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Abstract. We present some examples of extensions for C-XSC that have
been developed lately. Among these are extensions that give access to fur-
ther hardware and software environments as well as applications making
use of these possibilities.
The first area of extension is C-XSC usage in parallel environments.
An MPI package for C-XSC data types allows to easily use C-XSC in
parallel programs without bothering about the internal structure of data
types. Different versions of parallel verified linear system solvers based
on the package are now available. An application making use of these
and further extensions is a parallel verified Fredholm integral equation
system solver. Some results are given to demonstrate the reduction of
computation time and, at the same time, the accuracy gain that can be
obtained using the increased computation power.
Another possibility to extend the range of C-XSC is to make results
available for further computation in different software environments as,
for example, computer algebra packages. An example of this is presented
for the Maple interval package intpakX.

Keywords. C-XSC, Integral Equations, Interval Arithmetic, Maple, MPI,
Parallel Environment, Verified Linear System Solver.

1 Introduction

C-XSC is a well-known C++ class library for scientific computation. It is one
important member of the family of XSC languages, libraries and compilers that
cover a wide range of computational tools and methods. It is thus of special
value not only to maintain and update all these elements but also to extend the
current range towards new areas that could not be used with XSC languages
and applications before or where XSC languages offered only limited support.

One of these areas is parallel computation. Of course, C-XSC can be used in
parallel environments if only the very data elements of C-XSC types are used,
but using C-XSC objects in parallel communication in a straightforward way
hasn’t been possible in the past.
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In this article, we present an extension for C-XSC that makes it quite more
comfortable to use C-XSC in parallel environments with the parallel communi-
cation interface MPI, together with some parallel applications that make use of
it.

Besides the usage of C-XSC in special environments it is also helpful to be
able to export results from C-XSC programs to other computing environments
as, for example, Computer Algebra packages. An example for this is presented
as well.

1.1 C-XSC: A short overview

First of all, we want to give an overview of C-XSC and some of its existing older
and lately developed extensions and applications.

The C-XSC library [1] [2] itself consists of the following elements:

Interval Data Types First of all and most importantly, C-XSC offers a range of
data types for interval computation:

– Basic Data Types: real, interval, complex, cinterval
– Vector and Matrix Types: Types for vector and matrix computation for

either of the basic types
– Staggered Multiple Precision Arithmetic: Multiple precision arithmetic types

allow for the use of n-fold precision using a vector of basic type elements to
represent a staggered number.

– Dotprecision Types: These allow for the exact representation of scalar prod-
uct expressions, i.e. sums of products of basic type numbers.

Arithmetic For the mentioned data types, not only basic arithmetic operations
are available, C-XSC also offers one of the most extensive sets of standard func-
tions: Among these are also less well-known functions as the Gaussian error
function or compound functions as

√
1− x2 and more.

Toolbox The formerly separate C-XSC Toolbox [3] is now an integrated part of
the library. It contains a number of numerical algorithms with result verification,
among these

– Serial Linear system solvers
– Global Optimization algortihms

and more.

Extensions Extensions for C-XSC can be divided into different categories:

– Arithmetic Extensions
– C-XSC applications
– Technical Extensions
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Arithmetic Extensions Examples of arithmetic extenisons are Taylor Arithmetic
and Hansen Arithmetic. The C-XSC Taylor Arithmetic [4] [5] offers

– One- and multidimensional Interval Taylor Arithmetic types and functions
– Real and complex Interval Taylor Arithmetic types and functions
– Real staggered (multiple precision) Interval Taylor Arithmetic
– A complete set of standard functions

Lately added have been

– Improved function implementations for special expressions (as
√

1− x2)
– Algorithms for Gaussian error function erf and complementary error func-

tion erfc

An example for the use of the C-XSC Taylor Arithmetic in an application
will be given in the next sections.

The C-XSC Hansen Arithmetic which represents a generalized interval arith-
metic has also been developed lately in the course of the development of a para-
metric interval linear system solver [6] and is a further useful arithmetic extension
of C-XSC.

In addtion, an improved staggered correction arithmetic with enhanced ac-
curacy and very wide exponent range is now available [7].

C-XSC applications and Technical Extensions But there are not only arithmetic
extensions of C-XSC. On the one hand, there are C-XSC applications beyond
the Toolbox algorithms, as, for example,

– New and especially parallel linear system solvers
– Linear Fredholm Integral Equation Solvers
– Parametric linear system solvers [6]

We will have a look at the first two of these below.
On the other hand, it is technical extensions that allow for the development

of applications in the first place. An example of this kind is the MPI extension
for C-XSC data types that is presented in the following section.

2 C-XSC in Parallel Environments

In this section, we present a package for C-XSC computation in parallel envi-
ronments.

In distributed memory parallel environments it is neccessary to communicate
data between processes. MPI [8] is the most common interface for this kind
of task. It offers a variety of functions for message passing and related tasks.
Since MPI implementations operate on basic data types only, it is not possible
to communicate class objects in a straightforward way. For a class library like
C-XSC, additional packages for integration of MPI and the class library are
necessary.

MPI communication with user defined data types can be done in different
ways:
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– Direct application of existing routines, applied to single data elements of
objects

– Usage of the MPI data packing/unpacking mechanism
– Definition of MPI data types with the type definition mechanism

These approaches have advantages and disadvantages.
Direct application of existing routines, naturally, is quite always possible.

Unfortunately, MPI routines cannot be applied to the data object in question
since MPI only knows to handle elements or arrays of elements of a number
of basic types. This is inconvenient, and it leaves the handling of class internal
structures to the user or application developer. Moreover, communication will be
time consuming, since all data elements are handled in separate communication
calls.

MPI offers two strategies to make communication of data more convenient.
The first of these is the packing/unpacking mechanism. It is the more versatile
of the two since it allows to pack, then send, receive and finally unpack every
kind of data you like.

The second strategy is the definition of new MPI data types. There is a col-
lection of routines for data type definition in MPI making it possible to virtually
assemble data by defining a so called type map and giving it a name, but un-
fortunately, there are limitations. Namely, no dynamically allocated data can be
incorporated into the new type, and lenghts of any data structures of variable
size have to be known in advance to develop the new type, which is not the case
in C-XSC and typically not useful for the definition of a general interface.

Hence, the package implemented for C-XSC data types uses the first of the
two strategies for types that incorporate dynamic memory allocation and/or
array-like structures like vector and matrix types.

It uses data type definition for the basic C-XSC data types real, interval,
complex and cinterval, and includes packing/unpacking routines and commu-
nication routines as template functions for the types derived from these. All
C-XSC types are included in the package:

– Basic types: real, interval, complex, cinterval
– Vector and Matrix data types for the basic types
– Staggered (= multiple precision) data types
– Dotprecision (”accumulator”) data types

Regarding MPI communication, the following routines are covered:

– MPI_Pack, MPI_Unpack
– Point-to-point communication:

• MPI_Send, MPI_Bsend, MPI_Ssend, MPI_Rsend
• MPI_Isend, MPI_Ibsend, MPI_Irsend, MPI_Issend
• MPI_Recv

– Collective Communication:
• MPI_Bcast
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A number of additional features is included as well:

– Communication functions for submatrices, i.e. rows, columns and proper
submatrices; submatrices can also be used as full matrices on either commu-
nication node, i.e. a submatrix from a sending node can be stored as a full
matrix on the receiving side.

– Communication functions for one and two-dimensional real C-XSC Taylor
Arithmetic Types (see above)

– Communication functions for the STL vector type

In a general interface or package, it is not possible to offer general ver-
sions of further collective communication routines, since data subdivision for
gather/scatter processes can be done in various ways, and the decision how to
subdivide and distribute data has to be left to the author of the application.

To analyze the performance of the newly developed functions, tests have been
done, and we want to give the following diagrams for illustration.

The tests were carried out in the parallel test environment ALiCEnext [9] in
Wuppertal:

– 1024 1.8 GHz AMD Opteron 64 Bit Processors on 512 nodes
– LINPACK max. performance 2083 GFlops
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Fig. 1. EV: Elementwise communication; KP: Communication package; DT:
Data type definition for different fixed dimensions
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Fig. 2. Tree vs. Crossbar network (sample problem)

The first diagram (see fig. 1) shows communication times for the circulation
of C-XSC matrices of different sizes through 32 nodes. The test was carried
out on randomly chosen nodes, so that the given times are only example times.
The depicted ratio between the three methods, however, was found to be rather
independent of the choice of nodes.

We secondly tested two different node topologies: In one case, the nodes were
connected as a tree network, in the other case a crossbar switch was activated
on the same machine. In order to find out if a typical example problem would
be influenced by the different choice of topology, we computed the solution for
different problem sizes and found that there was no significant change in the
measured times (see fig. 2).

3 Applications using C-XSC and MPI

In this section, we present a few applications that make use of the communication
package described in the previous section.

An important type of application to use a parallel communication package
are parallel linear system solvers.

In C-XSC, different interval linear system solvers are available now, building
upon each other:

1. The base is the C-XSC Toolbox interval linear system solver, which is a serial
solver for real input data

2. On stage 2, there is the serial interval linear system solver by Hölbig [10]
including the second verification step with double precision computation of
the approximate inverse as proposed by Rump [11]

3. The first parallel interval linear system solver developed in [12] builds upon
the serial solver by Hölbig and allows for interval input data
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4. Just recently developed there is now a fast interval linear system solver
package by Zimmer [13] including fast serial and parallel solvers for various
input formats using BLAS and LAPACK and the error free transformation
dot product proposed by Rump, Oishi et al. [14]

Linear system solvers are applications of their own, but typically, they can
also be found as subparts of more complex applications. As a C-XSC appli-
cation using the parallel interval linear system solver 3 from above a verified
integral equation system solver for linear Fredholm integral equation systems of
the second kind is presented in the following paragraphs.

We will shortly describe the solver first and then give some results from the
actual C-XSC implementation in a high performance computing environment.

A system of Fredholm Integral Equations of the second kind is given by

yi(s)− λ
N∑

j=1

∫ βj

αj

kij(s, t)yj(t) dt = gi(s) (1)

for i = 1...N with continuous kernel functions kij on [αi, βi]× [αj , βj ] with

αi := a +
i− 1
N

(b− a), βi := a +
i

N
(b− a), i, j = 1...N.

as well as continuous gi on [αi, βi] and unknown result functions yi, i = 1...N .
With

Y := (y1, ..., yN )T

G := (g1, ..., gN )T

K := (kij)i,j=1...N

we get

Y (s)− λ

∫ b

a

K (s, t)Y (t) dt = G(s). (2)

The system of integral equations can thus be written in the same way as
a single integral equation. For this reason, a solution method for systems of
integral equations can be derived from a corresponding solution method for
single equations.

If a kernel κ has a representation

κ(s, t) =
T∑

m=1

am(s)bm(t)

with continuous functions am, bm,m = 1...T , it is called degenerate kernel of
order T, so that matrices Am, Bm, m = 0..T (with some suitable T ∈ IN) for
degenerate kernels can be additionally introduced for the above matrix notation.

The kernel of a linear Fredholm integral equation of the second kind can be
represented as

K = KE + KN
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with a degenerate part KE and a non-degenerate part KN (see, e.g., [15]). Ac-
cording matrix denotations KN, KE can be introduced componentwise.

The solution methods are described in detail in [12], [16]and [17] and shall
not be discussed here. We only want to give the solution algorithm to indicate
that the most relevant parts of the algorithm can be efficiently parallelized (see
method 1).

Method 1: Integral Equation System Solution Method

For j := 1...N, n := 1...2T :
Compute integrals of basic monomials (t− tj0)

n.
Carry out the iteration

F 0 := G ; F i+1 := G + KNF i, i := 0, 1, ...

until F := F i+1 ⊆ F i (or abort).

For m := 0...T : (PAR)
For j := 1...N :

Carry out the iteration
C j,0

m := Aj
m; C j,i+1

m := Aj
m + KNC j,i

m

i := 0, 1, ...

until C j
m := C j,i+1

m ⊆ C j,i
m (or abort).

Compute the entries (PAR)
– M := (Mij)i,j=0...T , Mij :=

∫ b

a
Bi(t)Cj(t)dt

– R := (Ri)i=0...T , Ri :=
∫ b

a
Bi(t)F (t)dt

of the interval linear system for the final application of the method for degen-
erate kernels.

Solve the interval linear system (PAR)
(I − λM )X = R .

Compute the solution function Y := G + λ
∑T

m=0 CmXm.

The highlighted parts of the algorithm were parallelized, the remaining parts
being of minor importance since they only have a small share of the method’s
overall complexity. We can see that one of the parallel parts is given by the
application of a parallel interval linear system solver.

The actual implementation of the solver was designed to solve single integral
equations by splitting them up into integral equation systems as indicated above.
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Fig. 3. Accuracy Gain for growing Taylor order and different system sizes
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Fig. 4. Computation time for increasing number of processors (different param-
eter valures for a sample problem)

Let us point out which elements of the solver make it a relevant example for
a parallel C-XSC application using the presented extensions:

– We solve a functional problem with functions in one and two variables which
are represented in interval Taylor arithmetic

– As a matrix problem with possibly high matrix dimensions, the method is
time consuming and thus a good candidate to be parallelized for increased
efficency.

– The solution reduces to an interval linear system so that an interval linear
system solver can be applied

We now want to give some results for this integral equation system solver,
taking into account time/parallelization and accuracy issues.
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Fig. 5. Example: Taylor order 3, System order 128, 16 procs., computation time
∼ 2 min. - Time shares: Fixed Point Iterations (Blue) - LS Computation (Green)
- LSS (Red) - Comm.+Idle (Magenta)

In figure 3 result accuracy is plotted against Taylor order for different di-
mensions of the example integral equation system derived by splitting up the
integral equation

y(s)−
∫ 1

−1

st2 − s2t y(t) dt = (s− 1
2
) · erf(sin(9s)).

It is clearly visible that solutions become more accurate with increasing di-
mension of the integral equation system, especially in cases where low system
size does not yet yield reasonable results.

Parallelization is considered in figure 4, giving example timings for different
parameter combinations and up to 128 processors. Linear speedup could be
achieved for most of the relevant parameter combinations.

We also analyzed time shares of different parts of the program:

– Iteration phase
– Computation of the entries of the linear system
– Linear system solution (including approximate matrix inversion and further

matrix operations, e.g. matrix multiplications)

Figures 5 and 6 show the time shares of the different parts of the algorithm
for different (medium sized) parameter combinations.

It is observable that time shares differ significantly for different parameter
values due to the complexity of the parts of the algorithm. The greatest time
share is used by either the iteration part or the linear system assembly, but not
by linear system solution. In general, computation time is evenly distributed
over the processors and idle times are kept within bounds.
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Fig. 6. Example: Taylor order 12, System order 32, 16 procs., computation time
∼ 2 min. - Time shares: Fixed Point Iterations (Blue) - LS Computation (Green)
- LSS (Red) - Comm.+Idle (Magenta)

4 Exporting C-XSC Results to other Environments

It is not only important to extend the range of a library like C-XSC. It is also
valuable to be able to export results to other environments since those typically
offer further possibilities. For example, Computer Algebra Packages (with suit-
able interval facilites) allow for symbolical computation with result functions
from a C-XSC integral equation solver, and they also allow for visualization of
results.

As an example for C-XSC and Maple, a Maple interface has been included in
the above integral equation application. It exports solution functions as Maple
code and range enclosures of the solution functions for visualization in Maple.

Interval arithmetic in Maple is provided by the Maple package intpakX [18].

Example Consider the integral equation

y(s)− 1
2

∫ 1

0

(s + 1)e−sty(t) dt

= e−x − 1
2

+
1
2
e−x+1, s, t ∈ [0, 1]

which, according to Kress [19], has the analytic solution

y : s → e−s.

The Taylor coefficients of the first component of the solution can be computed
as

[ 0.969232610773108516, 0.969235565177278713]

[-0.969233189716268040,-0.969233131674795078]
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Fig. 7. Maple visualization of integral equation solution

[ 0.484616598544399534, 0.484616637435440978]

[-0.161554269639638399,-0.161550720767527217]

[ 0.038892044738204872, 0.041956101920650240]

The function output in Maple code is

IGLSys_Lsg[0] := x ->

[ 0.969232610773108516, 0.969235565177278713]

&+ ( [-0.969233189716268040,-0.969233131674795078]

&* ( ( x

&- [ 0.031250000000000000, 0.031250000000000000] )

&intpower 1 ) )

&+ ( [ 0.484616598544399534, 0.484616637435440978]

&* ( ( x

&- [ 0.031250000000000000, 0.031250000000000000] )

&intpower 2 ) )

&+ ( [-0.161554269639638399,-0.161550720767527217]

&* ( ( x

&- [ 0.031250000000000000, 0.031250000000000000] )

&intpower 3 ) )

&+ ( [ 0.038892044738204872, 0.041956101920650240]

&* ( ( x

&- [ 0.031250000000000000, 0.031250000000000000] )

&intpower 4 ) ) ;
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The solution can be visualized in Maple as shown in figure 7.

5 Conclusions

The extensions presented in the above sections allow for the successful imple-
mentation of parallel applications using C-XSC and MPI, so that parallel en-
vironments as important computing environments for solving time consuming
problems can be easily accessed with C-XSC. They contribute to making the
XSC languages a valuable and still growing framework for scientific computing.
Moreover, examples show how C-XSC can be connected to other environments
with different focus. Work is going on to provide further efficient C-XSC problem
solution applications and further arithmetical and technical C-XSC extensions
to give access to further computing environments.
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10. Hölbig, C., Krämer, W.: Selfverifying solvers for dense systems of linear equations

realized in C-XSC. Preprint BUW-WRSWT 2003/1, University of Wuppertal
(2003) http://www.math.uni-wuppertal.de/wrswt/literatur/lit wrswt.html.

11. Rump, S.: Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, University
of Karlsruhe (1980)

12. Grimmer, M.: Selbstverifizierende mathematische Softwarewerkzeuge im High Per-
formance Computing. PhD thesis, University of Wuppertal (2007)

13. Zimmer, M.: Laufzeiteffiziente, parallele Löser für lineare Intervallgleichungssys-
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