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Numerical codification formats for digital computers are basically condi-
tioned by the features of the numeric sets to be represented. There exist con-
ventional formats related to the representation of natural numbers, integers or
real numbers [21] [15] [20]. The positional fractional codification offers a direct
way to express the number which consists on an integer and fractional parts.
One of the most representative codification formats is the floating point specifi-
cation IEEE754/854 [11] [12], which has being adopted as the standard in most
of conventional computer systems.

Advances in most of the scientific fields have become more and more depen-
dent on those of computer technologies. Particularly, scientific and engineering
computing demand more and more reliability according to the complexity growth
of the models to be evaluated [22]. In this context, advances in Computable Anal-
ysis provide formal paradigms which allow for dealing with the computability
and complexity issues and therefore guarantee reliability in software development
[27]. In this context, some work concerned with the development of specialized
software libraries for reliable scientific computing can be found [8]. The IRRAM
C++, developed by N. Müller, has shown to be one of the most successful ap-
proaches [2]. The interest of these software libraries is motivated by the lack
of reliability of the IEEE754/854 floating point standard hardware support for
scientific computing applications [16] [24].

Other attempts to introduce a newer standard based on Interval Arithmetic
did not success due to both commercial and theoretical reasons [9]. There exist
other approaches to symbolic computing which aim for an exact representation
of mathematical expressions [17]. Considering this criteria, a design of an arith-
metic unit in which rational numbers are represented symbolically, that is to
say, by means of fractions [13] [14] has being developed. This arithmetic unit
implements the basic operations of addition, subtraction, multiplication and di-
vision by using integer arithmetic. However, this approach is computationally
expensive, particularly because there are no easy means to obtain irreducible
fractions [4].

The continuous fractions approach also offers an exact representation method
for rational numbers. In this case, the codification of numbers is performed by
successive fractions [3] [19]. However, the hardware designs developed [17] [18]
[25] [23] outline a high complexity of the arithmetic operations involved [26]. As
it happened in symbolic computing approaches, if a numeric result in positional
factional notation is required, some additional operations need to be performed
and then, imprecisions in expression translations may appear.
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An interesting proposal for error-free codification of rational numbers is based
on the explicit representation of the periodic development of fractional numbers
[10]. However, as this research was limited to the theoretical formulation and no
suitable procedures and architectures where developed, no interest was shown
by the scientific community.

Considering all the theoretical and applied approaches mentioned, we claim
that signed digit arithmetic resembles an interesting approach [1] as a concep-
tual convergence between two paradigms which belong to two different Com-
puter Science fields can be realized: Type-2 Theory of Effectivity (TTE) [27], in
Computable Analysis, and online arithmetic [7], in Computer Arithmetic. The
former, developed by Klaus Weihrauch, proposes computable representations of
real numbers based on signed digit representations of rational and real numbers
which, at the same time, establish the basis for higher abstraction level represen-
tations such as common computable spaces of functions. The latter, developed
by Trivedi and Ercegovac, deals with the hardware implementation of digit-serial
left-to-right (online or Most Significant Bit First) arithmetic operators for signed
digit numbers, whose operation dynamics resembles that of the Turing Machine
model.

The research proposed extends [5] and [6] by presenting the implementa-
tion issues of a software library for basic exact rational arithmetic operations
(addition, subtraction, multiplication and division) using a signed digit repre-
sentation. Some issues related to the implementation criteria for the software
library are developed, according to a feasible implementation in hardware of
on-line arithmetic operators.
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