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Abstract. There is an obvious tension between symbolic and subsym-
bolic theories, because both show complementary strengths and weak-
nesses in corresponding applications and underlying methodologies. The
resulting gap in the foundations and the applicability of these approaches
is theoretically unsatisfactory and practically undesirable. We sketch
a theory that bridges this gap between symbolic and subsymbolic ap-
proaches by the introduction of a Topos-based semi-symbolic level used
for coding logical first-order expressions in a homogeneous framework.
This semi-symbolic level can be used for neural learning of logical first-
order theories. Besides a presentation of the general idea of the frame-
work, we sketch some challenges and important open problems for future
research with respect to the presented approach and the field of neuro-
symbolic integration, in general.
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1 Introduction

It is generally accepted that there is a tension between symbolic and subsym-
bolic approaches for modeling cognitive abilities. Whereas both approaches have
complementary strengths and weaknesses in application domains, these differ-
ences can also be recognized in the underlying methodological foundations. For
example, whereas symbolic theories are usually based on logical or algebraic
frameworks, sub-symbolic models are often mathematically based on analytic
methods. With respect to possible application domains, it turns out that areas in
which symbolic theories are strongly used, like reasoning, problem solving, plan-
ning etc., usually sub-symbolic modelings do have their problems. On the other
hand, learning, motor control, vision etc. are strong domains for sub-symbolic
approaches, for which symbolic theories show some deficits. Table 1 summarizes
some important differences between these two approaches. Obviously, the ta-
ble only mentions some important differences between the underlying theories.
Furthermore, not all distinction are undisputable. For example, whether all sub-
symbolic approaches can count as biologically inspired is probably not generally
accepted and whether it is possible to make a precise distinction between applica-
tion domains of symbolic and subsymbolic theories is also unclear. Nevertheless,
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Table 1. Important differences between symbolic and subsymbolic approaches

Symbolic Approaches Subsymbolic Approaches

Methods (Mostly) logical and/or algebraic (Mostly) analytic

Strengths Productivity, Recursion Principle, Robustness, Learning Ability,
Compositionality Parsimony, Adaptivity

Weaknesses Consistency Constraints, Opaqueness,
Lower Cognitive Abilities Higher Cognitive Abilities

Applications Reasoning, Problem Solving, Learning, Motor Control,
Planning etc. Vision etc.

Relation to CogSci Not Biologically Inspired Biologically Inspired

Other Features Crisp Fuzzy, Continuous

the table shows a tendency of how to classify the two types of modeling in an
overall picture.

In a series of papers (cf. [1], [2], [3]), the authors propose a theory for neuro-
symbolic integration. This theory is crucially based on the idea of translating
logical input into a variable-free representation using Topos theory. This semi-
symbolic level can be used for generating a homogeneous input for a neural
network.1

2 The General Idea of Using Topos Theory for
Neuro-Symbolic Integration

In this section, we sketch the overall idea of the approach. Figure 1 summarizes
the architecture of the system. The following list describes informally the main
modules of the systems:

– As input a first–order logical theory T of a language L is given.
– T is translated into a variable-free representation in a topos, i.e. a category

in the sense of category theory with “nice” properties (cf. [4]). The result
is a representation in terms of commuting diagrams, i.e. objects and arrows
instead of the original symbolic interpretation. The logical theory itself is
implicitly coded by possibilities of constructing new diagrams in the topos
(limit constructions, sub-object classifier, exponents etc.).

– An algorithm is generating equations of the normal form f ◦ g = h and
inequations of the form f 6= g. These equations and inequations correspond
to equations and inequations of arrows in the topos. Due to the fact that a
topos allows universal constructions, these equations and inequations can be
automatically generated.

– Objects and arrows are considered to be atomic in category theory. There-
fore, there are no crucial restrictions concerning the choice of the repre-
sentations. This means it is possible to choose vectors of the vector space

1 The notion “semi-symbolic level” is used for denoting the Topos representation of
logical input due to the fact that neither all symbols have a Topos counterpart
(e.g. quantifiers are not represented as Topos entities) nor does each Topos entity
correspond to a symbol or a symbolic expression.
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Fig. 1. General architecture: The input, given as a set of logical axioms, is trans-
lated to Topos entities (objects and arrows). Topos constraints allow the gener-
ation of equations in normal form – practically realized by a PROLOG program
GENE – constraining the equality or inequality of arrows. These are represented
by real-valued vectors and function as input for neural learning. Backpropaga-
tion is used to learn the representations of these entities, such that the truth
conditions of the axioms are satisfied.

Rn as representations of objects and arrows. The resulting equations and
inequations can be used in order to train a neural network.
• Each arrow is represented by three vectors: (1) the domain of the arrow,

(2) the representation of the arrow itself (i.e. its identifier), and (3) the
codomain of the arrow.

• The composition of two arrows (resulting in a further arrow) is repre-
sented by five vectors, due to the fact that the codomain of the first
arrow equals the domain of the second arrow. The composition of two
arrows is used as input for the network.

• The output of the network is the representation of the resulting arrow
based on the composition of the two input arrows. This result is com-
pared with the right side of the equation, such that backpropagation of
the error can be performed resulting in an adaptation of the weights
of the network. It should be noticed that besides learning the composi-
tion operation, it is also important to learn the representations and the
domains and codomains of arrows themselves.

– The result of the approach is the learning of a model of a logical theory T ,
namely the representation of the symbols and expressions of L, such that
the truth conditions of the axioms of T are satisfied.

It should be emphasized that the sketched approach does not only allow to
learn the representation of the logical input, but also forecasts the truth values of
any possible formula of L (based on the given set of axioms T ). In other words,
the approach approximates a semantic entailment concept.



4 K.–U. Kühnberger, H. Gust, P. Geibel

In example evaluations, the framework was applied to different problems
taken from the domain of theorem proving and showed promising (although
clearly not optimal) results [2]. As a matter of fact, relatively simple theories
can be learned rather efficiently and convincingly. Nevertheless, it is currently
not possible to learn benchmark problems of theorem proving in a way that
neural learning can be considered as an alternative to symbolic theorem provers.
A convincing application of neuro-symbolic integration that is competitive to
symbolic approaches remains an open problem for the future.

3 Challenges for Neuro–Symbolic Integration

3.1 Specific Challenges for the Presented Approach

The sketched ideas provide a first step towards a theory of neuro-symbolic inte-
gration. There is a bunch of open problems we would like to discuss for future
research. We start with some specific open problems related to the approach
presented here:

– Although certain properties of the learned models can be identified [3], an
abstract characterization of the learned models is missing. In particular, it
would be desirable to specify theoretically the class of models that can be
learned with the sketched Topos-based approach.

– A technical question concerns the relation between the complexity of the
logical input theory T and the number of equations that are needed in order
to approximate a model to a certain degree. An example for a measure for
the “degree” to which a model of T is learned could be specified by the
number of times a certain deduction operator is applied.

– A theoretical result that characterizes under which constraints the conver-
gence of the learning procedure is guaranteed is still missing.

3.2 Application Domains

The problems summarized in the list of Subsection 3.1 above concern mainly
theoretical problems of the presented approach. There are also general challenges
that concern every model of neuro-symbolic integration. One is the question of
appropriate application domains.

– More applications are needed, not only from the theorem proving domain,
but also from other domains.

This problem generalizes to every theory of neuro-symbolic integration, due
to the fact that neuro-symbolic integration is currently in a state, where either
the application problems are essentially propositional in nature2, or the applica-

2 A prominent example collecting a variation of attempts to model extensions of propo-
sitional logic in terms of modal, tense, non-monotonic etc. logic is presented in [5].
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bility to predicate logic problems is limited3. As a consequence neuro-symbolic
integration needs to prove that not only theoretically it can be shown that neural
learning of logical theories is possible, but also that there are practical appli-
cations for such an approach. Such potential applications can be used for an
independent justification and a proof of concept of neuro-symbolic integration,
in general.

We think that – besides theorem proving – there are several promising do-
mains that can be considered as a test scenario for neuro-symbolic integration.
One idea of such a test domain was already mentioned in [7], namely ontology
learning. Although there is a variety of logics that were proposed for representing
conceptual knowledge in ontologies ranging from more or less weak description
logics (e.g. OWL-based modelings) to full first-order logic (e.g. CYC)4, the log-
ics underlying most practical applications are rather weak. This means that
one has first, a rather controlled environment and second, the information that
needs to be learned is often (at least in the description logic case) represented
in a two-variable logic fragment of predicate logic. In other words, the prefixes
of quantifiers in possible formulas that function as axioms of theories and need
to be considered and learned are limited to length 1. At least for the present
Topos-based approach this reduces the complexity of the learning process signif-
icantly, because of an exponential growth of the number of equations that need
to be learned for approximating a model, if quantifier prefixes increase in the
input formulas.

A second scenario for a practical application of neuro-symbolic integration is
the planning domain. In real-world applications, it is a matter of fact that agents
need to decide in real-time which actions they should perform next. Often, the
reasoning device has certain problems in performing such decisions appropri-
ately. A trained neural network in the sense described in this extended abstract
should, in principle, be able to perform such decisions under all external time
constraints due to the fact that there is not much processing necessary – at least
in comparison to symbolic reasoning devices.

If it were possible to show that a particular approach for neural-symbolic
integration can prove to be successfully and robustly applied to ontology learning
or in the planning domain (or any other interesting domain that is not mentioned
here), such that the usage of a neuro-symbolic integration device would have
advantages in comparison to other more traditional techniques, then not only a
proof of concept, but a realistic application scenario were available.

3.3 Learning

Learning a model of a logical theory as described here or learning a deduction
operator of a logic program as described in [8] is in a certain sense a non-standard
3 According to our knowledge there is only the approach presented in [6] that tries

to learn full first-order theories with neural means. The presented approach as well
as the theory described in [6] is currently not able to compete against symbolic
reasoning algorithms

4 Cf. http://www.cyc.com/.
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usage of learning mechanisms. Usually learning is concerned with finding gen-
eralizations (in form of hypotheses or patterns) of given input data that allow
to predict how unseen examples can be classified, interpreted etc. A challenge
for neuro-symbolic integration concerns the development of finding algorithmic
solutions on the neural basis to cover a whole range of learning strategies, in
particular, to allow also the learning of generalizing hypotheses in a logical set-
ting. The prototypical example of a symbolic learning mechanism in this field is
inductive logic programming (ILP).

Despite some exceptions (an example is [9]) not much attention has been
paid so far to inductive reasoning mechanisms in the neuro-symbolic integration
community. Nevertheless it would be a natural idea to extend neural learning
devices originally designed for learning logical deductions to inductive reasoning
as well. A system that convincingly performs deductions and inductions in a
uniform framework can be considered as an integration architecture for several
forms of reasoning. In order to push artificial intelligence closer into the direc-
tion of a generalizing theory for modeling certain cognitive abilities, such an
expansion seems to be inevitable.
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1. Gust, H., Kühnberger, K.U., Geibel, P.: Learning and memorizing models of logical
theories in a hybrid learning device. In: Proceedings of ICONIP 2007. (2008)
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