
SECOND NOTE ON BASIC INTERVAL ARITHMETIC FOR IEEE754R

ISL WORK NOTE WN13B

JOHN PRYCE, GEORGE CORLISS, BAKER KEARFOTT, NED NEDIALKOV,
AND SPENCER SMITH

INTERVAL SUBROUTINE LIBRARY TEAM

Contents

1. Context: The Kirchner–Kulisch interval hardware paper 1
2. NaN cases in the KK operation tables 2
3. Comparison of KK, n2137 and cset0 4
3.1. Definitions 4
3.2. KK’s division by zero 4
3.3. Discussion 4
4. Exceptions/Flags 7
4.1. Invalid and NaI 7
4.2. Discontinuous 7
4.3. Inexact, Underflow, Overflow 7
5. Recommendations 8
References 8

1. Context: The Kirchner–Kulisch interval hardware paper

The IFIP Working Group 2.5 on Numerical Software (IFIPWG2.5) wrote on 5th Septem-
ber 2007 to the IEEE Standards Committee concerned with revising the IEEE Floating-
Point Arithmetic Standards 754 and 854 (IEEE754R). The letter expressed the unanimous
request of IFIPWG2.5 that the following requirement be included in the future computer
arithmetic standard:

For the data format double precision, interval arithmetic should be made

available at the speed of simple floating-point arithmetic.

IEEE754R (we believe) welcomed this development. They had before them a document
defining interval arithmetic operations but, to be the basis of a standards document, it
needed more detail. Members of the Interval Subroutine Library (ISL) team were asked
to comment, in an email from Ulrich Kulisch that enclosed one from Jim Demmel to Van
Snyder raising the issue.

The document is Kirchner and Kulisch’s paper [1],1 called KK below. We now give a
response. Demmel’s concerns are that:

1. It is hard to get consensus on the definitions of exceptions for intervals — every case
needs to be defined, including meaningless operands with a NaN as an “endpoint”.

Before covering this, we think, one needs to resolve the following:

2. The operation tables, KK page 3, even for valid inputs, have cases where the interval
operation C = A •B as given will give a C with a NaN as an endpoint.

KK’s primary aim is to show minimal extra hardware complexity is needed to implement
interval arithmetic. But a fundamental issue still needs to be addressed:

1It took us some time to find this out.

1

Dagstuhl Seminar Proceedings 08021 
Numerical Validation in Current Hardware Architectures 
http://drops.dagstuhl.de/opus/volltexte/2008/1451

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 PRYCE, CORLISS, KEARFOTT, NEDIALKOV, AND SMITH

3. KK does not state its underlying mathematical interval model. All commonly used
models agree on the simple cases (bounded intervals input and output) — the dif-
ferences is “at the edges”. The operations given do not entirely agree either with
the Brönnimann–Melquiond–Pion proposal [2], or with any system based on csets
as described e.g. in [3].

Section 2 lists these NaN cases of item 2. Section 3 compares, in each such case, the KK
result with that of: (a) KKM — what we believe is the mathematical model of KK; (b) the
n2137 model; and (c) Cset0, the most straightforward cset model. Section 4 addresses the
issue of exceptions. Section 5 gives recommendations.

2. NaN cases in the KK operation tables

We think Tables 1, 2, 3, 4 give a complete list of the NaN cases.2

Table 1. Addition. Subtraction has similar cases.

Case A + B = C When? Note
add [−∞,−∞] + [b1, +∞] = [−∞, NaN] if b1 < +∞

[+∞, +∞] + [−∞, b2] = [NaN, +∞] if b2 > −∞
[+∞, +∞] + [−∞,−∞] = [NaN, NaN]
Three similar cases with A, B interchanged

Table 2. Division, 0 6∈ B, KK’s cases 1–6 are read by rows.

Case (definition) A ÷ B = C When?
div1 a1 ≥ 0, b1 > 0 [a1, +∞] ÷ [+∞, +∞] = [0, NaN] if a1 < +∞

[+∞, +∞] ÷ [b1, +∞] = [NaN, +∞] if b1 < +∞
[+∞, +∞] ÷ [+∞, +∞] = [NaN, NaN]

div2 a1 ≥ 0, b2 < 0 3 cases like div1.

div3 a1<0≤a2, b1 > 0 [−∞, a2] ÷ [+∞, +∞] = [NaN, 0] if a2 < +∞
[a1, +∞] ÷ [+∞, +∞] = [0, NaN] if a1 > −∞
[−∞, +∞] ÷ [+∞, +∞] = [NaN, NaN]

div4 a1<0≤a2, b2 < 0 3 cases like div3.

div5 a2 < 0, b1 > 0 3 cases like div1.

div6 a2 < 0, b2 < 0 3 cases like div1.

Table 3. Division, 0 ∈ B, KK’s cases 1–12 are read by rows.

Case (definition) A ÷ B = C
divz1 a2 < 0, b1=b2=0

Note: Not all models return empty here.
divz2 a2 < 0, b1<b2=0 [−∞,−∞] ÷ [−∞, 0] = [NaN, +∞]
divz3 a2 < 0, b1<0<b2 [−∞,−∞] ÷ [−∞, +∞] = [NaN, NaN]
divz4 a2 < 0, 0=b1<b2 [−∞,−∞] ÷ [0, +∞] = [−∞, NaN]

divz5 a1≤0≤a2, b1=b2=0
Note: Not all models return [−∞, +∞] here.

divz9 a2 > 0, b1=b2=0 like divz1.
divz10 a2 > 0, b1<b2=0 like divz4.
divz11 a2 > 0, b1<0<b2 like divz3.
divz12 a2 > 0, 0=b1<b2 like divz2.

2Multiplication comes last because it needed to go on a landscape page.



S
E

C
O

N
D

N
O

T
E

O
N

B
A

S
IC

IN
T

E
R
V
A

L
A

R
IT

H
M

E
T

IC
F
O

R
IE

E
E

7
5
4
R

I
S
L

W
O

R
K

N
O

T
E

W
N

1
3
B

3

Table 4. Multiplication. KK’s cases 1–9 are read by rows. A * marks cases that do not involve singleton infinite intervals.

Case (definition) A × B = C When?
mul1 a1 ≥ 0, b1 ≥ 0 [0, a2] × [+∞, +∞] = [NaN, +∞] if a2 > 0

* [0, 0] × [b1, +∞] = [0, NaN] if b1 < +∞
[0, 0] × [+∞, +∞] = [NaN, NaN]

mul2 a1 ≥ 0, b1 < 0 ≤ b2 * [0, 0] × [−∞, b2] = [NaN, 0] if b2 < +∞
* [0, 0] × [−∞, +∞] = [NaN, NaN]
* [a1, +∞] × [b1, 0] = [−∞, NaN]

mul3 a1 ≥ 0, b2 < 0 * [0, 0] × [−∞, b2] = [NaN, 0]] if b2 > −∞
[0, 0] × [−∞,−∞] = [NaN, NaN]

mul4 a1 < 0 ≤ a2, b1 ≥ 0 * [−∞, a2] × [0, 0] = [NaN, 0] if a2 < +∞
* [−∞, +∞] × [0, 0] = [NaN, NaN]

mul5 a1<0≤a2, b1<0≤b2 * [−∞, a2] × [b1, 0] = [min(NaN, a2
̂× b1),

max(+∞, 0)]
= [a2

̂× b1, +∞] if a2 < +∞
* [−∞, +∞] × [b1, 0] = [min(NaN,−∞),

max(+∞, NaN)]
= [−∞, +∞]

* [a1, 0] × [−∞, b2] = [min(a1

̂× b2, NaN),
max(+∞, 0)]

= [a1

̂× b2, +∞] if b2 < +∞
* [a1, 0] × [−∞, +∞] = [min(−∞, NaN),

max(+∞, NaN)]
= [−∞, +∞]

mul6 a1 < 0 ≤ a2, b2 < 0 * [a1, 0] × [−∞, b2] = [NaN, +∞]

mul7 a2 < 0, b1 ≥ 0 * [−∞, a2] × [0, 0] = [NaN, 0] if a2 > −∞
[−∞,−∞] × [0, 0] = [NaN, NaN]

mul8 a2 < 0, b1 < 0 ≤ b2 * [−∞, a2] × [b1, 0] = [NaN, +∞]

mul9 a2 < 0, b2 < 0 no strange cases



4 PRYCE, CORLISS, KEARFOTT, NEDIALKOV, AND SMITH

3. Comparison of KK, n2137 and cset0

Tables 5, 6, 7, 8 compare the results from the three models, but only on the cases listed
in Section 2. There are several other cases where the models give different results.

3.1. Definitions. In all three models an interval result A •B is found by computing a “raw
set result” and replacing this by the smallest model interval containing it.

In the n2137 model the number system is the reals R, and the intervals are all nonempty

[a1, a2] = {x ∈ R | a1 ≤ x ≤ a2} where −∞ ≤ a1 ≤ a2 ≤ +∞ (“nonempty” forbids a1 =
a2 = ±∞), plus the empty set. The raw set result A •B is {a • b | a ∈ A and b ∈ B}.
Division x ÷ y is a function in the usual way so {1} ÷ {0} and {0} ÷ {0} are both empty.

KKM is what we believe is the model underlying the KK operations. The number system
and intervals are as in n2137. The operations are the same except (for point values) a ÷ b
means “any solution c of bc = a” — the raw set result A÷B is the set of c such that bc = a
for some a ∈ A, b ∈ B. Thus {1} ÷ {0} is empty and {0} ÷ {0} is all of R.

In the Cset0 model used here, the number system is the extended reals R
∗ = R ∪

{−∞,+∞}. The intervals are all [a1, a2] = {x ∈ R
∗ | a1 ≤ x ≤ a2} where −∞ ≤ a1 ≤

a2 ≤ +∞, plus the empty set. The raw set result A •B is the set of all limits limr ar • br

where (ar) is a sequence converging to some point of A, (br) is similar, and ar • br is defined
for all r in the normal way. In the present context this means the ar and br are finite and,
when • is ÷, all br 6= 0. Thus {1} ÷ {0} is {−∞,+∞} and {0} ÷ {0} is all of R

∗.
In all these models, there is only one zero: IEEE -0 and +0 must be treated as identical.
At the implementation level, an interval (typewriter font) will mean a 128-bit field x

made up of two 64-bit double fields x1, x2. We write x = [x1, x2]. An interval value
is valid if it denotes a (possibly empty) interval in the chosen model, otherwise invalid.

3.2. KK’s division by zero. The mantra “smallest model interval containing . . . ” is
relaxed for the case of A ÷ B where 0 ∈ B. In this case the raw set result can be a
wraparound (exterior) interval of the form [−∞, c2]∪ [c1,+∞]. KK allows the return of such
an interval, encoded as [c1, c2] where c1 > c2. It must be split into its two parts before
being used in further arithmetic operations.

This looks a nice design decision so we have assumed it for all three models. For n2137,
the only one with a concrete proposal, such a feature was requested but has not made it
into the current text as far as we can see. For Cset0, it answers some criticisms that have
been made of returning uselessly wide bounds. E.g. without it, 1/[0, 1] is [1,+∞] in n2137

but [−∞,+∞] in Cset0. With it, one still has [1,+∞] in n2137 but [−∞]∪ [1,+∞] in Cset0.

3.3. Discussion. First, three mathematically sensible interval models, all with support
from respected groups in the interval community, behave significantly differently “at the
edges” of arithmetic.

Second, it is not hard to see that for all cases, the KK formulas deliver the cset result
automatically if IEEE754 arithmetic is changed so that when rounding is downward or

upward, non-NaN inputs never return NaN. Except for division with 0 ∈ B, they are to
return:

rounding downwards: the minimum (infimum) of the cset result;
rounding upwards: the maximum (supremum) of the cset result.

For instance +∞
÷̂

+∞ = 0, +∞÷̂+∞ = +∞.
For division with 0 ∈ B, the situation is interesting. Using KK’s proposed support for

wraparound intervals in this special case, one gets the correct cset result by doing two things.
First, for division by zero make a wraparound version of the above downwards/upwards rule:

x
÷̂

0 = +∞, x ÷̂ 0 = −∞ if x 6= 0; but

0
÷̂

0 = −∞, 0 ÷̂ 0 = +∞



SECOND NOTE ON BASIC INTERVAL ARITHMETIC FOR IEEE754R ISL WORK NOTE WN13B 5

Second, simplify KK’s table for division with 0 ∈ B to the following:

B = [b1, b2] arbitrary

a2 < 0 [a2
÷̂

b1, a2 ÷̂ b2]
a1 ≤ 0 ≤ a2 [−∞,+∞]
a1 > 0 [a1

÷̂
b2, a1 ÷̂ b1]

For this case, the cset result always equals (KK result)∪{−∞,+∞}; it is simple to verify
the above table gives this result.

We suppose there is little chance of influencing IEEE754’s handling of rounding at this late
stage, but we believe changing it as above leads to simpler logic in the proposed hardware
implementation.

Table 5. Addition. Subtraction has similar cases. All involve singleton
infinite intervals.

Case A + B = KK KKM,
n2137 Cset0 When?

add [−∞,−∞] + [b1, +∞] = [−∞, NaN] illegal [−∞, +∞] (b1 > −∞)
[+∞, +∞] + [−∞, b2] = [NaN, +∞] illegal [−∞, +∞] (b2 < +∞)
[+∞, +∞] + [−∞,−∞] = [NaN, NaN] illegal [−∞, +∞]

Three similar cases with A, B interchanged

Table 6. Division, 0 6∈ B, KK’s cases 1–6 are read by rows. All involve
singleton infinite intervals.

A ÷ B = KK KKM,
n2137 Cset0 When?

div1 [a1, +∞] ÷ [+∞, +∞] = [0, NaN] illegal [0, +∞]
[+∞, +∞] ÷ [b1, +∞] = [NaN, +∞] illegal [0, +∞]
[+∞, +∞] ÷ [+∞, +∞] = [NaN, NaN] illegal [0, +∞]

div2 3 cases like div1.
div3 [−∞, a2] ÷ [+∞, +∞] = [NaN, 0] illegal [−∞, 0] (a2 < +∞)

[a1, +∞] ÷ [+∞, +∞] = [0, NaN] illegal [0, +∞] (a1 > −∞)
[−∞, +∞] ÷ [+∞, +∞] = [NaN, NaN] illegal [−∞, +∞]

div4 3 cases like div3.
div5 3 cases like div1.
div6 3 cases like div1.

Table 7. Division, 0 ∈ B, KK’s cases 1–12 are read by rows. † marks Cset0
results that wrap around, so can be handled by KK’s proposed wraparound
mechanism. Note [+∞,−∞] is the union of the two infinite singleton intervals
[−∞,−∞] and [+∞,+∞].

Case A ÷ B = KK KKM n2137 Cset0
divz1 a2 < 0, b1=b2=0 [a1, a2] ÷ [0, 0] = [+NaN,−NaN] empty empty [+∞,−∞] †

divz2 a2 < 0, b1<b2=0 [−∞,−∞]÷ [−∞, 0] = [NaN, +∞] illegal illegal [0,−∞] †

divz3 a2 < 0, b1<0<b2 [−∞,−∞]÷[−∞, +∞]= [NaN, NaN] illegal illegal [−∞, +∞]
divz4 a2 < 0, 0=b1<b2 [−∞,−∞]÷ [0, +∞] = [−∞, NaN] illegal illegal [+∞, 0] †

divz5 a1≤0≤a2, b1=b2=0 [a1, a2] ÷ [0, 0] = [−∞, +∞] [−∞, +∞] empty [−∞, +∞]

divz9 a2 > 0, b1=b2=0 like divz1.
divz10 a2 > 0, b1<b2=0 like divz4.
divz11 a2 > 0, b1<0<b2 like divz3.
divz12 a2 > 0, 0=b1<b2 like divz2.



6
P

R
Y

C
E

,
C

O
R

L
IS

S
,
K

E
A

R
F
O

T
T

,
N

E
D

IA
L
K

O
V

,
A

N
D

S
M

IT
H

Table 8. Multiplication. KK’s cases 1–9 are read by rows. A * marks cases that do not involve singleton infinite intervals. The
Cset0 result is [−∞,+∞] in each of these cases.

Case A × B KK KKM,
n2137 Cset0 When?

mul1 a1 ≥ 0, b1 ≥ 0 [0, a2] × [+∞,+∞] [NaN,+∞] illegal [−∞,+∞] if a2 > 0
* [0, 0] × [b1,+∞] [0, NaN] [0, 0] [−∞,+∞] if b1 < +∞

[0, 0] × [+∞,+∞] [NaN, NaN] illegal [−∞,+∞]

mul2 a1 ≥ 0, b1 < 0 ≤ b2 * [0, 0] × [−∞, b2] [NaN, 0] [0, 0] [−∞,+∞] if b2 < +∞
* [0, 0] × [−∞,+∞] [NaN, NaN] [0, 0] [−∞,+∞]
* [a1,+∞] × [b1, 0] [−∞, NaN] [−∞, 0] [−∞,+∞]

mul3 a1 ≥ 0, b2 < 0 * [0, 0] × [−∞, b2] [NaN, 0]] [0, 0] [−∞,+∞] if b2 > −∞
[0, 0] × [−∞,−∞] [NaN, NaN] illegal [−∞,+∞]

mul4 a1 < 0 ≤ a2, b1 ≥ 0 * [−∞, a2] × [0, 0] [NaN, 0] [0, 0] [−∞,+∞] if a2 < −∞
* [−∞,+∞] × [0, 0] [NaN, NaN] [0, 0] [−∞,+∞]
* [a1, 0] × [b1,+∞] [NaN, NaN] [0, 0] [−∞,+∞]

mul5 a1 < 0 ≤ a2, b1 < 0 ≤ b2 * [−∞, a2] × [b1, 0] [a2

̂× b1,+∞] [a2

̂× b1,+∞] [−∞,+∞] if a2 < +∞
* [−∞,+∞] × [b1, 0] [−∞,+∞] [−∞,+∞] [−∞,+∞]
* [a1, 0] × [−∞, b2] [a1

̂× b2,+∞] [a1

̂× b2,+∞] [−∞,+∞] if b2 < +∞
* [a1, 0] × [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞]

mul6 a1 < 0 ≤ a2, b2 < 0 * [a1, 0] × [−∞, b2] [NaN,+∞] [0,+∞] [−∞,+∞]

mul7 a2 < 0, b1 ≥ 0 * [−∞, a2] × [0, 0] [NaN, 0] [0, 0] [−∞,+∞] if a2 > −∞
[−∞,−∞] × [0, 0] [NaN, NaN] illegal [−∞,+∞]

mul8 a2 < 0, b1 < 0 ≤ b2 * [−∞, a2] × [b1, 0] [NaN,+∞] [0,+∞] [−∞,+∞]

mul9 a2 < 0, b2 < 0 no strange cases



SECOND NOTE ON BASIC INTERVAL ARITHMETIC FOR IEEE754R ISL WORK NOTE WN13B 7

4. Exceptions/Flags

4.1. Invalid and NaI. Whichever of the three models (or another) is chosen, the result
of any arithmetic operation on two valid intervals is another valid interval. Therefore
arithmetic operations raise INVALID if, and only if, given an invalid interval as input.

n2137 requires a special interval value that we here call “Not an Interval”, NaI. It could
be a class of values, carrying a “payload” like NaN. It is useful in various ways for making
programming more secure, so ISL agree it should be in the standard.

4.2. Discontinuous. It is essential to have a DISCTS flag, raised when the inputs to an
operation • are outside the domain where • is defined and continuous. If one does not have
it, the many interval algorithms that rely on Brouwer’s Theorem (more-or-less anything to
do with differential equations) are condemned to run an order of magnitude slower, and are
harder to code.

In KKM and n2137, based on R, the only place where DISCTS is raised is (any interval
arithmetic operation that implies) division by zero. In Cset0, based on R

∗, all the operations
that give NaN in IEEE arithmetic also raise DISCTS. That is, in addition to x÷ 0, anything
equivalent to ∞−∞, 0 ×∞, ∞÷∞.

Mathematically, this is because a function is discontinuous at a point if, and only if, its
cset value there is a set of more than one point; this is exactly when IEEE754 specifies NaN.

4.3. Inexact, Underflow, Overflow. We presume the main rationale of these in interval
work is for fine-tuning of algorithms, detecting opportunities of special action, e.g. to get
tighter bounds. If this is so, a reasonable rule is that an interval arithmetic operation should
raise INEXACT, UNDERFLOW or OVERFLOW if, and only if, at least one of the floating point
operations in its implementation does so. This raises a problem with KK’s multiplication
case 5, “mul5”, which contains sub-cases due to using max() and min().

Example 1. Let m and M be the smallest positive normalized and largest finite floating
point numbers. Then [−m,M ] × [−m,M ] is evaluated as

[min(−m
×̂

M,M
×̂

(−m)), max(−m ×̂ (−m),M ×̂M)] = [−4,+∞].

My inclination is that this operation should only raise OVERFLOW, although one of the op-
erations done was (−m) ×̂ (−m) which returns the smallest positive denormal (because
rounding up) and raises UNDERFLOW.

Example 2. With M as above, [−M, 0]×[−∞,M ] is evaluated as [min(−M
×̂

M, 0
×̂

(−∞)),

max(−M ×̂ (−∞), 0 ×̂M)]. The right endpoint is +∞ with no flags raised. The left endpoint
is problematic. With current IEEE754 arithmetic it is min(−∞, NaN) with OVERFLOW from
the −∞. With our suggested change to arithmetic it is min(−∞,−∞) with OVERFLOW from
the first −∞, not the second. The correct overall result is [−∞,+∞] in all three models. In
the Cset0 model we incline to not raising OVERFLOW for the overall operation; in KKM and
n2137, we do not know.

Example 3. If a is the nearest double number to 1/3, then [−a, 1]× [−3, 9] is evaluated as
[min(−a

×̂
9, 1

×̂
(−3)),max((−a) ×̂ (−3), 1 ×̂ 9)]. If we have it right, −a

×̂
9 is −3 exactly

so the answer is [−3, 9] exactly. The right endpoint did not raise INEXACT, but the left
endpoint came from two equal answers, −a

×̂
9 which raised INEXACT and 1

×̂
(−3) which

did not. My inclination is that the overall operation should not raise INEXACT.

Here is a possible rule for case mul5, where FLAG is INEXACT, UNDERFLOW or OVERFLOW:

Do not raise FLAG, if and only if it is possible to choose c1 as one of a1
×̂

b2

and a2
×̂

b1, and c2 as one of a1 ×̂ b1 and a2 ×̂ b2, so as to give the correct
result [c1, c2] and not raise FLAG.



8 PRYCE, CORLISS, KEARFOTT, NEDIALKOV, AND SMITH

5. Recommendations

We recall that IEEE754 does not specify whether the standard is implemented in hard-
ware, software, or a mix of the two.

These recommendations are in the context of the basic structure offered by KK. They
are the considered view of the ISL team.

(1) We suggest the IEEE754R Committee choose one of KKM, n2137 or Cset0 as the
model mandated by the standard.

(2) The standard should aim, as far as practical, to make it easy to implement other
models on top of the chosen model without significant loss in performance.

(3) There shall be a (necessarily invalid) interval value denoting “Not an Interval”,
NaI.

(4) There shall an interval value empty denoting the empty set. (The standard should
not mandate that it be KK’s value [+NaN, -NaN].)

(5) NaI, empty and any other special values shall be different (i) from each other, and
(ii) from all [x1, x2] where x1 and x2 are (finite or infinite) double numeric values.
(This supports recommendation 2 by keeping all numeric [x1, x2] free for use by
models that use, e.g., wraparound intervals.)

(6) There shall be a DISCTS flag, as defined in Subsection 4.2.
(7) An interval arithmetic operation shall raise INVALID if, and only if, at least one of

its inputs is an invalid interval. It shall then return NaI as its result.
(8) An interval arithmetic operation shall raise INEXACT, UNDERFLOW or OVERFLOW if, and

only if, at least one of the floating point operations in its implementation does so,
except in KK’s case mul5, where we suggest the rule in Subsection 4.3 but further
discussion is needed.

(9) We suggest an interval validate operation: validate(x) shall examine an interval

value x = [x1, x2], and raise INVALID if, and only if, it does not represent a valid
interval in the chosen model.

(10) There shall be an operation to split a wraparound interval (e.g., returned by A÷B
when 0 ∈ B) into its two interval parts. It shall behave as if implemented thus:

Convert [c1, c2] to the pair [-inf, c2] and [c1, +inf]. Then apply
validate() to each of these.

Thus it may raise INVALID but not any other flags.

Minor point. This is not directly relevant to the standard, but affects it indirectly. We
suggest the cases in KK’s multiplication be changed from (a1 ≥ 0; a1 < 0 ≤ a2; a2 < 0) to
(a1 ≥ 0; a1 < 0 < a2; a2 ≤ 0), and similarly for b1, b2. We think the resulting symmetry
simplifies the logic and we conjecture it will simplify circuit design.

References

[1] Reinhard Kirchner and Ulrich W. Kulisch. Hardware support for interval arithmetic. Reliable Computing,
Vol 12, Number 3 (June 2006), pp.225-237.

[2] Hervé Brönnimann, Guillaume Melquiond and Sylvain Pion. A Proposal to add Interval Arithmetic to
the C++ Standard Library (revision 2). Nov 2006. C++ Standards Committee document N2137.

[3] John D. Pryce and George F. Corliss. Interval Arithmetic with Containment Sets. Computing, Vol 78,
Number 3 (November 2006), pp.251-276. Publ. Springer Verlag. Also available at http://www.cas.

mcmaster.ca/∼isl/Publications/IntvlArithCsets.pdf

Corresponding author: John Pryce
j.d.pryce@ntlworld.com

November 18, 2007




