View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dagstuhl Research Online Publication Server

Interval Arithmetic and Standardization

Jiirgen Wolff von Gudenberg
University of Wiirzburg

Dagstuhl Seminar No. 08021 proceedings, 2008

Abstract

Interval arithmetic is arithmetic for continuous sets. Floating-point intervals
are intervals of real numbers with floating-point bounds. Operations for intervals
can be efficiently implemented. Hence, the time is ripe for standardization. In this
paper we present an interval model that is mathematically sound and closed for
the 4 basic operations. The model allows for exception free interval arithmetic, if
we carefully distinguish between clean and reliable interval arithmetic on one side
and rounded floating-point arithmetic on the other side. Elementary functions for
intervals can be defined. In some application areas loose evaluation of functions,
i.e. evaluation over an interval which is not completely contained in the function
domain, is recommended, In this case, however, a discontinuity flag has to be set
to inform that Brouwer’s fixed point theorem is no longer applicable.

1 Real Interval Arithmetic

1.1 Real Interval Arithmetic

Real interval arithmetic is defined as arithmetic on continuous (in the sense of com-
plete, not discrete) sets.

Definition 1 For intervals A = [a1,az] and B = [b1, bs] € IR, arithmetic operations
are defined as set operations

AoB:={aob|ac Abe B}
for operations o € {+,—,-,/}, 0 ¢ B in case of division.
Remark 1 Since the operations are continuous, the result is an interval, Ao B € IR
This definition can be extended to elementary functions.

Definition2 f(X) = {f(z) | * € X} denotes the range of values of the function
f: Dy CR — Rover the interval X C Dy.

Remark 2 Iffis continuous, the range is an interval.

Dagstuhl Seminar Proceedings 08021
Numerical Validation in Current Hardware Architectures
http://drops.dagstuhl.de/opus/volltexte /2008 /1434

https://core.ac.uk/display/62913286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Remark 3 The range is independent from the specific expression that describes the
function. That is not the case for the interval evaluation.

Definition 3 The interval evaluation f : IR — IR (of a real function f over an in-
terval X) is defined as the function that is obtained by replacing every operator and
every elementary function by its interval arithmetic counterpart under the assumption
that all operations are executable without exceptions.

Remark 4 The variables in an interval evaluation now denote intervals.
An obvious generalisation for functions of multiple variables may be defined.

Two basic principles are mandatory for every definition of interval arithmetic.
The containment principle is known as the fundamental theorem of interval arithmetic

[1].

Principle 1 [f the interval evaluation is defined, we have
f(X) € £(X)

The second priciple, the inclusion isotonicity is related.

Principle 2 If X C Y, we have

£(X) C£(Y)

2 Floating-point Interval Arithmetic

When we proceed to the set of floating-point intervals, our topic for standardization, we
are still talking about continuous sets, only the endpoints are floating-point numbers.
For the sake of clarity and to emphasize the difference, we introduce a separate notation
for floating-point interval arithmetic.

Definition 4 Let F denote the set of floating-point numbers, then IF C IR denotes the
set of floating-point intervals A = [a1, az) where a1,as € F and a1 < as

Remark 5 A =[aj,a2] ={a € R |a; <a<as}

Definition 5 The floating-point interval evaluation of : 1IF — IF of the function
expression f is defined as the function that is obtained by replacing every operator and
every elementary function by its floating-point interval arithmetic counterpart under
the assumption that all operations are executable without exceptions.

The containment principle guarantees that every real number in the original range of
values of a continuous function is contained in the result of the floating-point interval
evaluation of the same function over the same argument interval.

Principle 3 [f the floating-point interval evaluation for f is defined, we have

f(z) e of(X), Vz € XN Dy

Remark 6 The floating-point interval evaluation is defined, if f is continuous and
X C Df.

A clean semantics that respects the two basic principles of containment and inclusion
isotonicity is mandatory. It can be obtained when we implement the well-known for-
mulae involving only the endpoints and use directed roundings. In the following we
denote operations with directed rounding by putting the rounding symbol around the
operator. V or A for downwards or upwards, respectively. Alternatively, one may indi-
cate rounding towards —oo by a 6 and rounding towards +oco by a 6 over the operator
symbol o.

2.1 Representaion

A finite floating-point interval is represented by two floating-point numbers, the first
a1 denotes the lower bound, the second as the upper bound. For a valid interval we
have a1 < as.

An unbounded interval has its lower bound set to —oo or its upper bound set to 4-oc.
The empty set is denoted by [+00, —oc]

All other representations, in particular two valid numbers with a; > a9, denote invalid
intervals.

2.2 Arithmetic Operations

We first consider the operations addition, subtraction, multiplication, and division by
an interval which does not contain zero.

[a1, az] + [b1,bo] = [aV b1, asA by,
addition
a1, az) — [b1,ba) = [aN/ ba, as/A by,
subtraction
Remark 7 Note that these formulas hold for unbounded intervals and the emptyset, as
well.
Remark 8 The division by an interval containing zero raises an exception.

Different ways of handling that exception are suggested below.

2.3 Set Operations

We have intersection and convex (or interval) hull, as well as membership and inclusion
tests.

0<b b1 <0< by by <0
0<ar [aV b1, as\ b [aN by, asl\ by [aN b1, a1\ bs]
a1 <0<ay [aV by,asA by] [min(aN by, aN br), [aV by, ax\ by]
max(a:A\ by, as/\ by)]
az <0 [0 ba, as/\ bi] [aN by, a:/\ by] [aN ba, a1/ by

Table 1: The 9 cases of interval multiplication

0<by by <0
0<ay [aW by, as/\ b1] [@W ba, ar/\ b1]
a1 <0< az [alv by, as/A\ b1] [azv ba, ai/\ b
as <0 [alv by, aQA ba] [GQW b1, a1A ba)

Table 2: The 6 cases of interval division with 0 ¢ B.

[a1,a2) N [b1,b2] = [maz(ay,br), min(az,bs)]
[a1,a2) U [b1,ba] = [min(ai,br), maz(az,bs)]

a € lay,a2] & [a1,a2] 2a & a1 <aNha<ay
[a1,a2] C [b1,bo) < [b1,b2] D [a1,a2] & a1 >bi Aagy < by

Remark 9 Note that these formulas hold for unbounded intervals and the emptyset, as
well.

3 Unbounded Intervals and Division by Zero

3.1 The Set Approach

In section 2.1 we introduced intervals with one endpoint +o00 or —oco. Two interpreta-
tions are possible.

1. oo is not a valid point in the interval, it just states that the interval is unbounded

[6].

2. We consider closed intervals, hence oo is a part of it [9, §].

In both cases, we do not allow intervals with lower bound o0 or upper bound —oo.
We now define division by an interval containing zero. Rewriting the definition, we
obtain:

A/B:={a/blac Abe B} ={z|bx=aNac ANbE B}

Applying this formula eight distinct cases can be set out. In the following table in
column 3 we display the 2 bounds, that are returned by the operation. Since no valid
intervals are returned, if O is in the interior of B, we add a 4-th column with a set
interpretation.

case A =|ay,as] B =[by,bs] result A/B
1 0eA 0eB —00, +00 (—00, +00)
2 0¢A B=10,0] 00, —00]
3 ag <0 by <by=0 aN by, +oco [aN/ by, +00)
4 as <0 by <0<by aN bl,aQA by (—oo,aQA by U [CLQW by, +00)
5 as <0 0=1>0; < by —00, as/\ by (—o0, as/\ bs]
6 a; >0 by <by =0 —o0, aMA by (—o0, aﬁA b1]
7 a1 >0 by <0<by aN ba,asAA by (—00,a1\ by U [aN/ by, +00)
8 a; >0 0=0b; <by aN by, +00 [alv by, +00)

Table 3: The eight cases of interval division with A, B € I.S,and 0 € B.

Since, in case 1,0 € Aand 0 - x = 0,Vx € R we have R = (—00, 00) as the solution
set, whereas in case 2 there is no x € R with 0 - x = a for a € A. The other cases are
derived by limit processes, or by the arithmetic conventions for infinities.

Remark 10

e [f0is in the interior of B, the solution set consists of 2 unbounded intervals.

o Alternatively the whole line R can be returned, but that would loose valuable
information.

3.2 Discussion

Let us further discuss the 2 alternatives. The former is consistent with the definition of
interval arithmetic as set arithmetic. The subintervals are used in the interval Newton
method as 2 sets possibly containing zeros. The middle part (alv by, aMA by) is cut
out, since it cannot contain a zero. Hence, the process proceeds, whereas the whole R,
swollows this information and the process stops.

The latter solution has two obvious advantages. The system is closed, i.e. in any case
a valid interval is returned, and the containment principle also holds for floating-point

results, that are no real numbers, but the symbols +cc. In this case we have to replace
the empty set in row 2 by the whole set, again a huge oversetimation.
Let us assume to return the two bounds in reverse order and raise an exception when
one of the cases 4 or 7 occurs. Then there are several options.

1. The user (programmer) catches the exception and builds the two intervals.

That means that interval division cannot be applied inside an expression. Even
if it is the last operation, we do not know in advance, whether the result consists
of one or two intervals.

2. The user (programmer) catches the exception and builds the interval [—oo, +00].

That is hopelessly slow.

3. Interval division in general delivers 2 intervals, one of which most often is empty.

This would lead to a definition of interval pair arithmetic and complicate the
standard unnecessarily.

4. There are 2 division operators, one for each alternative.

(a) return the two bounds in reverse order

(b) return (—oo, 400)

Now, the user who is aware of her application can choose the appropriate opera-
tion.

5. Only the second, simple alternative is provided.

The user has to compute the bounds of his subintervals with explicit floating-
point operations. The cases 4 or 7 have to be checked by hand.

As a conclusion of our discussion, we favor the closed, simple approach.

4 The Closed, Simple Approach

We discard the containment of floating-point symbols in case 2, but we tolerate an
overestimation in cases 4 or 7. We can simplify the table.

Remark 11 The C++ proposal [2] uses the same division table. The approach re-

places the interval evaluation by the so-called range closure.

4.1 Range and Topological Closure

As function evaluation we compute the range over the original domain and return the
closure of that set:

case A =[ay,as] B =[by,bs] A/B

1 0eA 0eB (—00, +00)
2 0¢ A B =10,0] 0

3 as <0 by <by=0 [G/QW b1,+OO)
4 as <0 b1 <0< by (—OO, +OO)
5 as <0 0=0by <by (—00,as/\ b
6 a1 >0 by <by=0 (—00,ai/\ b]
7 a1 >0 b1 <0< by (_OO“FOO)
8 a1 >0 0=0by <by [aN by,+00)

Table 4: The eight cases of closed interval division with A, B € IF, and 0 € B.

Definition 6 :
Let f : Dy C R — R, then the containment set by range closure f : PR* — OR*
defined by

F2(X) o= (f@)lr € XN DU (lim_ f@lr € XDy CR ()
contains the extended range of f, where R* = R U {—oo} U {o0}.

Remark 12 In order to fulfill the containment principle, it is sufficient to consider
sequences that are contained in X. X as well as the computed range closure may be
unbounded intervals.

The topological closure follows the same definition with the exception that in equation
2 the constraint has been changed, so that more sequences are considered. That means
that more accumulation points are taken into account.

Definition 7 :
Let f : Dy C R — R, then the containment set by topological closure f : PR* —
0R* defined by

f2(X) = {f@)lx € XND}U{ lim_f(x)lw € XND;}U{ lim_ f(x)|x € Dy, 2° € X}

@)
contains the extended range of f, where R* = RU {—oo} U {o0}.

This topological closure delivers [—oo, +00] in case 2, since there are positive as well
as negative sequences converging to zero. In general it holds that all IEEE no-numbers
like +00 are contained in the containment set. Hence, the interpretation of the contain-
ment priciple 1 becomes easier.

Corollary 4
£5(X) C f*(X) 3)

4.2 Exception-free Arithmetic

As we stated above a floating-point interval is a set of real numbers where the endpoints
are floating-point numbers. A floating-point interval thus is completely different from a
floating-point number that usually denotes a more or less crude approximation of a real
number. We interpret the bounds of an interval as sharp in the sense that lower or upper
bounds are true bounds and do not carry some rounding noise in the relevant direction.
Therefore it is not recommended to provide mixed operations between floating-point
numbers and intervals. A sophisticated user, however, may define those operations,
either by overloading the operators or, preferably, by explicitly invoking a constructor.
If we follow these rules, we can show that NaNs or signed zeros do not need a special
treatment, since they will never occur and the infinity symbols are only used to describe
sets, i.e. intervals.

Definition 8 We consider the system of (extended) floating-point intervals IF := {[a1, ag] |
ar < az}U{[a1,+00) | ay < +oo} U{(—00, ag] | az > —oo} U{(—00, +00)} U {0}
Note that a1, as are floating-point numbers but the set definitions are to be read for all
real numbers.

Theorem 5 The system IF is closed under the 4 basic operations given by the follow-
ing tables.

The proof of the theorem may be picked from the tables, see also [5, 6], For the empty
set all operations deliver the empty set.

Addition (—00, bo] [b1, b2] [b1,+00) (—00, 4+00)
(—00, as) (—o0, aQA ba] (—o0, QQA ba] (=00, 4+00) (—00,+00)
[a1, as] (—oo,aQA ba] [alv bl,aQA ba] [aﬁ b1, +00) (=00, +00)
[a1, +00) (=00, +00) [aﬁ by, +00) [aﬁ b1, +00) (—00,+00)
(—00,400) | (—00,400) (=00, +00) (—00,400) (—00,+0)
Table 5: Addition of extended intervals.
Subtraction (—o0, bo] [b1, b2] [b1, +00) (=00, +00)
(=00, as) (—00, +00) (—o0, as/A b1] (—o0, as/A b1] (=00, +00)
a1, as) [aN by, +00) [aiV ba,asA by] (—00,a5A by] (=00, +0)
[G‘l? +OO) [alv b2a +OO) [alv b2a +OO) (—OO, +OO) (—OO, +OO)
(=00, +00) (—00, +00) (—00, +00) (—00,400) (—00,400)

Table 6: Subtraction of extended intervals.

Note that in line 4 we consider the multiplication with an exact zero 0 € R.

"S[BAIQIUI PAPUAIXA JO uonedrdnnyy :/ 9[qeL

(0o foo—) (0o ‘oo—) (00 foo—) (00 foo— (00 ‘oo— [0°0] (00 foo—) (00 foo—) (00 ‘oo—) (00 ‘o0—)
(0ot too—) (co+lg AID] (oo ‘oo—) (cottoo—) [eq Yy ioo—) [0°0] (co+ g AID] (00 foo—) [eq N/t ‘oo—) 0 < (0o ‘1]
(0o ‘oco—) (oo ‘oc0—) (004 ‘oo0—) (004 ‘oco— (004 ‘oo— [o¢0] (004 42q Dﬁc_ (0o ‘oco—) [1q ﬂsroolv 0> o ‘(co+ ‘In]
(0ot foo—) (0o ‘co—) (00 foo—) (00 foo—) (0o ‘oo— [0‘0] [cq /oo ‘oo—) (00 foo—) (0o+‘1q D] 0 < @ ‘[en‘co—)
(0ot too—) [lg \evoo—) (oot ‘oo—) (cottoo—) (cot‘2q N [0°0] [fq /e ‘oo—) (00 foo—) (co+12q /D] 0 > @ [ep‘oo—)

[0°0] [0°0] [0°0] [0°0] [0°0] [00] [0°0] [0°0] [00] [00]
(0ot tfoo—) (co+'lg AID] (oco+'lg o] [2q \vioo—) [5q \ytoico—) o0l [2q \Petq NE] [2q Vee‘tq /e [2q Y'e‘tq /e | 0< o[en 1]

[(2q (re'lq /re)xew
(0ot f00—) (00 ‘oo—) (00 fo0—) (00 ‘o0—) (cot‘co—) o0l [?q \Pe'tq Ae] (Tq /ge‘tq Nejurw] [Tq \Fre'tq /e e >0>
(cottoo—) [lg \ev'oo—) [lq \ywico—) (o042 Ap] (co+‘%q o] [0'0] [Fq \Petq Ne] (fq V'e‘eq Ne [fq Y'e‘eq /e | 05> eo‘[en 1]
(co+ ‘oo—) 0< g 0> 19 0<% 0> %q [0°0] 0< 19 ¢9>0>1q 0> %q uoyed Ay
(co+ 1q] (co+ 1q] [5q ‘o0—) [29‘o0—) [5q ‘1q] [5q ‘1q] (9 ‘1q]

i D () PIM S[BAIIUI PIPUDIXD JO UOISIAL(] :§ 9[qBL

(004 ‘00—)
(00+ 0]
(co+‘Tq]
TQ Awm@ﬁool
[0 ‘00—)
[0°0]
Eﬁsg

['a \7°» ‘'q 7]

0" N7

(00 00—)
[0°00—)
?Q Qﬁc ‘00—
(co+ g /Xv]
(00+0]
[0°0]
0% X7l

ﬁma ﬁﬁc ‘2q &NE

[2q 7™ ‘0]

Cy

%3
*
&

B

[0°0]

[*a yeeeq Nl
[*q yeetq N
[eq yee ta el

(00+‘00—)
E Qﬁsnoo v
m@ Awg 00— v
(00+2q Nev]
(00+1q]
[0°0]

[fa \'eca /el
[fq e eq Xe]
[2q 7*etq)Ce]

(00 f00—)
oN D ‘(004 1p]
oo._.L_

°0-)
°0-)
ﬁ 0]

0< ¢ ?62 _
]

0> @ ‘[ep ‘Tn)

> (> n‘[en‘Ip

0<1q
(004 ‘Tq]

0> %9
[2q ‘o00—)

0<1q
(29 ‘1q]

0> 7%
[%q ‘1q]

ga70
UOISIAI(

10

" S () PIM S[BAISIUL PAPU)XA JO UOISIAL(6 O[qRL

(Go+7o-) (st 00-) (potia—) (ot o) (e0470-) | (s eo-) | (sofieo-) (oot oo (oot o5
(0o+r0] (004 '00—) (ootfoo—) [ofoo—) (cottEq NP] (co+foo—) [l Y7'wioo—)) 0 < (0o ‘o]
(0co+‘co—) (004 ‘co—) (0o0+‘co—) (004 ‘co—) (0o+ ‘oo—) (co+ ‘oo— (co+ ‘oo0—) (004 ‘oo0—) 0> o ‘(co+ ‘In]
(0o+‘oco—) (004 ‘co—) (co+‘co—) (004 ‘co—) (0o+ ‘oo—) (00+ ‘oo—) (0o+ ‘oo—) (004 ‘o0—) 0 < Tp‘[ep‘oco—)
[0¢o0—) [0¢o0—) (oo ‘oco—) (004 40] [2q ANNSFOOIV (co+ ‘oo— (oo+¢1q ﬁs_ 0 0 > % ‘[‘co—)
(0o'0) (oot'oo-) (oot'oo-) [o'oo-) (co+'%q Ao (ootioo-) [tq Yyre'ce-) 0 0< 1[er o]
(0o+‘co—) (004 ‘co—) (co+‘co—) (004 ‘co—) (0o+ ‘oo—) (co+ ‘oo— (co+ ‘oo—) (0o4‘oc0—) | Zp > 0 > I ‘[ep ‘1]
0'00—) (sotioo) (cotioom) (ootig] [fq YEe'o-) (ookioo—) (oot Tq el 0 0> 20[en 0]
0="Tq 0>T1q 0<% 0=72%q 9>T9=0 Y>0>1q 0=%>1Tq [0°0] a30
(cot+'Tq] (o041l [fqoo—) [Pqoo—) [5q ‘1q] (29 1q] [5q ‘1q] =4 UoISIAI

11

name domain range special values

sqr R* [0, o0]

power R* <X Z R* power([0,0],0) = [1,1]
pow [0,00] x R* [0, o0] pow([0,01,[0,0]) =[0, o¢]
sqrt [0, 0] [0, 0]

exp, expl0, exp2 R* [0, o0]

expml R* [—1, 0]

log, log10,log2 [0, 0] R* log ([0, 0]) = [—o0]

Table 10: Extended domains and ranges for the elementary functions

4.3 Intermediate Conclusion

The closed definition of interval operations is mathematically sound and fulfills the
priciples of containment and inclusion isotonicity. Under the assumption that no exter-
nal (hardware) event changes the data, we can guarantee that all intervals produced are
valid intervals.

One may argue that we loose information, when we overstimate the union of 2 un-
bounded intervals by the whole line, but this information can always be explicitly com-
puted by 2 floating-point divisions. The interval newton method needs an a priori test
whether the denominator contains zero, and then the finite bounds of the 2 unbounded
intervals can be determined. When, on the other hand, we deliver the 2 quotients as an
improper interval, we have to check for this situation after the division and produce the
2 subintervals.

We see that programming the interval Newton method needs specific operation in any
case. Hence, we propose to standardize the simpler closed system.

5 Elementary Functions

Interval versions of elementary functions must deliver an enclosure of the real range.
Least bit accurate versions have been proposed in [2]. The rely on the same functions
as those floating-point functions in the IEEE-754 arithmetic standard.

We will discuss the aspect of extending these functions.

5.1 The continuity approach

Functions are not extended. An exception that normally leads to program termination
is raised, whenever a function is to be evaluated outside its domain.

5.2 The containment set approach

In the containment set approach [9, 8], how it is implemented in £ilib++ [3], e.g.,
infinities are treated as values. There are point intervals and operations for +oo.
In this framework elementary functions can easily be extended, see Table 10.

12

A = a1, as] Range discontFlag set
0

as <0 yes
a1 <0<ay 0, /az] yes
0<a Va1, az] no
(—o0,asl;as <0 | 0 yes

E

(—00,a2];0 < ag | [
[a1,+00) ;a1 <O ||
[a1,+00);0 < aq ||

0.y/@m] yes
0

400) yes

Var, +oc) yes

Table 11: Extended interval square root

Definition 9 A function f is loosely evaluated over an interval X, if f(X) := f(X N
Dy) where Dy is the domain of f.

Remark 13 A discontinuousIntervalFunction exception has to be raised, if a function
f is loosely evaluated over an interval X with X € Dy. A corresponding flag [7] has
to be set.

e The default handling in this case should be to terminate.

e There is an instruction to read that flag. Hence, user defined actions can be
executed.

e An alternative may be to ignore the exception.

The flag indicates that applications which rely on the continuity of the functions like
verification algorithms using Brouwer’s fixed-point theorem are not allowed.
As an example we show the definition of the square root in Table 11.

6 Conclusion and Further Topics

In this position paper we have proposed a definition of extended interval arithmetic
that is closed and mathematically sound. It should be taken as the core of the coming
interval arithmetic standard.

The standard should also specify set operations and comparisons as well as elementary
functions. For the latter a discontinuity flag shall be defined that supports the loose
evaluation.

Further topics of the standard shall be complete arithmetic including an exact dotprod-
uct.

Acknowlegment

Thanks to Ulrich Kulisch, Gerd Bohlender, Rudi Klatte, John Pryce and all other par-
ticipants who helped in the discussion.

13

References

[1] Alefeld, G. and Herzberger J. Introduction to Interval Computation, Academic
Press 1983

[2] Bronnimann, H., Melquiond, G., Pion, S. A Proposal to add
Interval Arithmetic to the C++ Standard Library (revision 2)
http://www.open—-std.org/Jjtcl/sc22/wg2l/docs/papers/2006/n2137.pdf

[3] Lerch,M. Hofschuster, W. et al FILIB++, a Fast Interval Library Supporting Con-
tainment Computations, ACM TOMS Vol 32 No 2, pp.299 - 324, 2006

[4] Kulisch, U: Advanced Arithmetic for the Digital Computer, Interval Arithmetic
Revisited, Jan 2001

[5] Kulisch, U: Computer Arithmetic and Validity, de Gruyter, to be published, 2008

[6] Kulisch, U: Letter to the IEEE-754 committee concerning Interval Arithmetic ,
Jan 2008

[7] Pryce, J. Project Authorisation Request for an Interval Standard Study Group,
Feb 2008

[8] Pryce, J., Corliss, G. Interval Arithmetic with Containment Sets Computing 4,
2005

[9] Walster, G.W. et al.: The "Simple" Closed Interval System, Sun Microsystems,
Feb 2000

14

