-tree can
answer ε-approximate nearest-neighbor queries (or: farthest-neighbor queries) in O(ε1−d logd n) time.
The second goal of our paper is to develop a kinetic variant of the longest-side kd-tree.
Our results. Our first contribution is a new and simple variant of the standard kd-tree for a set of
n points in d-dimensional space. Our rank-based kd-tree supports orthogonal range searching in time
O(n1−1/d + k) and it uses O(n) storage—just like the original. But additionally it can be kinetized
easily and efficiently. The rank-based kd-tree processes O(n2) events in the worst case if the points
follow constant-degree algebraic trajectories1 and each event can be handled in O(log n) worst-case time.
Moreover, each point is involved only in a constant number of certificates. Thus we improve the both the
query time and the event-handling time as compared to the planar kd-tree variants of Agarwal et al. [2],
and in addition our results work in any fixed dimension.

Our second contribution is the first kinetic variant of the longest-side kd-tree, which we call the rank-
based longest-side kd-tree (or RBLS kd-tree, for short), for a set of n points in the plane. (We have been
unable to generalize this result to higher dimensions.) An RBLS kd-tree uses O(n) space and supports
approximate nearest-neighbor, approximate farthest-neighbor, and approximate range queries in the
same time as the original longest-side kd-tree does for stationary points, namely O((1/ε) log2 n) (plus
the time needed to report the answers in case of range searching). The kinetic RBLS kd-tree maintains
O(n) certificates, processes O(n3 log n) events if the points follow constant-degree algebraic trajectories1,

1For the bound on the number of events in our rank-based kd-tree, it is sufficient that any pair of points swaps x- or
y-order O(1) times. For the bounds on the number of events in the RBLS kd-tree, we need that every two pairs of points
define the same x- or y-distance O(1) times.
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each event can be handled in O(log2 n) time, and each point is involved in O(log n) certificates.

1 Rank-based kd-trees

Let P be a set of n points in Rd and let us denote the coordinate-axes with x1, . . . , xd. To simplify the
discussion we assume that no two points share any coordinate, that is, no two points have the same x1-
coordinate, or the same x2-coordinate, etc. (Of course coordinates will temporarily be equal when two
points swap their order, but the description below refers to the time intervals in between such events.)
In this section we describe a variant of a kd-tree for P, the rank-based kd-tree. A rank-based kd-tree
preserves all main properties of a kd-tree and, additionally, it can be kinetized efficiently.

Before we describe the actual rank-based kd-tree for P, we first introduce another tree, namely the
skeleton of a rank-based kd-tree, denoted by S(P). Like a standard kd-tree, S(P) uses axis-orthogonal
splitting hyperplanes to divide the set of points associated with a node. As usual, the orientation of the
axis-orthogonal splitting hyperplanes is alternated between the coordinate axes, that is, we first split
with a hyperplane orthogonal to the x1-axis, then with a hyperplane orthogonal to the x2-axis, and so
on. Let ν be a node of S(P). h(ν) is the splitting hyperplane stored at ν, axis(ν) is the coordinate-axis
to which h(ν) is orthogonal, and P(ν) is the set of points stored in the subtree rooted at ν. A node ν
is called an xi-node if axis(ν) = xi and a node ω is referred to as an xi-ancestor of a node ν if ω is an
ancestor of ν and axis(ω) = xi. The first xi-ancestor of a node ν (that is, the xi-ancestor closest to ν)
is the xi-parent(ν) of ν.

p1 p2 p3 p4 p5 p6 p7 p8

[1, 8]

[1, 8]

[5, 8]

[5, 8]

[5, 6]

[7, 8]

[6, 6]

p1

p2

p3

p4

p7

p8

p5

p6

(a)

p1 p2 p3 p4 p5 p6 p7 p8

[1, 8]

[1, 8]

[5, 8]

[5, 8]

[6, 6]

(b)

p1

p2

p3

p4

p7

p8

p5

p6

[5, 8]

[5, 8]

Figure 1: (a) The skeleton of a rank-based kd-tree and (b) the rank-based kd-tree itself. Note that points
above (below) a horizontal splitting line go to the left subtree (right subtree)

A standard kd-tree chooses h(ν) such that P(ν) is divided roughly in half. In contrast, S(P) chooses h(ν)
based on a range of ranks associated with ν, which can have the effect that the sizes of the children of ν are
completely unbalanced. We now explain this construction in detail. We use d arrays A1, . . . ,Ad to store
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the points of P in d sorted lists; the array Ai[1, n] stores the sorted list based on the xi-coordinate.
As mentioned above, we associate a range [r, r′] of ranks with each node ν, denoted by range(ν),
with 1 ≤ r ≤ r′ ≤ n. Let ν be an xi-node. If xi-parent(ν) does not exist, then range(ν) is equal
to [1, n]. Otherwise, if ν is contained in the left subtree of xi-parent(ν), then range(ν) is equal to the
first half of range(xi-parent(ν)), and if ν is contained in the right subtree of xi-parent(ν), then range(ν) is
equal to the second half of range(xi-parent(ν)). If range(ν) = [r, r′] then P(ν) contains at most r′−r+1
points. We explicitly ignore all nodes (both internal as well as leaf nodes) that do not contain any
points, they are not part of S(P), independent of their range of ranks. A node ν is a leaf of S(P)
if range(ν) = [j, j] for some j. Clearly a leaf contains exactly one point, but not every node that contains
only one point is a leaf. (We could prune these nodes, which always have a range [j, k] with j < k,
but we chose to keep them in the skeleton for ease of description.) If ν is not a leaf and axis(ν) = xi
then h(ν) is defined by the point whose rank in Ai is equal to the median of range(ν). (This is similar
to the approach used in the kinetic BSP of [6].) It is not hard to see that this choice of the splitting
plane h(ν) is equivalent to the following. Let region(ν) = [a1 : b1] × · · · × [ad : bd] and suppose for
example that ν is an x1-node. Then, instead of choosing h(ν) according to the median x1-coordinate of
all points in region(ν), we choose h(ν) according to the median x1-coordinate of all points in the slab
[a1, b1]× [−∞ :∞]× · · · × [−∞ :∞].

We construct S(P) incrementally by inserting the points of P one by one. (Even though we proceed
incrementally, we still use the rank of each point with respect to the whole point set, not with respect to
the points inserted so far.) Let p be the point that we are currently inserting into the tree and let ν be the
last node visited by p; initially ν = root(S(P)). Depending on which side of h(ν) contains p we select the
appropriate child ω of ν to be visited next. If ω does not exist, then we create it and compute range(ω)
as described above. We recurse with ν = ω until range(ν) = [j, j] for some j. We always reach such
a node after d log n steps, because the length of range(ν) is a half of the length of range(xi-parent(ν))
and depth(ν) = depth(xi-parent(ν)) + d for an xi-node ν. Figure 1(a) illustrates S(P) for a set of eight
points. Since each leaf of S(P) contains exactly one point of P and the depth of each leaf is d log n, the
size of S(P) is O(n log n).

Lemma 1 The depth of S(P) is O(log n) and the size of S(P) is O(n log n) for any fixed dimen-
sion d. S(P) can be constructed in O(n log n) time.

A node ν ∈ S(P) is active if and only if both its children exist, that is, both its children contain points.
A node ν is useful if it is either active, or a leaf, or its first d − 1 ancestors contain an active node.
Otherwise a node is useless. We derive the rank-based kd-tree for P from the skeleton by pruning all
useless nodes from S(P). The parent of a node ν in the rank-based kd-tree is the first unpruned ancestor
of ν in S(P). Roughly speaking, in the pruning phase every long path whose nodes have only one child
each is shrunk to a path whose length is less than d. The rank-based kd-tree has exactly n leaves and
each contains exactly one point of P. Moreover, every node ν in the rank-based kd-tree is either active or
it has an active ancestor among its first d−1 ancestors. The rank-based kd-tree derived from Figure 1(a)
is illustrated in Figure 1(b).

Lemma 2

(i) A rank-based kd-tree on a set of n points in Rd has depth O(log n) and size O(n).

(ii) Let ν be an xi-node in a rank-based kd-tree. In the subtree rooted at a child of ν, there are at
most 2d−1 xi-nodes ω such that xi-parent(ω) = ν.

(iii) Let ν be an xi-node in a rank-based kd-tree. On every path starting at ν and ending at a descendant
of ν and containing at least 2d− 1 nodes, there is an xi-node ω such that xi-parent(ω) = ν.

Proof.

(i) A rank-based kd-tree is at most as deep as its skeleton S(P). Since the depth of S(P) is O(log n)
by Lemma 1, the depth of a rank-based kd-tree is also O(log n). To prove the second claim, we
charge every node that has only one child to its first active ancestor. Recall that each active node
has two children. We charge at most 2(d − 1) nodes to each active node, because after pruning
there is no path in the rank-based kd-tree whose length is at least d and in which all nodes have one
child. Therefore, to bound the size of the rank-based kd-tree it is sufficient to bound the number of
active nodes. Let T be a tree containing all active nodes and all leaves of the rank-based kd-tree.
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Figure 2: Illustration for the proof of Lemma 2.

A node ν is the parent of a node ω in T if and only if ν is the first active ancestor of ω in the
rank-based kd-tree. Obviously, T is a binary tree with n leaves where each internal node has two
children. Hence, the size of T is O(n) and consequently the size of the rank-based kd-tree is O(n).

(ii) To simplify notation, let ω′ denote the node in S(P) that corresponds to a node ω in the rank-
based kd-tree. Let z be a child of ν and and let u be the first active node in the subtree rooted
at z as depicted in Fig. 2(a), that is, u is the highest active node in the subtree rooted at
z. Note that the definition of active node ensures that u is unique, and note that u can be
z. Now assume xi-parent(ω) = ν where ω is an xi-node in the subtree rooted at z. If ω is
not a node in the subtree rooted at u, then there is just one node ω in the subtree rooted at z
satisfying xi-parent(ω) = ν, since every node between z and u has only one child. This means
that we are done. Otherwise, if ω is a node in the subtree rooted at u, then ω′ must be in the
subtree rooted at u′ of S(P). Let s′ be the first xi-node on the path from u′ to ω′. Because
one of any d consecutive nodes in S(P) uses a hyperplane orthogonal to the xi-axis as a splitting
plane, depth(s′) ≤ depth(u′) + d − 1. Since u′ is active and depth(s′) ≤ depth(u′) + d − 1, the
node s′ must appear as a node, s, in the rank-based kd-tree. This and the assumption that
xi-parent(ω) = ν imply ω = s which means depth(ω′) ≤ depth(u′) + d − 1. Hence the number of
nodes ω is at most 2d−1.

(iii) Let u be the first active node on the path starting at ν and ending at a descendant z of ν and
containing at least 2d − 1 nodes as depicted in Fig. 2(b). Because there is no path in the rank-
based kd-tree that contains d nodes such that every node in the path has only one child, depth(u) ≤
depth(ν)+d−1 which implies depth(z) ≥ depth(u)+d−1—note that on the path from ν to z there
are 2d − 1 nodes. Let ω′ be the first xi-node in the path starting at u′ and ending at z′ in S(P).
Because one of any d consecutive nodes in S(P) uses a hyperplane orthogonal to the xi-axis to split
points, and depth(z′) ≥ depth(u′) + d− 1, the node ω′ exists. The node ω′ must appear as a node,
ω, in the kd-tree, because either ω′ = u′ or among the first d− 1 ancestor of ω′ there is an active
ancestor, namely u′. Putting it all together we can conclude that depth(ω) ≤ depth(ν) + 2d − 2
which implies the claim.

�

The region associated with a node ν, denoted by region(ν), is the maximal volume bounded by the
splitting hyperplanes stored at the ancestors of ν. More precisely, the region associated with the root
of a rank-based kd-tree is simply the whole region, and the region corresponding to the right child of a
node ν is the maximal subregion of region(ν) on the right side of h(ν) and the region corresponds to the
left child of ν is the rest of region(ν) (for an appropriate definition of left and right in d dimensions). A
point p is contained in P(ν) if and only if p lies in region(ν). Like a kd-tree, a rank-based kd-tree can be
used to report all points inside a given orthogonal range search query—the reporting algorithm is exactly
the same. At first sight, the fact that the splits in our rank-based kd-tree can be very unbalanced may
seem to have a big, negative impact on the query time. Fortunately this is not the case. To prove this,
we next bound the number of cells intersected by an axis-parallel plane h. As for normal kd-trees, this
is immediately gives a bound on the total query time.
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Lemma 3 Let h be a hyperplane orthogonal to the xi-axis for some i. The number of nodes in a
rank-based kd-tree whose regions are intersected by h is O(n1−1/d).

Proof. Imagine a dummy node µ with axis(µ) = xi as the parent of the root. We charge every node ν
whose region is intersected by h to xi-parent(ν). Thanks to µ, xi-parent(ν) exists for every node of
the tree and hence every node is indeed charged to an xi-node. Lemma 2(iii) implies depth(ν) ≤
depth(xi-parent(ν)) + 2d − 2 which implies that at most 22d−2 nodes are charged to each xi-node.
Therefore it is sufficient to bound the number of xi-nodes whose regions are intersected by h.

Let T be the tree containing all xi-nodes in the rank-based kd-tree and let T ′ be the tree containing
all xi-nodes in the skeleton S(P). A node ν is the parent of a node ω in T if and only if xi-parent(ω) = ν
in the rank-based kd-tree; the equivalent definition holds for T ′. According to Lemma 2(ii), every node ν
in T has at most 2d children and each side of h(ν) contains the regions corresponding to at most 2d−1

children of ν. Note that the dummy node has at most 2d−1 children in total. Let T ∗ be yet another
tree containing all nodes in T whose regions are intersected by h. Since h is parallel to h(ν) for every
node ν of T , it can intersect only the regions that lie to one side of h(ν). Hence every node of T ∗ has at
most 2d−1 children. The idea behind the proof is to consider a top part of T ∗ consisting of n1−1/d nodes
of T ∗, and then argue that all subtree below this top part together contain n1−1/d nodes as well. Next
we make this idea precise.

Let TOP(T ∗) be a tree containing all nodes of T ∗ whose depths in T ∗ are at most b(1/d) log nc,
and let ν1, . . . , νc be the leaves of TOP(T ∗) whose depthes are exactly b(1/d) log nc. Clearly c is at
most (2d−1)(1/d) logn = n1−1/d and hence the size of TOP(T ∗) is at most 2n1−1/d. Let ν′1, . . . , ν

′
c be

the nodes corresponding to ν1, . . . , νc in T ′. Furthermore, let u′1, . . . , u
′
m be the distinct nodes in T ′ at

depth b(1/d) log nc such that every u′k has at least one node ν′j as descendant and every ν′j has a node u′k
as an ancestor—note that due to pruning the depth of ν′j can be larger than b(1/d) log nc. Because the
nodes ν′j are disjoint, we have

∑c
1 |P(ν′j)| ≤

∑m
1 |P(u′k)|.

Let Uk be the set of splitting hyperplanes stored in the ancestors of u′k in T ′. Recall that all nodes u′k
are xi-nodes whose regions are intersected by h. Furthermore, all nodes u′k have the same depth in T ′.
Together this implies that Uk = Ul for all 1 ≤ k, l ≤ m because their xi-ranges must be the same. Let h1

be the last hyperplane in Uk on the left side of region(u′1) and let h2 be the first hyperplane in Uk on the
right side of region(u′1). Because Uk = Ul for all 1 ≤ k, l ≤ m, all regions u′k are bounded by h1 and h2. We
know that range(u′k) contains n/2(1/d) logn = n1−1/d ranks, hence there are at most n1−1/d points inside
the region bounded by h1 and h2. Since the nodes u′k are disjoint and the region bounded by h1 and h2

contains n1−1/d points, we have
∑m

1 |P(u′k)| ≤ n1−1/d which implies
∑c

1 |P(νj)| =
∑c

1 |P(ν′j)| ≤ n1−1/d.
Finally, let f(n) denote the number of xi-nodes whose regions are intersected by h. We have f(n) =

|TOP(T ∗)|+
∑c

1 f(|P(νj)|). Since f(|P(νj)|) ≤ |P(νj)|,
∑c

1 |P(νj)| ≤ n1−1/d, and |TOP(T ∗)| ≤ 2n1−1/d,
we can conclude that f(n) = O(n1−1/d). �

The following theorem summarizes our results.

Theorem 4 A rank-based kd-tree for a set P of n points in d dimensions uses O(n) storage and can be
built in O(n log n) time. An orthogonal range search query on a rank-based kd-tree takes O(n1−1/d + k)
time where k is the number of reported points.

Remark. The time complexity based on d of a range query in a rank-based kd-tree is O(d2n1−1/d + k)
while in a standard kd-tree, this is O(dn1−1/d+k). To prove the claim it suffices to show that the number
of nodes in a rank-based kd-tree whose regions are intersected by a hypeplane h being orthogonal to
xi-axis is O(dn1−1/d). To show this, for each leaf ν in the rank-based kd-tree, if axis(parent(ν)) 6= xi,
we imagine a dummy node as the parent of ν and the child of the real parent of ν such that whose axis
is xi. We can simply show that Lemma 2 is still true and also Lemma 3 where we show that the number
of xi-node intersected by h is O(n1−1/d) is still true. In the proof of Lemma 3, we charge every node ν
whose region is intersected by h to xi-parent(ν). Let ω be a xi node. A node ν is charged to ω if and
only if it belongs to the subtree rooted at ω and ended at xi-nodes whose xi-parents are ω. Since there
is no path in the rank-based kd-tree whose nodes have just one child and whose length is at least d, we
can simply show that the size of the subtree is at most d times the number of xi-nodes which are the
leaves of the subtree and whose regions are intersected by h. This simply implies the number of nodes
whose regions are intersected by h is O(dn1−1/d + k).
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Figure 3: Deleting and inserting point p.

The KDS. We now describe how to kinetize a rank-based kd-tree for a set of continuously moving
points P. The combinatorial structure of a rank-based kd-tree depends only on the ranks of the points
in the arrays Ai, that is, it does not change as long as the order of the points in the arrays Ai remains
the same. Hence it suffices to maintain a certificate for each pair p and q of consecutive points in every
array Ai, which fails when p and q change their order. Now assume that a certificate, involving two
points p and q and the xi-axis, fails at time t. To handle the event, we simply delete p and q and
re-insert them in their new order. (During the deletion and re-insertion there is no need to change the
ranks of the other points.) These deletions and insertions do not change anything for the other points,
because their ranks are not influenced by the swap and the deletion and re-insertion of p and q. Hence
the rank-based kd-tree remains unchanged except for a small part that involves p and q. A detailed
description of this “small part” can be found below.

Deletion. Let ν be the first active ancestor of the leaf µ containing p—see Figure 3(a). The leaf µ and
all nodes on the path from µ to ν must be deleted, since they do not contain any points anymore (they
only contained p and p is now deleted). Furthermore, ν stops being active. Let ω be the first active
descendent of ν if it exists and otherwise let ω be the leaf whose ancestor is ν. There are at most d nodes
on the path from ν to ω. Since ν is not active anymore, any of the nodes on this path might become
useless and hence have to be deleted.

Insertion. Let ν be the highest node in the rank-based kd-tree such that its region contains p and the
region corresponding to its only child ω does not contain p—note that p cannot reach a leaf when we
re-insert p, because the range of a leaf is [j, j] for some j and there cannot be two points in this range.
Let ν′ and ω′ be the nodes in S(P ) corresponding to ν and ω. Let u′ be the lowest node on the path
from ν′ to ω′ whose region contains both region(ω′) and p as illustrated in Figure 3(b)—note that we
do not maintain S(P) explicitly but with the information maintained in ν and ω the path between ν′

and ω′ can be constructed temporarily. Because u′ will become an active node, it must be added to the
rank-based kd-tree and also every node on the path from u′ to ω′ must be added to the rank-based
kd-tree if they are useful. From u′, the point p follows a new path u′1, . . . , u

′
k which is created during

the insertion. All first d− 1 nodes in the list u′1, . . . , u
′
k and the leaf u′k must be added to the rank-based

kd-tree—note that range(u′k) = [j, j] for some j.

Theorem 5 A kinetic rank-based kd-tree for a set P of n moving points in d dimensions uses O(n)
storage and processes O(n2) events in the worst case, assuming that the points follow constant-degree
algebraic trajectories. Each event can be handled in O(log n) time and each point is involved in O(1)
certificates.

2 Rank-based longest-side kd-trees

Longest-side kd-trees are a variant of kd-trees that choose the orientation of the splitting hyperplane
for a node ν according to the shape of the region associated with ν, always splitting the longest side
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first. Dickerson et al. [7] showed that a longest-side kd-tree can be used to answer the following queries
quickly:

(1 + ε)-nearest neighbor query: For a set P of points in Rd, a query point q ∈ Rd, and ε > 0, this
query returns a point p ∈ P such that d(p, q) ≤ (1+ε)d(p∗, q), where p∗ is the true nearest neighbor
to q and d(·, ·) denotes the Euclidean distance.

(1− ε)-farthest neighbor query: For a set P of points in Rd, a query point q ∈ Rd, and ε > 0, this
query returns a point p ∈ P such that d(p, q) ≥ (1−ε)d(p∗, q), where p∗ is the true farthest neighbor
to q.

ε-approximate range search query: For a set P of points in Rd, a query region Q with diameter DQ,
and ε > 0, this query returns (or counts) a set P ′ such that P ∩ Q ⊂ P ′ ⊂ P and for every
point p ∈ P ′, d(p,Q) ≤ εDQ.

The main property of a longest-side kd-tree—which is used to bound the query time—is that the number
of disjoint regions associated with its nodes and intersecting at least two opposite sides of a hypercube C
is bounded by O(logd−1 n). It seems difficult to directly kinetize a longest-side kd-tree. Hence, using
similar ideas as in the previous section, we introduce a simple variation of 2-dimensional longest-side
kd-trees, so called ranked-based longest-side kd-trees (RBLS kd-trees, for short). An RBLS kd-tree does
not only preserve all main properties of a longest-side kd-tree but it can be kinetized easily and efficiently.
As in the previous section we first describe another tree, namely the skeleton of an RBLS kd-tree denoted
by S(P). We then show how to extract an RBLS kd-tree from the skeleton S(P) by pruning.

We recursively construct S(P) as follows. We again use two arrays A1 and A2 to store the points of P
in two sorted lists; the array Ai[1, n] stores the sorted list based on the xi-coordinate. Let the points
in P be inside a box, which is the region associated with the root, and let ν be a node whose subtree
must be constructed; initially ν = root(S(P)). If P(ν) contains only one point, then the subtree is just
a single leaf, i.e, ν is a leaf of S(P). (Note that this is slightly different from the previous section.) If
P(ν) contains more than one point, then we have to determine the proper splitting line. Let the longest
side of region(ν) be parallel to the xi-axis. We set axis(ν) to be xi. If xi-parent(ν) does not exist, then
we set range(ν) = [1, n]. Otherwise, if ν is contained in the left subtree of xi-parent(ν), then range(ν) is
equal to the first half of range(xi-parent(ν)), and if ν is contained in the right subtree of xi-parent(ν),
then range(ν) is equal to the second half of range(xi-parent(ν)). The splitting line of ν, denoted by l(ν),
is orthogonal to axis(ν) and specified by the point whose rank in Ai is the median of range(ν). If there
is a point of P(ν) on the left side of l(ν) (on the right side of l(ν) or on l(ν)), a node is created as the
left child (the right child) of ν. The points of P(ν) which are on the left side of l(ν) are associated with
the left child of ν, the remainder is associated with the right child of ν. The region of the right child is
the maximal subregion of region(ν) on the right side of l(ν) and the region of the left child is the rest
of region(ν).

Lemma 6 The depth of S(P) is O(log n), the size of S(P) is O(n log n), and S(P) can be constructed
in O(n log n) time.

Proof. Assume for contradiction that the depth of a leaf ν is at least 2 log n + 1. Now consider the
path from the root to ν. Because there are only two distinct axes, there are at least log n+ 1 nodes on
this path whose axes are the same, for example xi. Let ν1, . . . , νk be these nodes. Since |range(νj+1)| ≤
d(1/2)|range(νj)|e (j = 1, . . . , k − 1) and k > log n, νk must be empty, which is a contradiction. Hence
the depth of S(P) is O(log n).

Since each leaf contains exactly one point and the depth of S(P) is O(log n), the size of S(P) is
O(n log n). Furthermore it is easy to see that it takes O(|P(ν)|) time to split the points at a node ν.
Hence we spend O(n) time at each level of S(P) during construction, for a total construction time of
O(n log n). �

The following lemma shows that RBLS kd-trees preserve the main property of longest-side kd-trees,
which is used to bound the query time.

Lemma 7 Let C be any square, and let N be any set of nodes whose regions are pairwise disjoint and
such that these regions all intersect two opposite sides of C. Then |N | = O(log n).
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Proof. Dickerson et al. [7] showed that a longest-side kd-tree on a set of points in R2 has this property.
Their proof uses only two properties of a longest side kd-tree: (i) the depth of a longest-side kd-tree
is O(log n) and (ii) the longest side of a region is split first. Since an RBLS kd-tree has these two
properties, their proof simply applies. �

As in the previous section, we obtain our structure by pruning useless nodes from S(P). It will be
convenient to alter the definition of useful nodes slightly, as follows. A node ν is useful if ν is a leaf,
or an active node, or l(ν) defines one of the sides of the boundary of region(ω) where ω is an active
descendant of ν. Otherwise ν is useless. An RBLS kd-tree is obtained from S(P) by pruning useless
nodes. The parent of a node ν in the RBLS kd-tree is the first unpruned ancestor of ν in S(P). The
following lemma shows that an RBLS kd-tree has linear size and that it preserves the main property of
a longest-side kd-tree.

Theorem 8

(i) An RBLS longest-side kd-tree on a set of n points in R2 has depth O(log n) and size O(n).

(ii) The number of nodes in an RBLS longest-side kd-tree whose regions are disjoint and that intersect
at least two opposite sides of a square C is O(log n).

Proof.

(i) An RBLS kd-tree is at most as deep as its skeleton S(P). Since the depth of S(P) is O(log n) by
Lemma 6, the depth of an RBLS kd-tree is also at most O(log n). To prove the second claim, we
first show that there is no path containing five nodes such that every node on the path has only
one child. Assume for contradiction that there is such a path from ν to one of its descendants ω.
Because there are only two distinct axes, there must be three nodes u1, u2, and u3 on this path
using the same axis. Clearly at most two of l(u1), l(u2), and l(u3) can define one of the sides of
the boundary of any region associated with a descendant of ω. Therefore, at least one of u1, u2,
and u3 must be useless, which is a contradiction. We now charge every node that has only one
child to its first active ancestor. Because there is no path containing five nodes such that every
node on the path has only one child, we charge at most eight nodes to each active node. Since the
number of active nodes is linear, the size of an RBLS longest-side kd-tree is O(n).

(ii) Let L be a set of nodes in an RBLS kd-tree whose regions are disjoint and that intersect at least
two opposite sides of a square C. We define a set L′ of nodes as follows. Consider a node ν ∈ L. If
ν is active then we add ν to L′. If ν is not active, then we consider the first active ancestor u of ν.
We add the child w of u to L′ that is on the path from u to ν (note that w could be ν). The regions
in L′ are disjoint and we have |L| = |L′|. Since the region associated with a node is a subregion
of the region associated with its ancestor, the regions associated with the nodes in L′ intersect at
least two opposite sides of C. Let ν′ be the corresponding node to ν in S(P). The definition of a
useful node implies region(ν) = region(ν′) for every active node ν—note that this may be false for
other nodes. Thus, if ν ∈ L′ is active, then region(ν) = region(ν′) and if ν is a child of an active
node ω, then region(ν) = region(u′) where u′ is the child of ω′ that is on the path from ω′ to ν′.
Thus, for every node ν in L′, there is a node ω′ in S(P) such that region(ν) = region(ω′). This
observation together with Lemma 7 shows that |L′| = O(log n) which implies |L| = O(log n).

�

Using an RBLS kd-tree, similar algorithms to the algorithms of Dickerson et al. [7] can be used to
answer (1 + ε)-nearest neighbor, (1− ε)-farthest neighbor and ε-approximate range search queries.

Theorem 9 An RBLS kd-tree for a set of n points in the plane supports (1 + ε)-nearest or (1 − ε)-
farthest neighbor queries in O((1/ε) log2 n) time. Moreover, for any constant-complexity convex region
and any constant-complexity non-convex region a counting (or reporting) ε-approximate range search
query can be performed in time O((1/ε) log2 n) and O((1/ε2) log2 n), respectively (plus the output size
in the reporting case).
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Figure 4: The status of the RBLS kd-tree before handling a longest-side event and after handling the
event.

The KDS. We now describe how to kinetize a RBLS kd-tree for a set of continuously moving points P.
Clearly the combinatorial structure of an RBLS kd-tree changes only when one of the following two
events occurs.

Ordering event: Two points change their ordering on one of the coordinate-axes.

Longest-side event: A side of a region starts to be the longest side of that region.

We first describe how to detect these events, then we explain how to handle them. Ordering events can
be easily detected. We maintain a certificate for each pair p and q of consecutive points in the two arrays
A1 and A2, which fails when p and q change their order.

Longest-side events are a bit tricky to detect efficiently. An easy way would be to maintain a cer-
tificate s1(ν) < s2(ν) (or s2(ν) < s1(ν)) for each node ν in S(P) where si(ν) denotes the length of
the xi-side of region(ν). Let xi(p) denote the xi-coordinate of p. We have si(ν) = xi(p)− xi(q) where p
and q are two points specifying two splitting lines in the xi-ancestors of ν in S(P). More precisely, the
splitting lines defined by p and q are associated with the first left ancestor and the first right ancestor of
ν in S(P), that is, the first nodes u and w such that ν is a left child of u and a right child of w. The
problem with this approach lies in the fact that xi(p)− xi(q) can be the side length of a linear number
of regions and hence our KDS would not be local. It would also not be responsive, because if two points
change their ordering we might have to update a linear number of longest-side certificates.

We avoid these problems by not maintaining a separate longest-side certificate for every region of the
RBLS kd-tree. Instead, we identify all pairs of points that can define either the vertical or the horizontal
side length of a region. We add all these pairs to one single list, the so-called side-length list which is
sorted on the length of the sides. A longest-side event can happen only when two adjacent elements
in the side-length list define the same length. (More precisely, they also have to define both a vertical
and a horizontal side—nothing happens if two vertical sides have the same length. In fact, even when a
vertical side and a horizontal side get the same length, it is possible that nothing happens, because they
need not be sides of the same region.) So we have to maintain a certificate for each pair of consecutive
elements in the side-length list. It remains to explain which sides precisely appear in the side-length
list. To determine this, we construct two one-dimensional rank-based kd-trees Ti on the xi-coordinates
of the points in P. Since all splitting lines for the nodes of Ti are orthogonal to the xi-axis, Ti is in fact
a balanced binary search tree. Let ν be a node in Ti and let νr and ν` be the first right and the first left
ancestors of ν in Ti. If p and q are the two points used in νr and ν` as splitting points, then xi(p)−xi(q)
appears in the side-length list. Since the number of nodes in Ti is O(n) and a node can be either the
first left ancestor or the first right ancestor of at most O(log n) nodes, the number of elements in the
side-length list is O(n) and each point is involved in O(log n) elements of the side-length list. Moreover,
all sides of all regions in S(P) exist in the side-length list.

Ordering event. When handling an ordering event that involves two points p and q and the xi-axis, we
have to update Ai, the side-length list and the RBLS kd-tree. We update the array Ai by swapping p and
q and updating the at most three certificates in which p and q are involved. We update the side-length
list by replacing p by q and vice versa and computing the failure times of all certificates affected by these
replacements. To quickly find in which elements of the side-length list a point p is involved we maintain
for each rank i a list of elements of the side-length list in which rank i is involved. Since the number
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of elements in the side-length list is O(n) and two ranks are involved in each element, this additional
information uses O(n) space. Since each rank is involved in O(log n) elements of the side-length list,
updating the side-length list takes O(log n) time and inserting the failures times of the new certificates
into the event queue takes O(log2 n). To update the RBLS kd-tree, we first delete p and q from the
RBLS kd-tree and then we re-insert them in their new order.

Deletion. Let ν be the lowest active node whose region contains p. The leaf containing p is a child of
ν. This leaf must be removed. Let ω be the first active ancestor of ν. All nodes on the path from ω to
ν must be checked whether they are useless. If so, they must be removed from the RBLS kd-tree.

Insertion. Let ν be the highest node in the RBLS kd-tree whose region contains p and such that
the region corresponding to its only child ω does not contain p. Let ν′ and ω′ be the nodes in S(P )
corresponding to ν and ω. Let u′ be the lowest node on the path from ν′ to ω′ whose region contains
both region(ω′) and p as illustrated in Figure 3(b)— note that we do not explicitly maintain S(P) but
the path between ν′ and ω′ can be constructed temporarily in O(log n) time. Because u′ will become
active, it must be added as a node, u, to the RBLS kd-tree and also every node on the path from ν′ to u′

must be added to the RBLS kd-tree if they are useful. The point p is maintained in a leaf whose parent
is u.

Longest-side event. When handling a longest-side event that occurs at time t we first update the side-
length list and the certificates involved in the event. Then we update the RBLS kd-tree as follows. Let
p, q, p′, and q′ be the points involved in the event, more precisely, let xi(p(t)) − xi(q(t)) = xj(p′(t)) −
xj(q′(t)). If i = j, then there is nothing to do, because the certificate failure can not correspond to a real
longest-side event. Otherwise, we need to determine which, if any, of the regions of S(P) corresponds to
the event. Because two sides of the region are given, we can follow a path from the root to some node
while temporally constructing each node from S(P) on the path which does not appear in the RBLS
kd-tree. If there is no region with the two given sides, then we delete the temporary nodes and stop
handling the event.

Otherwise there is exactly one region in S(P) that is specified by the two sides that triggered the event.
(Note that this is only true in two dimensions, in higher dimensions the boundary of many regions can
be defined by two sides—this is the only problem when attempting to extend these results to higher
dimensions.) Let ν be the node that is associated with the event region. We add the two children νr and
ν` of ν in S(P) to the RBLS kd-tree provided that they do not already exist in the RBLS kd-tree. Let
the xi-side of region(ν) be bigger than the xj-side of region(ν) at the point in time just before t, denoted
by t−. At time t−, l(ν) must be orthogonal to the xi-axis and l(ν`) and l(νr) must be orthogonal to the
xj-axis as illustrated in Figure 4(a)—note that region(ν) is a square at time t. Moreover, l(ν`) = l(νr),
because the median of all points between the two xi-sides of region(ν) is chosen to specify l(ν`) and l(νr).
Let A, B, C, and D be the four regions defined by l(ν), l(ν`) and l(νr) as illustrated in Figure 4(a). We
now split region(ν) with a line that is orthogonal to the xj-axis and region(νr) and region(ν`) with a
line that is orthogonal to the xi-axis. Clearly l(ν) at time t is equal to l(ν`) and l(νr) at time t− and
l(ν`) and l(νr) at time t are equal to l(ν) at time t−. The four subregion A, B, C, and D do not change
and we only have to put them in the correct positions in the RBLS kd-tree as illustrated in Figure 4(b).
Finally every node on the path from the root to ν as well as νr and ν` must be checked whether they
are useless. If so, they must be removed from the RBLS kd-tree.

The number of events. Assume that the points in P follow constant-degree algebraic trajectories.
Clearly the number of ordering events is O(n2). To count the number of longest-side events, we charge
a longest-side event in which two sides s1 and s2 are involved to the side (either s1 or s2) that appeared
in the side-length list later. At any point in time there are O(n) elements in the side-length list and
elements are only added or deleted whenever a ordering event occurs. During each ordering event,
O(log n) elements can be added to the side-length list. All longest-side events that involve one of these
“new” elements and one of the “old” elements are charged to one of the new elements, hence a total
of O(n log n) events is charged to the new elements that are created during one ordering event. Since
there are O(n2) ordering events, the number of longest-side events is O(n3 log n). (This bound subsumes
events that involve two new elements or two of the initial elements of the side-length list.)
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Theorem 10 A kinetic RBLS kd-tree for a set P of n moving points in R2 uses O(n) storage and
processes O(n3 log n) events in the worst case, assuming that the points follow constant-degree alge-
braic trajectories. Each event can be handled in O(log2 n) time and each point is involved in O(log n)
certificates.

3 Conclusions

We presented a variant of kd-tress, called rank-based kd-trees, for sets of points in Rd. We showed that
our rank-based kd-tree supports orthogonal range searching in O(n1−1/d + k) time and it uses O(n)
storage—just like the original. But additionally it can be kinetized easily and efficiently. In the dynamic
setting, either inserting or deleting a point affects the ranks of points which may cause a dramatic change
in the rank-based kd-tree. A challenging problem is how to adapt the rank-based kd-tree to the insertion
and deletion of points such that the query time does not change asymptotically.

We also proposed a variant of longest-side kd-trees, called rank-based longest-side kd-trees, for sets
of points in R2. We showed RBLS kd-trees can be kinetized efficiently as well and like longest-side kd-
trees, RBLS kd-trees support nearest-neighbor, farthest-neighbor, and approximate range search queries
in O((1/ε) log2 n) time. Unfortunately we have been unable to generalize this result to higher dimension.
We leave it as an interesting open problem for future research.
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