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Abstract: Let IIR be the set of closed and bounded intervals of real numbers. Arithmetic
in IIR can be defined via the power set IPIR (the set of all subsets) of real numbers. If in
case of division zero is not contained in the divisor arithmetic in IIR is an algebraically
closed subset of the arithmetic in IPIR. Arithmetic in IPIR allows division by an interval
that contains zero also. This results in closed intervals of real numbers which, however,
are no longer bounded. The union of the set IIR with these new intervals is denoted by
(IIR).

The paper shows that arithmetic operations can be extended to all elements of the set
(IIR). On the computer, arithmetic in (IIR) is approximated by arithmetic in the subset
(IF ) of closed intervals over the floating-point numbers F ⊂ IR. The usual exceptions of
floating-point arithmetic like underflow, overflow, division by zero, or invalid operation do
not occur in (IF ).

Key words: computer arithmetic, floating-point arithmetic, interval arithmetic, arith-
metic standards.

1 Introduction or a Vision of Future Computing

Computers are getting ever faster. The time can already be foreseen when the
PC will be a teraflops computer. With this tremendous computing power scientific
computing will experience a significant shift from floating-point arithmetic toward
increased use of interval arithmetic. With little hardware expenditure interval arith-
metic can be made as fast as simple floating-point arithmetic [3]. Nearly everything
that is needed for fast interval arithmetic is already available on most existing pro-
cessors (made available for multimedia applications). What is still missing are the
arithmetic operations with the directed roundings. In its ultimate stage of devel-
opment interval arithmetic is a well rounded complete and exception-free calculus.
Exceptions of floating-point arithmetic like underflow, overflow, division by zero, or
invalid operations do not occur in interval arithmetic. This will be shown in this ar-
ticle. For interval evaluation of an algorithm (a sequence of arithmetic operations)
in the real number field a theorem by R. E. Moore [7] states that increasing the
precision by k digits reduces the error bounds by b−k, i.e., results can always be
guaranteed to a number of correct digits by using variable precision interval arith-
metic (for details see [1], [9]). Long interval arithmetic can be made very fast by an
exact dot product and complete arithmetic [4]. By pipelining an exact dot product
can be computed in the time the processor needs to read the data, i.e., it comes
with extreme speed. Long interval arithmetic fully benefits from this speed. It can
easily be applied by operator overloading.
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The tremendous progress in computer technology should be accompanied by
extension of the mathematical capacity of the computer. A balanced standard of
computer arithmetic should require that the basic components of modern computing
(floating-point arithmetic, interval arithmetic, and an exact dot product) should be
provided by the computer’s hardware. See [5].

2 Remarks on Floating-Point Arithmetic

Computing is usually done in the set of real numbers IR. The real numbers can
be defined as a conditionally complete, linearly ordered field. Conditionally com-
plete means that every bounded subset has an infimum and a supremum. Ev-
ery conditionally ordered set can be completed by joining a least and a great-
est element. In case of the real numbers these are called −∞ and +∞. Then
IR∗ := IR ∪ {−∞} ∪ {+∞} is a complete lattice. The elements −∞ and +∞, how-
ever, are not real numbers, i.e., they are not elements of the field. The cancellation
law a + c = b + c ⇒ a = b, for instance, does not hold for c = ∞.

A real number consists of a sign, an integral, and a fractional part, for instance:
±345.789123 · · · ∈ IR. The point may be shifted to any other position if we com-
pensate for this shifting by a corresponding power of b (here b = 10). If the point
is shifted immediately to the left of the first nonzero digit: ±0.345789123 · · · · 103

the representation is called normalized. Zero is the only real number that has no
such representation. It needs a particular encoding. Thus a normalized real number
consists of a signed fractional part m (mantissa) and an integer exponent e and we
have |m| < 1.

Only subsets of these numbers can be represented on the computer. If the
mantissa in truncated after the lth digit and the exponent is limited by emin < e <
emax one speaks of a floating-point number. The set F of all such floating-point

numbers is a finite subset of IR.

Arithmetic for floating-point numbers may cause exceptions. Well known such
exceptions are underflow, overflow, division by zero, or invalid operation. To
avoid interruption of program execution in case of an exception the so-called IEEE
floating-point arithmetic standard provides additional elements and defines oper-
ations for these, for instance, 4/0 =: ∞,−4/0 =: −∞,∞ − ∞ =: NaN, 0 · ∞ =:
NaN,∞/∞ =: NaN, 0/0 =: NaN, 1/(−∞) =: −0, (−0.3)/∞ =: −0. It should
be clear, however, that these artificial strategic objects −∞,+∞, NaN,−0,1 or +0
with their operations are not elements of the real number field and thus are not
floating-point numbers.

3 Arithmetic for Intervals of IIR and IF

Interval Arithmetic is another arithmetical tool. It solely deals with sets of

real numbers. All the exceptions of floating-point numbers mentioned above and
the strategic objects to deal with them do not occur and are not needed in interval
arithmetic. The symbol IIR usually denotes the set of closed and bounded intervals
of IR. Arithmetic in IIR can be interpreted as a systematic calculus to deal with
inequalities. We assume here that the basic rules for arithmetic in IIR with zero
not in the divisor are known to the reader. It is a fascinating result that in contrast
to floating-point arithmetic interval arithmetic even on computers can be further
developed into a well rounded, exception-free, closed calculus. We briefly sketch
this development here.

1In IR, 0 is defined as the neutral element of addition. From the assumption that there are two
such elements 0 and 0′ it follows immediately that they are equal: 0 + 0′ = 0 = 0′.
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In case of floating-point arithmetic the crucial operation that leads to the excep-
tional strategic objects mentioned above is division by zero. So we begin our study
of extended interval arithmetic with defining division by an interval that contains
zero.

The set IIR is a subset of the power set IPIR (which is the set of all subsets) of
real numbers. For A,B ∈ IPIR arithmetic operations are defined by

∧

A,B∈IPIR

A ◦ B := {a ◦ b | a ∈ A ∧ b ∈ B}, for all ◦ ∈ {+,−, ·, /}. (3.1)

The following properties are obvious and immediate consequences of this defini-
tion:

A ⊆ B ∧ C ⊆ D ⇒ A ◦ C ⊆ B ◦ D, for all A,B,C,D ∈ IPIR, (3.2)

and in particular

a ∈ A ∧ b ∈ B ⇒ a ◦ b ∈ A ◦ B, for all A,B ∈ IPIR. (3.3)

Property (3.2) is called inclusion-isotony (or inclusion-monotonicity). Property
(3.3) is called the inclusion property. (3.2) and (3.3) are the fundamental properties
of interval arithmetic. Under the assumption 0 6∈ B for division, the intervals of
IIR are an algebraically closed subset2 of the power set IPIR, i.e., an operation for
intervals of IIR performed in IPIR always delivers an interval of IIR.

On the computer arithmetic in IIR is approximated by an arithmetic in IF .
An interval of IF represents a continuous set of real numbers with floating-point
bounds of F . Arithmetic operations in IF are defined by those in IIR with the lower
bound of the result rounded downwards and the upper bound rounded upwards.

In case of floating-point arithmetic division by zero does not lead to a real
number. In contrast to this in interval arithmetic division by an interval that
contains zero can be defined in a strict mathematical manner. The result again is
a set of real numbers.

In accordance with (3.1) division in IIR is defined by
∧

A,B∈IIR

A/B := {a/b | a ∈ A ∧ b ∈ B}. (3.4)

The quotient a/b is defined as the inverse operation of multiplication, i.e., as the
solution of the equation b · x = a. Thus (3.4) can be written in the form

∧

A,B∈IIR

A/B := {x | bx = a ∧ a ∈ A ∧ b ∈ B}. (3.5)

For 0 /∈ B (3.4) and (3.5) are equivalent. While in IR division by zero is not
defined the representation of A/B by (3.5) allows definition of the operation and
interpretation of the result for 0 ∈ B also.

By way of interpreting (3.5) for A = [a1, a2] and B = [b1, b2] ∈ IIR with 0 ∈ B
the following eight distinct cases can be set out:

1 0 ∈ A, 0 ∈ B.

2 0 /∈ A, B = [0, 0].

3 a1 ≤ a2 < 0, b1 < b2 = 0.

4 a1 ≤ a2 < 0, b1 < 0 < b2.

5 a1 ≤ a2 < 0, 0 = b1 < b2.

6 0 < a1 ≤ a2, b1 < b2 = 0.

7 0 < a1 ≤ a2, b1 < 0 < b2.

8 0 < a1 ≤ a2, 0 = b1 < b2.

2as the integers are of the real numbers.
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The list distinguishes the cases 0 ∈ A (case 1) and 0 /∈ A (cases 2 to 8). Since
it is generally assumed that 0 ∈ B, these eight cases indeed cover all possibilities.
Since every x ∈ IR fulfills the equation 0 · x = 0 we obtain in case 1: A/B = IR =
(−∞,+∞). Here the round brackets indicate that the bounds are not included in
the set. In case 2 the set defined by (3.5) consists of all elements which fulfill the
equation 0 · x = a for a ∈ A. Since 0 /∈ A, there is no real number which fulfills this
equation. Thus A/B is the empty set, i.e., A/B = ∅.

case A = [a1, a2] B = [b1, b2] B′ A/B′ A/B

1 0 ∈ A 0 ∈ B (−∞,+∞)

2 0 /∈ A B = [0, 0] ∅

3 a2 < 0 b1 < b2 = 0 [b1, (−ǫ)] [a2/b1, a1/(−ǫ)] [a2/b1,+∞)

4 a2 < 0 b1 < 0 < b2 [b1, (−ǫ)] [a2/b1, a1/(−ǫ)] (−∞, a2/b2]

∪ [ǫ, b2] ∪ [a1/ǫ, a2/b2] ∪ [a2/b1,+∞)

5 a2 < 0 0 = b1 < b2 [ǫ, b2] [a1/ǫ, a2/b2] (−∞, a2/b2]

6 a1 > 0 b1 < b2 = 0 [b1, (−ǫ)] [a2/(−ǫ), a1/b1] (−∞, a1/b1]

7 a1 > 0 b1 < 0 < b2 [b1, (−ǫ)] [a2/(−ǫ), a1/b1] (−∞, a1/b1]

∪ [ǫ, b2] ∪ [a1/b2, a2/ǫ] ∪ [a1/b2,+∞)

8 a1 > 0 0 = b1 < b2 [ǫ, b2] [a1/b2, a2/ǫ] [a1/b2,+∞)

Table 1: The eight cases of interval division A/B, with A,B ∈ IIR, and 0 ∈ B.

In all other cases 0 /∈ A also. We have already observed under case 2 that
the element 0 in B does not contribute to the solution set. So it can be excluded
without changing the set A/B.

So the general rule for computing the set A/B by (3.5) is to remove its zero from
the interval B and replace it by a small positive or negative number ǫ as the case
may be. The resulting set is denoted by B′ and represented in column 4 of Table 1.
With this B′ the solution set A/B′ can now easily be computed by applying the
rules for closed and bounded real intervals. The results are shown in column 5 of
Table 1. Now the desired result A/B as defined by (3.5) is obtained if in column 5
ǫ tends to zero.

Thus in the cases 3 to 8 the results are obtained by the limit process A/B =
lim
ǫ→0

A/B′. The solution set A/B is shown in the last column of Table 1 for all the

eight cases. There, as usual in mathematics round brackets indicate that the bound
is not included in the set. In contrast to this square brackets denote closed interval
ends, i.e., the bound is included.

The operands A and B of the division A/B in Table 1 are intervals of IIR. The
results of the division shown in the last column, however, are no longer intervals
of IIR. The result is now an element of the power set IPIR. With the exception of
case 2 the result is now a set which stretches continuously to −∞ or +∞ or both.

In two cases (rows 4 and 7 in Table 1) the result consists of the union of two
distinct sets of the form (−∞, c2] ∪ [c1,+∞). These cases can easily be identified
by the signs of the bounds of the divisor. Within the given framework of existing
processors only one interval can be delivered as the result of an interval operation.
In the cases 4 and 7 of Table 1 the result, yet, can be returned as an improper
interval [c1, c2] where the left hand bound is higher than the right hand bound.
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Motivated by the extended interval Newton method3 it is reasonable to separate
these results into the two distinct sets: (−∞, c2] and [c1,+∞). The fact that an
arithmetic operation delivers two distinct results seems to be a totally new situation
in computing. Evaluation of the square root, however, also delivers two results and
we have learned to live with it. Computing certainly is able to deal with this
situation.

A principle solution of the problem would be for the computer to provide a flag
for distinct intervals. In cases 4 and 7 of Table 1 the flag would be raised and
signaled to the user. The user may then apply a routine of his choice to deal with
the situation as is appropriate for his application.4

If during a computation in the real number field zero appears as a divisor the
computation should be stopped immediately. In floating-point arithmetic the sit-
uation is different. Zero may be the result of an underflow. In such a case a cor-
responding interval computation would not deliver zero but a small interval with
zero as one bound and a tiny positive or negative number as the other bound. In
this case division is well defined by Table 1. The result is a closed interval which
stretches continuously to −∞ or +∞ as the case may be. In the real number field
zero as a divisor is an accident. So in interval arithmetic division by an interval
that contains zero as an interior point certainly will be a very rare appearance.
An exception is the interval Newton method. Here, however, it is clear how the
situation has to be handled. See, for instance, [4].

In the literature an improper interval [c1, c2] with c1 > c2 occasionally is called
an ’exterior interval’. On the number circle an ’exterior interval’ is interpreted as an
interval with infinity as an interior point. We do not follow this line here. Interval
arithmetic is defined as an arithmetic for sets of real numbers. Operations for real
numbers which deliver ∞ as their result do not exist. Here and in the following the
symbols −∞ and +∞ are only used to describe sets of real numbers.

After the splitting of improper intervals into two distinct sets only four kinds of
result come from division by an interval of IIR which contains zero:

∅, (−∞, a], [b,+∞), and (−∞,+∞). (3.6)

We call such elements extended intervals. The union of the set of closed and
bounded intervals of IIR with the set of extended intervals is denoted by (IIR). The
elements of the set (IIR) are themselves simply called intervals. (IIR) is the set of
closed intervals of IR. (A subset of IR is called closed if the complement is open.)

Intervals of IIR and of (IIR) are sets of real numbers. −∞ and +∞ are not
elements of these intervals. It is fascinating that arithmetic operations can be
introduced for all elements of the set (IIR) in an exception-free manner. This will
be shown in the next section.

On a computer only subsets of the real numbers are representable. We assume
now that F is the set of floating-point numbers of a given computer. An interval
between two floating-point bounds represents the continuous set of real numbers
between these bounds. Similarly, except for the empty set, also extended intervals
represent continuous sets of real numbers.

To transform the eight cases of division by an interval of IIR which contains
zero into computer executable operations we assume now that the operands A and

3Newton’s method reaches its ultimate elegance and strength in the extended interval Newton
method. If division by an interval that contains zero delivers two distinct sets the computation
is continued along two separate paths, one for each interval. This is how the extended interval
Newton method separates different zeros from each other and finally computes all zeros in a given
domain. If the interval Newton method delivers the empty set, the method has proved that there
is no zero in the initial interval.

4This routine could be: modify the operands and recompute, or continue the computation
with one of the sets and ignore the other one, or put one of the sets on a list and continue the
computation with the other one, or stop computing, or ignore the flag, or any other action.
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B are floating-point intervals of IF . To obtain a computer representable result
we round the result shown in the last column of Table 1 into the least computer
representable superset. That is, the lower bound of the result has to be computed
with rounding downwards and the upper bound with rounding upwards. Thus on
the computer the eight cases of division by an interval of IF which contains zero
have to be performed as shown in Table 2.

case A = [a1, a2] B = [b1, b2] A ♦/ B

1 0 ∈ A 0 ∈ B (−∞,+∞)

2 0 /∈ A B = [0, 0] ∅

3 a2 < 0 b1 < b2 = 0 [a2
▽/ b1,+∞)

4 a2 < 0 b1 < 0 < b2 (−∞, a2 △/ b2] ∪ [a2
▽/ b1,+∞)

5 a2 < 0 0 = b1 < b2 (−∞, a2 △/ b2]

6 a1 > 0 b1 < b2 = 0 (−∞, a1 △/ b1]

7 a1 > 0 b1 < 0 < b2 (−∞, a1 △/ b1] ∪ [a1
▽/ b2,+∞)

8 a1 > 0 0 = b1 < b2 [a1
▽/ b2,+∞)

Table 2: The eight cases of interval division with A,B ∈ IF , and 0 ∈ B.

Table 3 shows the same cases as Table 2 in another layout.

B = [0, 0] b1 < b2 = 0 b1 < 0 < b2 0 = b1 < b2

a2 < 0 ∅ [a2
▽/ b1,+∞) (−∞, a2 △/ b2] (−∞, a2 △/ b2]

∪ [a2
▽/ b1,+∞)

a1 ≤ 0 ≤ a2 (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

0 < a1 ∅ (−∞, a1 △/ b1] (−∞, a1 △/ b1] [a1
▽/ b2,+∞)

∪ [a1
▽/ b2,+∞)

Table 3: The result of the interval division with A,B ∈ IF , and 0 ∈ B.

Table 2 and Table 3 display the eight distinct cases of interval division A ♦/ B
with A,B ∈ IF and 0 ∈ B. On the computer the empty interval ∅ needs a
particular encoding. (+NaN, −NaN) may be such an encoding. We explicitly stress
that the symbols −∞, +∞, −NaN, and +NaN are used here only to represent the
resulting sets. These symbols are not elements of these sets and no operations are
defined for them.

Division by an interval of IF which contains zero on the computer also leads to
extended intervals as shown in (3.6) with a, b ∈ F . The union of the set of closed
and bounded intervals of IF with such extended intervals is denoted by (IF ). (IF )
is the set of closed intervals of F .
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4 Arithmetic for Intervals of (IIR) and (IF )

For the sake of completeness arithmetic operations now have to be defined for all
elements of (IIR) and (IF ). Since the development of arithmetic operations in (IIR)
and (IF ) follows an identical pattern we skip here the introduction of the arithmetic
in (IIR) and restrict the consideration to the development of arithmetic in (IF ).
This is the arithmetic that has to be provided on the computer.

First of all any operation with the empty set is defined to be the empty set
again.

The general procedure to define all other operations follows a continuity princi-
ple. Bounds like −∞ and +∞ in the operands A and B are replaced by a very large
negative and a very large positive number respectively. Then the basic rules for the
arithmetic operations in IIR and IF are applied. In the following tables these rules
are repeated and printed in bold letters.

In the resulting formulas the very large negative number is then shifted to −∞
and the very large positive number to +∞. Finally, very simple and well established
rules of real analysis like ∞ ∗ x = ∞ for x > 0, ∞ ∗ x = −∞ for x < 0, x/∞ =
x/ − ∞ = 0, ∞ ∗ ∞ = ∞, (−∞) ∗ ∞ = −∞ are applied together with variants
obtained by applying the sign rules and the law of commutativity.

Two situations have to be treated separately. These are the cases shown in rows
1 and 2 of Table 1.

If 0 ∈ A and 0 ∈ B (row 1 of Table 1), the result consists of all real numbers,
i.e., A/B = (−∞,+∞). This applies to rows 2, 5, 6, and 8 of Table 8.

If 0 /∈ A and B = [0, 0] (row 2 of Table 1), the result of the division is the empty
set, i.e., A/B = ∅. This applies to rows 1, 3, 4, and 7 of column 1 of Table 8.

We summarize the complete set of arithmetic operations for interval arithmetic
in (IF ) that should be provided on the computer in the next section.

In summary it can be said that after a possible splitting of an improper interval
into two separate intervals the result of arithmetic operations for intervals of (IF )
always leads to intervals of (IF ) again. No exceptions or artificial strategic objects
do occur performing these operations. The reader should prove this assertion by
realizing the operations shown in the tables of the following section.

For the development in the preceding sections it was essential to distinguish
between round an square brackets. If the bracket adjacent to a bound is round, the
bound is not included in the interval; if it is square, the bound is included in the
interval.
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5 Complete Arithmetic for Intervals of (IF )

Addition (−∞, b2] [b1, b2] [b1,+∞) (−∞,+∞)

(−∞, a2] (−∞, a2 △+ b2] (−∞, a2 △+ b2] (−∞,+∞) (−∞,+∞)

[a1, a2] (−∞, a2 △+ b2] [a1
▽+ b1,a2 △+ b2] [a1

▽+ b1,+∞) (−∞,+∞)

[a1,+∞) (−∞,+∞) [a1
▽+ b1,+∞) [a1

▽+ b1,+∞) (−∞,+∞)

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 4: Addition of extended intervals on the computer.

Subtraction (−∞, b2] [b1, b2] [b1,+∞) (−∞,+∞)

(−∞, a2] (−∞,+∞) (−∞, a2 △− b1] (−∞, a2 △− b1] (−∞,+∞)

[a1, a2] [a1
▽− b2,+∞) [a1

▽− b2,a2 △− b1] (−∞, a2 △− b1] (−∞,+∞)

[a1,+∞) [a1
▽− b2,+∞) [a1

▽− b2,+∞) (−∞,+∞) (−∞,+∞)

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 5: Subtraction of extended intervals on the computer.
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[b1, b2] [b1, b2] [b1, b2] (−∞, b2] (−∞, b2] [b1, +∞) [b1, +∞)

Multiplication b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0 [0, 0] b2 ≤ 0 b2 ≥ 0 b1 ≤ 0 b1 ≥ 0 (−∞, +∞)

[a1, a2], a2 ≤ 0 [a2
▽· b2, a1 △· b1] [a1

▽· b2,a1 △· b1] [a1
▽· b2,a2 △· b1] [0, 0] [a2

▽· b2, +∞) [a1
▽· b2, +∞) (−∞, a1 △· b1] (−∞, a2 △· b1] (−∞, +∞)

a1 < 0 < a2 [a2
▽· b1, a1 △· b1] [min(a1

▽· b2,a2
▽· b1), [a1

▽· b2,a2 △· b2] [0, 0] (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

max(a1 △· b1,a2 △· b2)]

[a1, a2], a1 ≥ 0 [a2
▽· b1, a1 △· b2] [a2

▽· b1,a2 △· b2] [a1
▽· b1,a2 △· b2] [0, 0] (−∞, a1 △· b2] (−∞, a2 △· b2] [a2

▽· b1, +∞) [a1
▽· b1, +∞) (−∞, +∞)

[0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

(−∞, a2], a2 ≤ 0 [a2
▽· b2, +∞) (−∞, +∞) (−∞, a2 △· b1] [0, 0] [a2

▽· b2, +∞) (−∞, +∞) (−∞, +∞) (−∞, a2 △· b1] (−∞, +∞)

(−∞, a2], a2 ≥ 0 [a2
▽· b1, +∞) (−∞, +∞) (−∞, a2 △· b2] [0, 0] (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

[a1, +∞), a1 ≤ 0 (−∞, a1 △· b1] (−∞, +∞) [a1
▽· b2, +∞) [0, 0] (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

[a1, +∞), a1 ≥ 0 (−∞, a1 △· b2] (−∞, +∞) [a1
▽· b1, +∞) [0, 0] (−∞, a1 △· b2] (−∞, +∞) (−∞, +∞) [a1

▽· b1, +∞) (−∞, +∞)

(−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) [0, 0] (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

Table 6: Multiplication of extended intervals on the computer.
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Division [b1, b2] [b1, b2] (−∞, b2] [b1,+∞)

0 /∈ B b2 < 0 b1 > 0 b2 < 0 b1 > 0

[a1, a2], a2 ≤ 0 [a2
▽/ b1,a1 △/ b2] [a1

▽/ b1,a2 △/ b2] [0, a1 △/ b2] [a1
▽/ b1, 0]

[a1, a2], a1 < 0 < a2 [a2
▽/ b2,a1 △/ b2] [a1

▽/ b1,a2 △/ b1] [a2
▽/ b2, a1 △/ b2] [a1

▽/ b1, a2 △/ b1]

[a1, a2], a1 ≥ 0 [a2
▽/ b2,a1 △/ b1] [a1

▽/ b2,a2 △/ b1] [a2
▽/ b2, 0] [0, a2 △/ b1]

[0, 0] [0, 0] [0, 0] [0, 0] [0, 0]

(−∞, a2], a2 ≤ 0 [a2
▽/ b1,+∞) (−∞, a2 △/ b2] [0,+∞) (−∞, 0]

(−∞, a2], a2 ≥ 0 [a2
▽/ b2,+∞) (−∞, a2 △/ b1] [a2

▽/ b2,+∞) (−∞, a2 △/ b1]

[a1,+∞), a1 ≤ 0 (−∞, a1 △/ b2] [a1
▽/ b1,+∞) (−∞, a1 △/ b2] [a1

▽/ b1,+∞)

[a1,+∞), a1 ≥ 0 (−∞, a1 △/ b1] [a1
▽/ b2,+∞) (−∞, 0] [0,+∞)

(−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞) (−∞,+∞)

Table 7: Division of extended intervals with 0 6∈ B on the computer.
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Division B = [b1, b2] [b1, b2] [b1, b2] (−∞, b2] (−∞, b2] [b1, +∞) [b1, +∞)

0 ∈ B [0, 0] b1 < b2 = 0 b1 < 0 < b2 0 = b1 < b2 b2 = 0 b2 > 0 b1 < 0 b1 = 0 (−∞, +∞)

[a1, a2], a2 < 0 ∅ [a2
▽/ b1, +∞) (−∞,a2 △/ b2] (−∞,a2 △/ b2] [0, +∞) (−∞, a2 △/ b2] (−∞, 0] (−∞, 0] (−∞, +∞)

∪ [a2
▽/ b1, +∞) ∪ [0, +∞) ∪ [a2

▽/ b1, +∞)

[a1, a2], a1 ≤ 0 ≤ a2 (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

[a1, a2], a1 > 0 ∅ (−∞, a1 △/ b1] (−∞,a1 △/ b1] [a1
▽/ b2, +∞) (−∞, 0] (−∞, 0] (−∞, a1 △/ b1] [0, +∞) (−∞, +∞)

∪ [a1
▽/ b2, +∞) ∪ [a1

▽/ b2, +∞) ∪ [0, +∞)

(−∞, a2], a2 < 0 ∅ [a2
▽/ b1, +∞) (−∞, a2 △/ b2] (−∞, a2 △/ b2] [0, +∞) (−∞, a2 △/ b2] (−∞, 0] (−∞, 0] (−∞, +∞)

∪ [a2
▽/ b1, +∞) ∪ [0, +∞) ∪ [a2

▽/ b1, +∞)

(−∞, a2], a2 > 0 (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

[a1, +∞), a1 < 0 (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

[a1, +∞), a1 > 0 ∅ (−∞, a1 △/ b1] (−∞, a1 △/ b1] [a1
▽/ b2, +∞) (−∞, 0] (−∞, 0] (−∞, a1 △/ b1] [0, +∞) (−∞, +∞)

∪ [a1
▽/ b2, +∞) ∪ [a1

▽/ b2, +∞) ∪ [0, +∞)

(−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞) (−∞, +∞)

Table 8: Division of extended intervals with 0 ∈ B on the computer.
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The rules for the operations of extended intervals on the computer in Tables 4 – 8
look rather complicated. Their implementation seems to require a major number of
case distinctions. The situation, however, can be greatly simplified by the following
hints.

On the computer actually only the basic rules for addition, subtraction, multi-
plication, and division for closed and bounded intervals of IF including division by
an interval that includes zero are to be provided. In Tables 4 – 8 these rules are
printed in bold letters.

The remaining rules shown in the tables can automatically be produced out of
these basic rules by the computer itself if a few well established rules for computing
with −∞ and +∞ are formally applied. With x ∈ S these rules are

∞ + x = ∞, −∞ + x = −∞,

−∞ + (−∞) = (−∞) · ∞ = −∞, ∞ + ∞ = ∞ ·∞ = ∞,

∞ · x = ∞ for x > 0, ∞ · x = −∞ for x < 0,
x
∞

= x
−∞

= 0,

together with variants obtained by applying the sign rules and the law of commu-
tativity. If in an interval operand a bound is −∞ or +∞ the multiplication with 0
is performed as if the following rules would hold

0 · (−∞) = 0 · (+∞) = (−∞) · 0 = (+∞) · 0 = 0.

These rules have no meaning otherwise.
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