
08061 Abstracts Collection

Types, Logics and Semantics for State

� Dagstuhl Seminar �

Amal Ahmed1, Nick Benton2, Martin Hofmann3 and Greg Morrisett4

1 Toyota Technological Inst. - Chicago, USA
amal@tti-c.org

2 Microsoft Research, GB
nick@microsoft.com

3 Universität München, D
mhofmann@informatik.uni-muenchen.de

4 Harvard University, USA
greg@eecs.harvard.edu

Abstract. From 3 February to 8 February 2008, the Dagstuhl Seminar
08061 �Types, Logics and Semantics for State� was held in the Interna-
tional Conference and Research Center (IBFI), Schloss Dagstuhl. During
the seminar, several participants presented their current research, and
ongoing work and open problems were discussed. Abstracts of the pre-
sentations given during the seminar as well as abstracts of seminar results
and ideas are put together in this paper. The �rst section describes the
seminar topics and goals in general. Links to extended abstracts or full
papers are provided, if available.

Keywords. Mutable State, Program Logics, Semantics, Type Systems,
Program Analysis

08061 Executive Summary � Types, Logics and Semantics
for State

Amal Ahmed (Toyota Technological Inst. - Chicago, USA), Nick Benton (Mi-
crosoft Research, GB), Martin Hofmann (Universität München, D) and Greg
Morrisett (Harvard University, USA)

From 3 February to 8 February 2008, the Dagstuhl Seminar 08061 �Types, Logics
and Semantics for State� was held in the International Conference and Research
Center (IBFI), Schloss Dagstuhl. 45 researchers, with interests and expertise in
many di�erent aspects of modelling and reasoning about mutable state, met to
present their current work and discuss ongoing projects and open problems.

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2008/1426

Dagstuhl Seminar Proceedings 08061
Types, Logics and Semantics for State
http://drops.dagstuhl.de/opus/volltexte/2008/1428

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://drops.dagstuhl.de/opus/volltexte/2008/1426

2 Amal Ahmed, Nick Benton, Martin Hofmann and Greg Morrisett

Compiling Self-Adjusting Programs

Umut Acar (Toyota Technological Institute, USA)

Self-adjusting programs respond automatically and e�ciently to input changes
by tracking the dynamic data dependences of the computation and incrementally
updating the output as needed. In this talk, I give an overview of language-based
techniques for compiling self-adjusting programs from ordinary programs.

The main idea is to use continuation-passing style (cps) transformation to au-
tomatically infer a conservative approximation of the dynamic data dependences.
We ensure the e�cient propagation of input changes by generating memoizing
versions of cps functions that can reuse previous work even when they are in-
voked with di�erent continuations.

Keywords: Self-adjusting computation, compilations, continuation-passing-
style

Step-Indexed Logical Relations

Amal Ahmed (Toyota Technological Institute - Chicago, USA)

Logical relations are a powerful proof technique used to establish many important
properties of typed languages, including type safety and contextual equivalence
of terms. While logical relations for simple type systems are straightforward,
the addition of recursive types or mutable references signi�cantly complicates
matters. The key problem is that logical relations, normally de�ned by induction
on the structure of types, are no longer well founded in the presence of recursive
types, impredicative polymorphism, or ML- and Java-style references.

In this talk, I will give an introduction to step-indexed logical relations which
are indexed not just by types, but also by the number of steps available for future
evaluation. This strati�cation has proved to be an e�ective means of uniformly
handling various circularities from recursive functions, to recursive types, to
impredicative polymorphism, to the cyclic stores that arise in the presence of
mutable references. In particular, I will present a step-indexed model for mutable
references aimed at proving type safety, as well as a step-indexed logical relation
for proving contextual equivalence for the polymorphic lambda calculus with
recursive types.

A relational proof system for non-interference of
unstructured bytecode

Lennart Beringer (LMU München, D)

We present a relational proof system for checking that a bytecode program satis-
�es non-interference, a basic security property restricting the �ow of information
in programs.

Types, Logics and Semantics for State 3

The system admits assignments to low variables and return instructions to
occur in high branches and applies to programs with structured as well as un-
structured control �ow. The technical contribution consists of a novel kind of
relational invariants called relational shape descriptions. Relational shape de-
scriptions approximate the identity of values within a single state as well as
(modulo the information �ow indistinguishability) across a pair of states. The
proof system employs relational shape descriptions in a type-like fashion to pro-
mote relations between two initial states to the corresponding �nal states and
the return values. In addition to syntax-directed rules, we present rules for code
fragments that are related by simple peephole transformations, preparing for the
veri�cation of code resulting from optimising compilers.

Keywords: Non-interference, relational reasoning, program transformations,
type systems

Introduction to FM-domain theory and its application to
modeling dynamic allocation

Lars Birkedal (IT University of Copenhagen, DK)

In this talk I give an introduction to FM-domain theory (domain theory in the
category of FM sets, sets with a permutation action) and outline how FM-domain
theory can be used to give denotational semantics of higher-order programming
languages with dynamic allocation as in recent papers by Benton-Leperchey
(TLCA'05), Bohr-Birkedal (APLAS'06), Birkedal-Yang (FOSSACS'07).

Keywords: FM-domains, dynamic allocation

Formal Reasoning on Imperative ML Programs

Arthur Chargueraud (INRIA Paris-Rocquencourt, F)

I will present a technique for certifying imperative ML programs using a standard
HOL theorem prover. The approach is 3-step:

1) type the imperative program in a type system that extends System F with
static notions of regions and capabilities,

2) translate the program into a purely functional language, using a type-
directed translation (which preserves both the meaning and the global structure
of the source),

3) generate a higher-logic formula from the generated functional program,
and use it to prove properties about the program, including safety and termina-
tion.

Note that steps (1) and (2) extend some earlier work that appears in "Func-
tional Translation of a Calculus of Capabilities" (joint work with François Pot-
tier). Step (3) is work in progress.

4 Amal Ahmed, Nick Benton, Martin Hofmann and Greg Morrisett

In this talk, I will brie�y describe each of the three steps, and then illustrate
the global process on pratical examples.

Joint work of: Charguéraud, Arthur; Pottier, François

A Uni�ed Framework for Veri�cation Techniques for
Object Invariants

Sophia Drossopoulou (Imperial College London, GB)

Object invariants de�ne the consistency of objects. They have subtle semantics,
mainly because of call-backs, multi-object invariants, and subclassing.

Several veri�cation techniques for object invariants have been proposed.
It is di�cult to compare these techniques, and to ascertain their soundness,

because of their di�erences in restrictions on programs and invariants, in the use
of advanced type systems (e.g., ownership types), in the meaning of invariants,
and in proof obligations.

We develop a uni�ed framework for such techniques. We distil seven param-
eters that characterise a veri�cation technique, and identify su�cient conditions
on these parameters which guarantee soundness. We instantiate our framework
with three veri�cation techniques from the literature, and use it to assess sound-
ness and compare expressiveness.

Keywords: Object invariants, visible states semantics, veri�cation, sound

Joint work of: Drossopoulou, Sophia; Francalanza, Adrian; Müller, P.; Sum-
mers, Alexander J.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1427

Speci�cations of OO programs are not OO

Sophia Drossopoulou (Imperial College London, GB)

We argue that current techniques for the speci�cation of OO programs do not
follow the OO paradigm, in the sense that they talk about the state/properties
of objects before and after messages, rather than talk about the behaviour of
objects in terms of later messages.

We suggest that a possible way to make speci�cations more OO, would be to
express the behaviour of an object in terms of messages sent earlier to relevant
other objects.

Keywords: Speci�cation, object oriented, message, trace

Joint work of: Drossopoulou, Sophia; Noble, James

http://drops.dagstuhl.de/opus/volltexte/2008/1427

Types, Logics and Semantics for State 5

A Step-Indexed Model of Substructural State

Matthew Fluet (Toyota Technological Institute - Chicago, USA)

The concept of a `unique' object arises in many emerging programming languages
such as Clean, CQual, Cyclone, TAL, and Vault. In each of these systems, unique
objects make it possible to perform operations that would otherwise be prohib-
ited (e.g., deallocating an object) or to ensure that some obligation will be met
(e.g., an opened �le will be closed). However, di�erent languages provide di�er-
ent interpretations of `uniqueness' and have di�erent rules regarding how unique
objects interact with the rest of the language.

Our goal is to establish a common model that supports each of these lan-
guages, by allowing us to encode and study the interactions of the di�erent forms
of uniqueness. The model we provide is based on a substructural variant of the
polymorphic λ-calculus, augmented with four kinds of mutable references: un-
restricted, relevant, a�ne, and linear. The language has a natural operational
semantics that supports deallocation of references, strong (type-varying) up-
dates, and storage of unique objects in shared references. We establish the strong
soundness of the type system by constructing a novel, semantic interpretation
of the types.

Joint work of: Fluet, Matthew; Ahmed, Amal; Morrisett, Greg

Pure Pointer Programs with Universal Iteration

Martin Hofmann (LMU München, D)

We introduce a formal class of pure pointer programs (PURPLE) and study
them on locally ordered graphs. Existing classes of pointer algorithms, such as
Jumping Automata on Graphs (jags) or Deterministic Transitive Closure (dtc)
logic, often exclude simple programs. PURPLE subsumes these classes and allows
algorithms whose pseudocode uses a constant number of variables to be de�ned
in a natural way. It does so by providing a primitive for iterating an algorithm
over all nodes of the input graph in an unspeci�ed order.

Since pointers are given as an abstract data type rather than as binary digits
we expect that logarithmic-size worktapes cannot be encoded using pointers as
is done, e.g. in totally-ordered dtc logic. We show that this is indeed the case
by proving that the property "the number of nodes is a power of two" which is
in LOGSPACE is not representable in PURPLE.

Keywords: Pointer algorithms, semantics, abstract data type, computational
complexity

Joint work of: Hofmann, Martin; Schöpp, Ulrich

6 Amal Ahmed, Nick Benton, Martin Hofmann and Greg Morrisett

Ghost variables, resources, and object invariants in
program logics

Martin Hofmann (LMU München, D)

Ghost variables are assignable variables that appear in program annotations but
do not correspond to physical entities. They are used to facilitate speci�cation
and veri�cation, e.g., by using a ghost variable to count the number of iterations
of a loop, to express extra-functional behaviours, like resource usage, and also
to delineate validity regions of invariants.

I will discuss the use of ghost variables in the context of proof carrying code
and argue that they should be avoided in certi�cates but have their legitimate
use during proof generation.

These points will be substantiated by a formal model of ghost variables in
ordinary program logic and an automatic procedure allowing one to eliminate
them from speci�cations and proofs in a compositional way.

Keywords: Program logic, speci�cation, proof-carrying code

Joint work of: Hofmann, Martin; Pavlova, Mariela

Reasoning about stateful interactions using a typed
Hennessy-Milner logic

Kohei Honda (Queen Mary College - London, GB)

The pi-calculus can represent a wide range of behaviour, including sequential or
concurrent, synchronous or asynchronous, shared variable or message passing,
functional or imperative, stateful or stateless, and �rst-order or higher-order.
These di�erent classes of behaviours arise as types for processes � each type
discipline yields a universe of typed processes which precisely capture a given
notion of behaviour. Thus the pi-calculus o�ers a uniform framework with which
we can study these diverse behaviours, for example logics for programming lan-
guages with signi�cant features such as higher-order procedures, local state and
di�erent kinds of concurrency.

In the past years Martin Berger, Nobuko Yoshida and I have been carrying
out a series of studies for developing logics for programming languages based
on analysis of such a typed universe. These include logics for aliasing, higher-
order functions, and local state. All of these logics are equipped with a strong
completeness property. What has been missing is the precise link between these
program logics on the one hand and process logics for the corresponding typed
pi-calculi on the other. Such a link will be necessary not only for capturing con-
currency but also for having a uniform framework to reason about combination
of diverse behaviours, which is how real computing systems are built.

The aim of this talk is to present this missing link: a process logic for typed
processes which can be uniformly adapted for many kinds of type disciplines for

Types, Logics and Semantics for State 7

the pi-calculus including those representing programming languages, based on
the works by Stirling, Dam and Amadio as well as a recent study on logics for
higher-order control by the �rst author. Rather than showing a general theory,
we shall focus on the theme of this workshop � how we can reason about
state, especially in the context of concurrent communicating processes � and
argue for the merit of understanding, specifying and validating properties of
stateful concurrent programs using the combination of types (which give a weak
safety guarantee only ensuring lack of constructor error but at the same time
articulate the foundations of dynamics of computing) and logics (which give
arbitrarily detailed speci�cations based on the articulation of typed program
syntax). After exploring examples, we shall also outline several completeness and
other theoretical results we have obtained recently, and discuss their signi�cance
for practice.

Keywords: Types, Logic, Pi-calculus, Hennessy-Milner Logic, state, session
types

Joint work of: Berger, Martin; Yoshida, Nobuko; Honda, Kohei

Carbon credits for resource bounded computation

Ste�en Jost (University of St Andrews, GB)

We will explore a compile-time program analysis to determine the worst-case
heap-space usage of a given program as presented by M.Hofmann and S.Jost.
After an intuitive overview over the general principle, we will discuss the cur-
rent state of research on this method and discuss future extensions. The 20min
presentation was followed by a quick demonstration of the analysis on an imple-
mentation of the Quick-sort algorithm.

The analysis applies a basic principle from amortised complexity analysis
to construct a linear programming problem while traversing a standard typing
derivation.

Any existing solution to these constraints obtained by a standard LP-solver
gives rise to a simple arithmetic expression, which linearly depends on the pro-
gram's input sizes (e.g. ax+ by + c for a program that takes two lists of length
x and y as its input). We have proved for both a standard functional language
and a subset of Java (including inheritance, downcast, update and aliasing) that
these expressions present a strict upper bound on a program's heap-space con-
sumption. In both languages it is possible to account for deallocation primitives,
whose safety relies on other researchers' work orthogonal to our approach.

We have implemented the analysis for a functional language and expanded
it to bound execution time and stack-space usage as well as a part of ongoing
research and will conclude the talk with a short demonstration.

Keywords: Type systems, Program Analysis, Resource bounded computation,
Amortised Analysis

8 Amal Ahmed, Nick Benton, Martin Hofmann and Greg Morrisett

Reading, Writing and Relations: Towards Extensional
Semantics for E�ect Analyses

Andrew Kennedy (Microsoft Research UK - Cambridge, GB)

We give an elementary semantics to an e�ect system, tracking read and write
e�ects by using relations over a standard extensional semantics for the original
language. The semantics establishes the soundness of both the analysis and its
use in e�ect-based program transformations.

Joint work of: Benton, Nick; Kennedy, Andrew; Hofmann Martin; Beringer,
Lennart

Full Paper:
http://research.microsoft.com/∼akenn/e�ects/rwraplas.pdf

Deriving Proof Techniques for Equivalence

Vasileios Koutavas (Northeastern Univ. - Boston, USA)

Contextual equivalence, i.e. the property that two expressions are indistinguish-
able inside any program context, is a fundamental property of program expres-
sions. I will present a framework for deriving techniques for proving contextual
equivalence, which are sound and complete, but also useful, in a variety of lan-
guages. The advantages of the derived proof methods are that they successfully
deal with imperative features as well as higher-order features (callbacks, higher-
order functions).

We have used this framework to derive sound and complete methods for
proving contextual equivalence for a variety of languages, including an untyped
imperative lambda calculus, an imperative object calculus, an imperative core
of Java, and the nu-calculus.

Keywords: Contextual equivalence, bisimulations, imperative languages, higher-
order languages

Verifying the Subject-Observer Pattern with Higher-Order
Separation Logic

Neel Krishnaswami (CMU - Pittsburgh, USA)

The subject-observer design pattern is a very common idiom in object-oriented
systems; for example, it is an essential part of the model-view-controller pattern
for programming graphical user inter faces. We give a modular proof technique
using separation logic to verify this pattern. This proof method is modular in
the sense that subjects and observers can be veri�ed independently, and both
can be veri�ed independently of client code that calls both.
Keywords: Separation Logic, Design Patterns, Subject-Observer

http://research.microsoft.com/~akenn/effects/rwraplas.pdf

Types, Logics and Semantics for State 9

Context Lemmas and Bisimulation for Lambda-Calculi
with References

Soeren Lassen (Google - Mountain View, USA)

In this talk I explain, characterize, and contrast some operationally-based meth-
ods for reasoning about contextual equivalence of general higher-order functions
and dynamically-allocated references: 1. Context lemmas, including the CIU
theorem. 2. Applicative bisimulation. 3. Logical bisimulation and environmental
bisimulation. 4. Normal form bisimulation, a.k.a. open (applicative) bisimula-
tion.

They all employ elementary syntactic, inductive and co-inductive de�nitions
and proofs to develop useful, operationally-based proof methods to establish
non-trivial program equivalences, which I illustrate in an untyped ML fragment
with references.

Keywords: Lambda-calculus, references, program equivalence, bisimulation

The State of State in JML

Gary T. Leavens (Univ. of Central Florida - Orlando, USA)

The Java Modeling Language (JML) is used to specify, check, and verify detailed
designs for Java classes and interfaces. JML is an open, international, collabora-
tive e�ort among some 20 research groups and projects. This talk brie�y gives
an overview of JML, focusing on JML's features for dealing with state. In par-
ticular, I describe extensions to JML proposed or implemented for dealing with
prevention of representation exposure, and for framing and invariants. I show
how these interact to support modular reasoning about layered abstractions

This work was supported in part by US NSF grant CNS 08-08913

Keywords: JML, state, datagroup, representation function, assignable clause,
modi�es clause

See also:
http://jmlspecs.org

Modular Veri�cation of Higher-Order Methods with
Mandatory Calls Speci�ed by Model Programs

Gary T. Leavens (Univ. of Central Florida - Orlando, USA)

What we call a �higher-order method� (HOM) is a method that makes manda-
tory calls to other dynamically-dispatched methods. Examples include template
methods as in the Template method design pattern and notify methods in the
Observer pattern.

http://jmlspecs.org

10 Amal Ahmed, Nick Benton, Martin Hofmann and Greg Morrisett

HOMs are particularly di�cult to reason about, because standard pre- and
postcondition speci�cations cannot describe the mandatory calls. For reasoning
about such methods, existing approaches use either higher-order logic or traces,
but both are unintuitive and verbose.

We describe a simple, intuitive, and modular approach to specifying HOMs
We show how to verify calls to HOMs and their code using �rst-order veri�cation
conditions, in a sound and modular way. Veri�cation of client code that calls
HOMs can take advantage of the client's knowledge about the mandatory calls
to make strong conclusions. Our veri�cation technique validates and explains
traditional documentation practice for HOMs, which typically shows their code.
However, speci�cations do not have to expose all of the code to clients, but only
enough to determine how the HOM makes its mandatory calls.

This work appears at OOPSLA 2007 and is copyright (c) ACM 2007.

Keywords: Model program, veri�cation, speci�cation languages, grey-box ap-
proach, higher order method, mandatory call, Hoare logic, re�nement calculus

Joint work of: Shaner, Steve; Leavens, Gary T.; Naumann, David A.

Full Paper:
http://doi.acm.org/10.1145/1297027.1297053

See also: Steve M. Shaner, Gary T. Leavens, David A. Naumann, Modular
Veri�cation of Higher-Order Methods with Mandatory Calls Speci�ed by Model
Programs. In International Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), Montreal, Canada, October 2007,
pages 351-367.

Heap Decomposition with Applications to Concurrency
Analysis

Roman Manevich (Tel Aviv University, IL)

We demonstrate shape analyses that can achieve a state space reduction ex-
ponential in the number of threads compared to the state-of-the-art analyses,
while retaining su�cient precision to verify sophisticated properties such as lin-
earizability. The key idea is to abstract the global heap by decomposing it into
(not necessarily disjoint) subheaps, abstracting away some correlations between
them.

These new shape analyses are instances of an analysis framework based on
heap decomposition. This framework allows rapid prototyping of complex static
analyses by providing e�cient abstract transformers given user-speci�ed decom-
position schemes. Initial experiments con�rm the value of heap decomposition
in scaling concurrent shape analyses.

Keywords: Concurrency, Shape Analysis, Cartesian Abstraction

http://doi.acm.org/10.1145/1297027.1297053

Types, Logics and Semantics for State 11

Program Veri�cation with Hoare Type Theory

Aleksander Nanevski (Microsoft Research UK - Cambridge, GB)

In this talk, I will describe Hoare Type Theory (HTT) which combines dependent
type theory like Coq with features which for speci�cation and veri�cation in the
style of Hoare Logic.

This combination is desirable for many reasons. On the type-theoretic side,
it makes it possible to integrate stateful behaviour into languages and logics
that have so far been limited to be purely functional. On the Hoare Logic side,
it makes is possible to use the higher-order data abstraction and information
hiding mechanisms, which are essential for scaling any kind of veri�cation e�ort.
On the functional programming side, the language may roughly be considered
as a dependently typed extension of core Haskell.

Finally, from the technical standpoint, it is interesting that the design of HTT
relates in an essential way some of the most venerable ideas from language theory
like Dijkstra's predicate transformers, Curry-Howard isomorphism, monads, as
well as the more recent idea of Separation Logic, which have not been connected
before.

I will discuss the implementation of HTT (called Y-not) which is currently
under way, as well as the possibilities for scaling HTT to support further pro-
gramming features.

Keywords: Type theory, hoare logic, separation logic

An admissible second order frame rule in regional logic

David Naumann (Stevens Institute of Technology, USA)

Higher order frame rules in separation logic provide a way to understand disci-
plines such as ownership for information hiding in object based programs.

Recent of Banerjee, Naumann, and Rosenberg uses explicit regions to express,
in classical �rst-order assertions, the read-footprints of predicates and write-
footprints of commands, supporting an ordinary frame rule.

On this basis, I give a second order frame rule, show its admissibility, and
describe its use in encoding disciplines like ownership.

An admissible second order frame rule in region logic
(extended abstract)

David Naumann (Stevens Institute of Technology, USA)

Shared mutable objects and reentrant callacks can subvert encapsulation in
object-based programs.

12 Amal Ahmed, Nick Benton, Martin Hofmann and Greg Morrisett

For modular reasoning, veri�ers rely on methodologies. These combine spe-
cial annotations or types with instrumentation (ghost state) and syntactic re-
strictions on programs and speci�cations, which poses challenges for proving
soundness and for comparing/combining methodologies. This paper formalizes
a second order frame rule, similar to that of separation logic but for a logic with
explicit regions. The rule captures proof obligations of invariant methodologies
such as ownership for dynamically instantiable abstractions.

Soundness with respect to a standard semantics is proved by admissibility
argument.

Assignment, Substitution and Abstraction

Peter O'Hearn (Queen Mary College - London, GB)

Since the beginning of program logic substitution has been used to describe
the semantics of assignment, as in the de�nition where P[e/x] as the weakest
precondition of x:=e and postcondition P. Since before program logic, it has been
known that con�ating the store and the environment is inconsistent, except in
simple situations. Some authors, including this author, have persisted with the
substitution semantics in theoretical work, for simplicity. For the most part, this
works, until one reaches data abstraction (or, of course, a powerful procedure
mechanism). Following the work of Reynolds-Mitchell-Plotkin on types, and then
Parkinson and others on program logic, when treating abstraction (as in classes,
modules, etc) the most natural thing in the world is to use predicate variables.
But then consider the wp P[e/x] if P is a predicate variable. We are in trouble
if the predicate depends on x. This is a known problem, and there are possible
several routes to solution. My main question is, is this the �nal straw, forcing us
(or, me!) to �nally give up on the punning of locations as variables?

Class invariants the end of the road

Matthew Parkinson (Cambridge University, GB)

Class invariants have formed the foundation of most modern object-oriented
veri�cation systems. Unfortunately, this causes di�culties as invariants are not
always the correct way to structure proofs of programs. In this talk, I demon-
strate a di�erent way using predicates from separation logic, which does su�er
the same problems.

Keywords: Class invariants, veri�cation

Types, Logics and Semantics for State 13

Towards Light-Weight OO-Components with Fully
Abstract Semantics

Arnd Poetzsch-He�ter (TU Kaiserslautern, D)

Behavioral semantics for components abstract from implementation details and
describe the components' behavior independent of the components' implemen-
tations. Such semantics provides an important foundation for behavioral sub-
stitutability and interface speci�cations. In this talk, I investigate a component
model for class-based object-oriented languages with aliasing, subclassing, and
dynamic dispatch. The code of a component consists of a creator class and pos-
sibly several other classes. Like objects, components are instantiable at runtime.
A component instance is realized by a dynamically evolving set of objects with
a clear boundary to the environment. Based on a small step operational seman-
tics, I develop a behavioral semantics that is expressed in terms of the messages
crossing the component boundary.

Keywords: Object-orientation, program components, operational semantics,
full abstractness

Hiding local state in direct style: a higher-order anti-frame
rule

Francois Pottier (INRIA Paris-Rocquencourt, F)

Separation logic involves two dual forms of modularity: local reasoning makes
part of the store invisible within a static scope, whereas hiding local state makes
part of the store invisible outside a static scope. In the recent literature, both
idioms are explained in terms of a higher-order frame rule. I point out that
this approach to hiding local state imposes continuation-passing style, which is
impractical. Instead, I introduce a higher-order anti-frame rule, which permits
hiding local state in direct style. I formalize this rule in the setting of a type
system, equipped with linear capabilities, for an ML-like programming language,
and prove type soundness via a syntactic argument. Several applications illus-
trate the expressive power of the new rule.

A System for Generating Static Analyzers for Machine
Instructions

Thomas Reps (University of Wisconsin - Madison, USA)

This paper describes the design and implementation of a language for specifying
the semantics of an instruction set, along with a run-time system to support the
static analysis of executables written in that instruction set. The work advances
the state of the art by creating multiple analysis phases from a speci�cation of
the concrete operational semantics of the language to be analyzed.

14 Amal Ahmed, Nick Benton, Martin Hofmann and Greg Morrisett

Keywords: Machine-code analysis, instruction-set semantics, tool generator

Joint work of: Lim, Junghee; Reps, Thomas

Separation Logic for Higher-order Store

Bernhard Reus (University of Sussex - Brighton, GB)

Separation logic is a Hoare-style logic for reasoning about pointer-manipulating
programs. Its core ideas have recently been extended from low-level to richer,
high-level languages.

In this paper we develop a new semantics of the logic for a simple program-
ming language where code can be stored (i.e., with a higher-order store).

The main improvement upon previous work is the simplicity of the model. As
a consequence, several restrictions imposed by the semantics are removed, leading
to a considerably more natural assertion language with a powerful speci�cation
logic.

Keywords: Separation logic, program logics, Hoare logic, higher-order store,
code pointers

Joint work of: Birkedal, Lars; Reus, Bernhard; Schwinghammer, Jan; Yang,
Hongseok

The Current State of Grainless Semantics

John Reynolds (CMU - Pittsburgh, USA)

Conventional semantics for shared-variable concurrency su�ers from the "grain
of time" problem, i.e., the necessity of specifying a default level of atomicity. We
propose a semantics that avoids such a choice by regarding all interference that
is not controlled by explicit synchronization as catastrophic. It is based on three
principles:

- Operations have duration and can overlap one another during execution.
- If two overlapping operations touch the same location, the meaning of the

program execution is �wrong�.
- If, from a given starting state, execution of a program can give "wrong",

then no other possibilities need be considered.
We show a small-step grainless semantics due to Reynolds and a large-step

version due to Brookes. As a �rst step in relating these approaches, and in seeking
a still more abstract semantics, we develop a theory of grainless semantics in the
absence of synchronization primitives.

Keywords: Grainless semantics, shared-variable concurrency, grain of time

Types, Logics and Semantics for State 15

Modular Shape Analysis for View-Serializable Libraries

Noam Rinetzky (Tel Aviv University, IL)

We present novel modular static shape analysis algorithms for concurrent li-
braries.

Our analyses conservatively verify the absence of certain memory and concur-
rency errors, verify a certain class of program assertions, and infer shape (heap)
module invariants. The key idea is to focus on a class of concurrent programs that
follow certain standard locking policies which ensure view-serializability. This al-
lows our analyses not to consider interleaving between the low-level instructions
implementing high-level operations on thread-shared data structures.

Technically, we employ existing sequential shape analysis algorithms to per-
form interprocedural and modular analyses that can establish su�cient condi-
tions for view-serializability for concurrent libraries.

Keywords: Modularity, serializability, shape analysis, program analysis

Joint work of: Rinetzky, Noam; Bouajjani, Ahmed; Ramalingam, Ganesan;
Sagiv, Mooly; Yahav, Eran

Modular Veri�cation with Shared Abstractions

Noam Rinetzky (Tel Aviv University, IL)

Modular veri�cation of shared data structures is a challenging problem:
Side-e�ects in one module that are observable in another module make it hard

to analyze each module separately. We present a novel approach for modular
veri�cation of shared data structures. Our main idea is to verify that the inter-
module sharing is restricted to a user-provided speci�cation which also enables
the analysis to handle side-e�ects. For our approach, we constructed a novel
modular static analysis and implemented a proof-of-concept analyzer.

Using the analyzer, we veri�ed some shared data structures which cannot be
veri�ed modularly by current tools.

Keywords: Modular, Veri�cation, Sharing, ADT, model �elds

Joint work of: Juhasz, Uri; Rinetzky, Noam; Poetzsch-He�ter, Arnd; Sagiv,
Mooly; Yahav, Eran

Thread Quanti�cation for Concurrent Shape Analysis

Mooly Sagiv (Tel Aviv University, IL)

We present new algorithms for automatically verifying properties of programs
with an unbounded number of threads.

16 Amal Ahmed, Nick Benton, Martin Hofmann and Greg Morrisett

Our algorithms are based on a new abstract domain whose elements represent
thread-quanti�ed invariants: i.e., invariants satis�ed by all threads. We exploit
existing abstractions to represent the invariants. Thus, our technique lifts ex-
isting abstractions by wrapping universal quanti�cation around elements of the
base abstract domain.

Such abstractions are e�ective because they are thread-modular: e.g., they
can capture correlations between the local variables of the same thread as well
as correlations between the local variables of a thread and global variables, but
forget correlations between the states of distinct threads. (The exact nature of
the abstraction, of course, depends on the base abstraction lifted in this style.)

We present techniques for computing sound transformers for the new ab-
straction by using transformers of the base abstract domain. We illustrate our
technique in this paper by instantiating it to the Boolean Heap abstraction,
producing a Quanti�ed Boolean Heap abstraction. We have implemented an in-
stantiation of our technique with Canonical Abstraction as the base abstraction
and used it to successfully verify linearizability of data-structures in the presence
of an unbounded number of threads.

Joint work of: Berdine, Josh; Lev-Ami, Tal; Manevich, Roman; Ramalingam,
Ganesan; Sagiv, Mooly

An Overview on Shape Analysis

Mooly Sagiv (Tel Aviv University, IL)

Shape analysis concerns the problem of automatically inferring shape invari-
ants for programs that perform destructive updating on dynamically allocated
storage.

This was an overview on shape analysis.

Building a Verifying Compiler for C

Wolfram Schulte (Microsoft Corp. - Redmond, USA)

The Microsoft Verifying C Compiler (VCC) is a static analysis tool that uses
automatic �rst order theorem proving to show formally that a given sequential C
program, compiled for the Intel x86-32 or x86-64 processors, does what is stated
in its speci�cation, expressed as function pre- and post conditions.

VCC uses three formally related semantics. The base model represents values
as bit vectors and accesses memory as individual bytes, the second represents
values as mathematical integers and accesses memory in word sizes, the third
uses the C type system to rule out many pointer aliases.

For modular reasoning VCC introduces a `region-based' memory manage-
ment using pure functions and abstract frameing to guarantee that functions
only write/read/allocate/free certain locations.

Types, Logics and Semantics for State 17

We show how VCC is used to specify, implement and verify the functional
correctness of a queue and we sketch the design, implementation and proof for
a small hypervisor.

Keywords: Automatic deductive veri�cation; extended static checking; C; de-
sign by contract; region-based memory management; abstract frameing; hyper-
visor

Joint work of: Schulte, Wolfram; Moskal, Michal; Venter, Herman

Step-indexed Semantics of Imperative Objects

Jan Schwinghammer (Saarland University, D)

Step-indexed semantic models of types were proposed as an alternative to purely
syntactic proofs of type safety using subject reduction. In joint work with Catalin
Hritcu, and building on work by Ahmed, Appel and others, we have constructed
a step-indexed model for the imperative object calculus of Abadi and Cardelli.
Providing a semantic account of this calculus using more `traditional', domain-
theoretic approaches has proved challenging due to the combination of dynami-
cally allocated objects, higher-order store, and an expressive type system. Here
I'll show that the step-indexed model can interpret a rich type discipline with
object types, subtyping, recursive and bounded quanti�ed types in the presence
of state.

Joint work of: Hritcu, Catalin; Schwinghammer, Jan

Modular Development of System Software: An Overview

Zhong Shao (Yale University, USA)

Certi�ed software consists of a machine executable program plus a rigorous proof
(checkable by computer) that the software is free of bugs with respect to a
particular speci�cation. Both the proof and the speci�cation are written using
a general-purpose mathematical logic, the same logic which all of us use (in
reasoning) in our daily life. The logic is also a programming language: everything
written in logic, including proofs and speci�cations, is developed using software
known as a proof assistant; they can be mechanically checked for correctness
by a small program known as a proof checker. As long as the logic we use is
consistent, and the speci�cation describes what the user wants, we can be sure
that the underlying software is free of bugs with respect to the speci�cation.

The conventional wisdom is that certi�ed software will never be practical
because any real software must also rely on the underlying operating system
which is too low-level and complex to be veri�able.

In recent years, however, there have been many advances in the theory and
engineering of mechanized proof systems applied to veri�cation of low-level code,

18 Amal Ahmed, Nick Benton, Martin Hofmann and Greg Morrisett

including proof-carrying code, certi�ed assembly programming, logic-based type
system, and certi�ed or certifying compilation. In this talk, I will give an overview
of this exciting new area, focusing on key insights and high-level ideas that make
the work on certi�ed software di�er from traditional style program veri�cation.
I will also describe several recent work�done by my group at Yale�on building
certi�ed garbage collectors, OS bootloader, thread implementation, and stack-
based control libraries.

What if Hoare Logic were not hypothetical?

Ian Stark (University of Edinburgh, GB)

Preconditions in classic Hoare Logic are `hypothetical': there is no requirement
that a precondition should hold before executing code, but if it does then on
completion the postcondition is true. However, several applications of Hoare
Logic use a stricter interpretation where a precondition must hold before code is
executed. This is the `contract' approach of Meyer, and also appears in the JML
`requires' clause. The distinction shows up in variations of the Hoare rule for
procedure call, and its corresponding weakest precondition. Strict preconditions
are also appropriate when encoding rich type systems into program logics, where
function application demands that arguments are of a given type.

However, the conventional semantics of Hoare triples as statements about
state relations does not support this strict interpretation. We propose a re�ned
semantics for Hoare logic, based on existing notions of resource algebras, that
captures strict preconditions. A key novelty is that the validity of triples becomes
relative to procedure speci�cations, even � recursively � for those procedures
themselves. In joint work with Alberto Momigliano and Randy Pollack, we are
adapting Nipkow's shallow encoding of Hoare logic in Isabelle to account for
strict preconditions.

A Logic for Reasoning about Faulty Programs

David Walker (Princeton University, USA)

In this talk, we discuss the many contexts in which it is necessary to consider
the rami�cations and results of running software on unreliable hardware. We
propose a new program logic that can be used to verify such software despite
the possible presence of faults.

Keywords: Hoare Logic, Transient Faults, Veri�cation, Fault Tolerance

Types, Logics and Semantics for State 19

Scalable Shape Analysis For Systems Code

Hongseok Yang (Queen Mary College - London, GB)

Pointer safety faults in device drivers are the number one cause of crashes in
operating systems code. In principle, shape analysis tools can be used to prove
the absence of this type of error. In practice, however, shape analysis is not
used due to the unacceptable mixture of scalability and precision provided by
existing tools. In this talk, I will describe a new join operation for the separation
domain which aggressively abstracts information for scalability yet does not lead
to false error reports. The operator is a critical piece of a new shape analysis
tool that provides an acceptable mixture of scalability and precision for industrial
application.

Experiments with our tool on whole Windows and Linux device drivers
(�rewire, pci-driver, cdrom, md, etc.) represent the �rst working application
of shape analysis to whole industrial programs�and the beginning of the end
for the largest problem plaguing the correctness of systems code.

Keywords: Shape Analysis, Program Veri�cation, Abstract Interpretation, Sep-
aration Logic

Joint work of: Yang, Hongseok; Lee, Oukseh; Berdine, Josh; Calcagno, Cris-
tiano; Cook, Byron; Distefano, Dino; O'Hearn, Peter

Multiparty Asynchronous Session Types

Nobuko Yoshida (Imperial College London, GB)

A session takes place between two parties; after establishing a connection, each
party interleaves local computations and states with communications (sending
or receiving) with the other party. Session types characterise such behaviour in
terms of the types of values communicated and the shape of protocols. They
have been developed for the pi-calculus, Ambients, multi-threaded functional
languages, Web Description languages, F], CORBA interfaces and concurrent
and distributed Java.

In this talk, I introduce an extension of the session types to multiparty,
asynchronous interactions, which often arise in practical communication-centred
applications with mutable states. The theory introduces a new notion of types
in which interactions involving multiple peers are directly abstracted as a global
scenario. A global type plays the role of "a shared agreement" among com-
munication peers, and is used as a basis of e�cient type checking through its
projection onto individual peers. The fundamental properties of the session type
discipline such as communication safety, progress and session �delity are estab-
lished for general n-party asynchronous interactions.

Keywords: Session Types, Multiparty Interactions, Conversation, State, Con-
currency, Mobile Processes and Communication

20 Amal Ahmed, Nick Benton, Martin Hofmann and Greg Morrisett

Joint work of: Carbone, Marco; Honda, Kohei; Yoshida, Nobuko

Full Paper:
http://wwwhomes.doc.ic.ac.uk/∼yoshida/multiparty

http://wwwhomes.doc.ic.ac.uk/~yoshida/multiparty

	08061 Abstracts Collection Types, Logics and Semantics for State --- Dagstuhl Seminar ---
	 Amal Ahmed, Nick Benton, Martin Hofmann and Greg Morrisett

