
Building Biologically-Inspired Self-Adapting Systems
Extended Abstract

Yuriy Brun
Computer Science Department

University of Southern California
Los Angeles, California 90089, USA

ybrun@usc.edu

Biological systems are far more complex than sys-

tems we design and build today. The human body

alone has orders of magnitude more complexity than

our most-intricate designed systems. Further, biologi-

cal systems are decentralized in such a way that allows

them to benefit from built-in error-correction, fault tol-

erance, and scalability. Despite added complexity, hu-

man beings are more resilient to failures of individual

components and injections of malicious bacteria and

viruses than engineered software systems are to com-

ponent failure and computer virus infection. Other bi-

ological systems, for example worms and sea stars, are

capable of recovering from such serious hardware fail-

ures as being cut in half (both worms and sea stars

are capable of regrowing the missing pieces to form

two nearly identical organisms), yet we envision nei-

ther a functioning desktop, half of which was crushed

by a car, nor a machine that can recover from being

installed with only half of an operating system. It fol-

lows that if we can extract certain properties of biolog-

ical systems and inject them into our software design

process, we may be able to build complex self-adaptive

software systems.

Biological systems’ complexity makes them not

only desirable to guide software design, but also diffi-

cult to fully understand. Thus one approach to building

software similar to biological systems is by first build-

ing models of biology that we can understand. Then

these models can guide the high-level design, or archi-

tecture of the software systems, resulting in systems

that retain the model’s fault tolerance, scalability, and

other properties. Figure 1 shows the outline of the pro-

cess of using a biological system to create a software

B io log ica l S ystem S oftw are D esign

M ode l

Figure 1. Outline of the process of using a bio-

logical system to create a software design tool.

design tool or technique.

Given a biological system, the designer must first

create a model of that system. Some effort must

go into studying and fully understanding the model.

The purpose of the model is to prevent unwanted and

poorly-understood properties of the biological system

from affecting the software system. Once the de-

signer has a solid understanding of the model, the

process of creating the software design tool or tech-

nique can begin. The kind of design tools that may

emerge from these models are likely to be high-level

design paradigms that yield qualities of service such

as fault tolerance, robustness, security, etc. Such de-

sign is most effectively approached from a software ar-

chitectural perspective [5]. In particular, architectural

styles [6] present generic design solutions that can be

applied to problems with shared characteristics. Thus

a likely result of the procedure represented in Figure 1

is an architectural style. Note that since the goal is

to design some particular software system, or systems

Dagstuhl Seminar Proceedings 08031 
Software Engineering for Self-Adaptive Systems 
http://drops.dagstuhl.de/opus/volltexte/2008/1499 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913415?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


with particular qualities, that system or those qualities

should play a role in selecting the underlying biologi-

cal system and in creating the model. The most fruitful

approach is most likely to iterate through the diagram

several times, starting with a small model and building

on its complexity.

I have gone through the exercise depicted in Fig-

ure 1 to create an architectural style called the tile

architectural style. The tile style solves a particular

software engineering problem, the discreet distribution

problem. The internet’s growth has created networks

with great computing potential without a clear way to

harness that potential to solve memory-intensive and

processor time-intensive problems. Networks, such as

the internet, can in theory solve NP-complete prob-

lems (and other problems for which we do not know

polynomial time solutions) quickly, but as their in-

dividual nodes may be unreliable or malicious, users

may desire guarantees that their computations are cor-

rect and are kept confidential. Several attempts at dis-

tributing computation over the internet have been suc-

cessful (e.g., [3, 4]); however, these systems do not

distribute the computation discreetly. The discreet dis-

tribution problem is the problem of distributing a com-

putation on a large network without telling any small

group of nodes on the network the problem it is help-

ing to solve. I use a sample scenario to illustrate the

problem. An espionage agency is attempting to break

an RSA code sent by an enemy. The agency wishes to

use a large network to factor the enemy’s public key;

however, it cannot allow anyone to know the key’s fac-

tors or even whose key it is factoring. Since the agency

has access to the internet, an incredibly large network

of computers, it should be feasible to factor nonde-

terministically, or through brute force. However, the

problem is to do so discreetly, without the nodes on

the network learning the problem or the input.

The tile style leverages the nature’s process of self-

assembly. Thus it results in software systems that in-

herit nature’s fault tolerance and robustness. Figure 2

outlines the result of applying the process from Fig-

ure 1 to this particular problem.

Instead of focusing on the details of the tile ar-

chitectural style here, I wish only to present the pro-

cess of how to create software design tools and tech-

niques from biological systems. Details of the tile

architectural style can be found here [2, 1]. Note

S e lf-A ssem b ly T ile A rch itectu ra l
S ty le

T ile A ssem b ly
M ode l

Figure 2. The tile architectural style is based on a

formal mathematical model of self-assembly, the

tile assembly model.

that the resulting systems may vary drastically from

traditionally-designed software systems and may take

a novel approach to achieving qualities of service, such

as fault tolerance. These types of systems are in some

ways different from the systems we are used to build-

ing, and thus we must develop tools not only to design

and build them but also to compare and analyze them.

While this is likely to require a significant amount of

effort, the potential of software systems resembling

nature’s systems in complexity, self-management, and

dependability makes the effort a worthy investement.

References

[1] Y. Brun and N. Medvidovic. An architectural style for

solving computationally intensive problems on large

networks. In Proceedings of Software Engineering
for Adaptive and Self-Managing Systems (SEAMS07),
Minneapolis, MN, USA, May 2007.

[2] Y. Brun and N. Medvidovic. Discreetly distribut-

ing computation via self-assembly. Technical Report

USC-CSSE-2007-714, Center for Software Engineer-

ing, University of Southern California, 2007.
[3] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and

M. Lebofsky. SETI@home-massively distributed com-

puting for SETI. IEEE MultiMedia, 3(1):78–83, 1996.
[4] S. M. Larson, C. D. Snow, M. R. Shirts, and V. S.

Pande. Folding@Home and Genome@Home: Using
distributed computing to tackle previously intractable
problems in computational biology. Horizon Press,

2002.
[5] D. E. Perry and A. L. Wolf. Foundations for the study

of software architecture. ACM SIGSOFT Software En-
gineering Notes, 17(4):40–52, 1992.

[6] M. Shaw and D. Garlan. Software architecture: per-
spectives on an emerging discipline. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA, 1996.




