
1

THE NEW IEEE-754 STANDARD FOR FLOATING POINT ARITHMETIC

Peter Markstein

Woodside, CA 94062, USA
peter@markstein.org

1. INTRODUCTION

The IEEE-754 standard for Floating Point
Arithmetic[1] that was in effect at the time of this
seminar was adopted in 1985. That standard was
intended for hardware implementation, although
provisions were made for software implementation for
operations. In addition to required operations, an
appendix of recommended functions was also specified.
Default exception handling was specified, and
provisions for alternate exception handling were also
provided. Lacking in the standard were means to access
many of the features from higher level languages.

Because of the standardization which IEEE-754
(1985) provided, it became possible to write algorithms
using floating point arithmetic which could be executed
on a variety of platforms and which would produce
identical results. It became possible to prove statements
about the behavior of floating point programs.

In 2000, the IEEE chartered a new committee to
examine the IEEE-754 standard with the goals of
including decimal floating point arithmetic,
incorporating good existing practice, providing for
reproducible results, and clarifying the standard, while
not invalidating conforming implementations of the
IEEE-754(1985) standard.

2. EXISTING PRACTICE ADDED TO
THE STANDARD

Fused multiple-add (FMA), which computes a×b+c
with only one rounding operation, has been available
on several computer architectures, including IBM
Power architecture and Intel Itanium. FMA is now an
operation in the new IEEE-754 standard. In hardware,
the instruction is usually implemented to take about the
same time as a multiplication alone, and so offers a
performance advantage in many common applications.

With FMA, the low order bits of a product can be
obtained in only one additional operation, and so
becomes a powerful bridge toward higher precision
arithmetic. Because IBM Power and Intel Itanium treat
exception handling for the case of ∞×0+NaN, that one
aspect of FMA is left unspecified.

The quad precision data type, using a 128-bit
container with 113 bit significand (112 represented)
and a 15-bit exponent, has been adopted into IEEE-
754(2008).

The 1985 standard provided for homogeneous
operations (operands and result types were of the same
arithmetic type.) Furthermore, it advised against
providing operations which produced results in a
format which differed from the input format. Existing
practice has shown that it is often desirable to have
operations which produce results in a format which
differs from the inputs. Such operations are especially
useful in providing software implementations of
operations, where the intermediate computations are
performed in a wider precision. Software-implemented
division and square root are examples of this practice.
Therefore the 2008 version of the standard provides for
inhomogeneous operations, in which the result format
can differ from the input formats.

3. DECIMAL ARITHMETIC

In business applications, the use of decimal data is the
norm. Especially important is that a computer performs
rounding in the same manner as is common practice in
financial calculations. To meet this need, decimal
floating point has been incorporated into the 2008
standard, in addition to binary floating point.

For a system supporting decimal arithmetic, at
least one of the two computational formats shown in
Table 1 must be included. Because two existing
representations of decimal data already exist, both

Dagstuhl Seminar Proceedings 08021
Numerical Validation in Current Hardware Architectures
http://drops.dagstuhl.de/opus/volltexte/2008/1448

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

representations are described in the standard. An
implementation only provides one of the
representations, but must provided conversions between
the two representations.

The Decimal Encoded representation represents
three decimal digits within the trailing significand by
10-bit subfields (not the obvious encoding, but one that
lends itself to easy hardware interpretation), whereas
the Binary encoded representation represents the
trailing significand as a binary integer. The leading
significand digit in either representation is encoded
together with the exponent bits.

Table 1 - Decimal Computational Types
 Decimal64 Decimal 128

Digits in
significand

16 34

Maximum
Exponent

384 6144

Decimal formats permit leading zeros in the

significand, which allows the position of the decimal
point to be kept in a fixed position within a datum.
Therefore, values may have more than one
representation in decimal floating point. The different
representations of the same quantity are called a cohort.
Members of a cohort compare as being equal, but
provisions have been made to distinguish between
members of a cohort. Operations all have preferred
exponents for their results, which have the effect of
keeping the decimal point aligned.

An additional rounding mode is required in
decimal arithmetic: round-to-nearest with ties rounded
to the larger magnitude, which corresponds to a
frequently used rounding in financial calculations.
Binary floating point is not required to support this
rounding mode.

4. NUMBER FORMATS

The new floating point standard defines five basic
computational types, characterized by radix b, precision
p, and maximum exponent emax, and storage width w.
The decimal computational types are shown in Table 1,
and the binary computational types are shown in Table
2. In addition, reference types of width 16 in binary,
and width 32 in decimal are also defined.

Table 2 – Binary Computational Types
 Binary32 Binary64 Binary128
Bits in
significand

24 53 113

Maximum
Exponent

127 1023 16383

The standard also provided for extended types and

extendable types; neither is required for conformance.
The extended types are used to extend the basic
computational types and have fixed width, but of
greater precision and exponent range than the basic
type. They are useful for supporting some classes of
computation in a basic type, and for supporting the next
wider basic type in software, if it is not provided by the
hardware. Extendable formats have precision and range
under program control.

5. ADDITIONAL FUNCTIONALITY

The standard requires that control of various floating
point environment parameters or modes, be under the
user’s control. This control may be specified statically,
on a block or entire program text basis. Alternatively,
the control may be specified dynamically. Control over
rounding modes is an example of a mode which the
user can specify. Additional modes include alternate
exception handling and expression evaluation modes.

Expression evaluation modes control whether a
wider format is used to represent intermediate results.
Implementations may provide such modes (such as the
original C mode of evaluating all floating point
computations in double-precision, even if the target of a
computation were single precision.) A similar widening
mode allows the last computation before storing into a
variable to round to the width of the target so as to
avoid double-rounding. These modes are not required
for a conforming implementation.

An implementation may claim that components of
an elementary function library are conforming if the
results of the function are correctly rounded. The
standard lists functions for which such claims may be
made, including behavior for special cases. Claims for
conformance are made for each function and precision
in which the implementation conforms.

Product and sum reduction operators are also
defined, to allow fast implementations of these
operators. A common example is the dot product. The
object is to allow fast implementation by means of

3

parallelism and/or exploitation of the associative rules
for multiplication and addition (which do not really
apply to floating point arithmetic). As defined in this
standard, use of the reduction operators are not
necessarily reproducible from one system to another.

6. REPRODUCIBILITY

Even under the 1985 version of IEEE-754, if two
implementations of the standard executed an operation
on the same data, under the same rounding mode and
default exception handling, the result of the operation
would be identical. The new standard tries to go further
to describe when a program will produce identical
floating point results on different implementations.

The operations described in the standard are all
reproducible operations. The recommended operations,
such as library functions or reduction operators are not
reproducible, because they are not required in all
implementations. Likewise dependence on the
underflow and inexact flags is not reproducible because
two different methods of treating underflow are allowed
to preserve conformance between IEEE-754(1985) and
IEEE-754(2008). The rounding modes are reproducible
attributes. Optional attributes are not reproducible.

The use of value-changing optimizations is to be
avoided for reproducibility. This includes use of the
associative and disributative laws, and automatic
generation of fused multiply-add operations when the
programmer did not explicitly use that operator.

7. CONCLUSION

At this writing, there are still minor revisions in
progress for IEEE-754(2008), so some details in this
account may be changed in the final version.

Some aspects of floating point arithmetic are not
addressed by the standard. Complex arithmetic has not
been specified, although some languages do support
complex arithmetic, using pairs of floating point
numbers to represent a complex quantity. There have
been some requests to include interval arithmetic and
exact arithmetic in IEEE-754(2008), but none of the
proposals have been adopted. Instead, it has been
proposed that separate standards be developed for
interval arithmetic and exact arithmetic, and that
perhaps at a later time, such a standard would be
merged with IEEE-754. (The sense of the Dagstuhl
Seminar 08021 was to to form a working group to
develop a new interval arithmetic standard under
IEEE.)

The new floating point standard should be adopted
sometime in 2008. Within a short time thereafter, a
new committee should be formed to start to consider
further developments of the standard for later
adaptation.

8. BIBLIOGRAPHY

1. IEC 60559: 1989, Binary floating-point arithmetic
for microprocessor systems (previously designated
IEC 559:1989, and equivalent to IEEE-754(1985))

