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Abstract. The word problem for inverse monoids generated by d setibject

to relations of the forme = f, wheree and f are both idempotents in the free
inverse monoid generated Wy, is investigated. It is shown that for every fixed
monoid of this form the word problem can be solved in polynomial time which
solves an open problem of Margolis and Meakin. For the uniform word problem,
where the presentation is part of the input, EXPTIME-completeness is shown.
For the Cayley-graphs of these monoids, it is shown that the first-order theory
with regular path predicates is decidable. Regular path predicates allow to state
that there is a path from a nodeto a nodey that is labeled with a word from
some regular language. As a corollary, the decidability of the generalized word
problem is deduced. Finally, some results on free partially commutative inverse
monoids are presented.
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1 Introduction

The decidability and complexity of algebraic questions in various kinds of structures is
a classical topic at the borderline of computer science and mathematics. The most basic
algorithmic question concerning algebraic structures is the word problem, which asks
whether two given expressions denote the same element of the underlying structure.
Markov and Post proved independently that the word problem for finitely presented
monoids is undecidable in general. This result can be seen as one of the first undecid-
ability results that touched real mathematics. Later, Novikov and Boone extended the
result of Markov and Post to finitely presented groups, $g&f references.

In this paper, weare interested in a class of monoids that lies somewhere between
groups and general monoids: inverse monoRjs I|h the same way as groups can be
represented by sets of permutatioingerse monoids can be represented by sets of par-
tial injections R]. Algorithmic questions for inverse monoids received increasing atten-
tion in the pastand inverse monoid theory found several applications in combinatorial
group theory, see e.g. the surve}.[In [4], Margolis and Meakin presented a large
class of finitely presented\ierse monoids with decidable word problems. An inverse
monoid from that class is of the forfIM(I")/ P, whereFIM(I") is the free inverse
monoid generated by the sEtand P is a presentation consisting of a finite number of

* This extended abstractl®sed on three papers, written with Volker Diekert, Nicole Ondrusch,
and Alexander Miller. The work is supported by the DFG research project GELO.

Dagstuhl Seminar Proceedings 07441
Algorithmic-Logical Theory of Infinite Structures
http://drops.dagstuhl .de/opus/vol ltexte/2008/1410



2 M. Lohrey

identitiesbetween idempotents &fIM(1"); we call such a presentation idempotent. In
fact, in [4] it is shown that even the uniform word problem for idempotent presentations
is decidable. In this problem, also the presentation is part of the input.

The decidability proof of Margolis and Meakin uses Rabin’s seminal tree theorem
[5], concerning the decidability of the monadic second-order thebithe complete
binary tree. From the view point of complexity, the use of Rabin’s tree theorem is
somewhat unsatisfactory, because it leads to a nonelementary algorithm for the word
problem, i.e., the running time is not bounded by an exponent tower of fixed height.
Therefore, in §,4] the question for a more efficient approach was asked. In this ex-
tendedabstract we present solutions to this question based on techniques from the the-
ory of automata and verification. In Secti6rwe show by using tree automata that for
ewery fixed idempotent presentation the word probleny[(1")/ P can be solved in
polynomial time. For the uniform word problem for idempotent presentations we prove
completeness for EXPTIME (deterministic exponential time). Similarly to the method
of Margolis and Meakin, we use results from logic for the upper bound. But instead of
translating the uniform word problem into monadic second-order logic over the com-
plete binary tree, we exploit a translation into the mqdaklculus, which is a popular
logic for the verification of reactive systems. Then, we can use a result ff@hdtat-
ing that the model-checking problem of the mogatalculus over context-free graphs
[9]is EXPTIME-complete.

In Section7 we study Cayley-graphs of inverse monoids of the f&hvI(I")/P.
The Cayley-graph of a finitely generated mongdid w.r.t. a finite generating seft is
a I'-labeled directed graph with node st and ana-labeled edge from a nodeto a
nodey if y = xa in M. Cayley-graphs of groups are a fundamental tool in combinato-
rial group theory 1] and serve as a link to other fields like topology, graph theamg,
automata theory, see, e.dLO}9]. Here we consider Cayley-graphs from a logical point
of view, see [11,12] for previous results in this direction. More precisely, we consider
an expansion of the Cayley-graphi that contains for every regular languagyeover
the generators of a binary predicateeach. Two nodesu andv of G are related by
reachy if there exists a path from to v in the Cayley-graph, which is labeled with a
word from the languagé. Our main result of Sectiof states that this structure has a
decidabldirst-order theory, whenever the underlying monoid is of the f&ilivl(1") / P
for an idempotent presentatidh(Theoremb). An immediate corollary of this result is
thatmembership in rational subsetsioiM (I") /P is decidable.

Our decidability result for Cayley-graphs should be also compared with two unde-
cidability results from the literature: (i) the monadic second-order theory of the Cayley-
graph of FIM({a}) [13] as well as (ii) the existential theory &M ({a,b}) (i.e. the
set of all true statements ovBIM ({a, b}) of the form3z; - - - Iz, : ¢, Wherep is a
boolean combination of word equations with constaid) fare undecidable.

In Section8 we briefly consider free partially commutative inverse monaidd
their quotients by idempotent presentation. A free partially commutative inverse monoid
is the quotient of a free inverse monoids by a partial commutation relation. Hence, these
monoids can be seen as analoges of free partially commutative monoids (also known
as trace monoids, see e.@5]) and free partially commutative groups (also known as
graphgroups or right-angled Artin groups, see eXf]). It turns out that for some re-
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strictedcases our algorithmic techniques for free inverse monoids modulo idempotent
presentations can be generalzed to the partially commutative case.
This extended abstract is based on the padetd 8,19].

2 Preliminaries

For a finite alphabef”, we denote with'~* = {a~! | a € I'} a disjoint copy

of I'. Fora=! € I'"! we define(a=!)~! = q; thus, ~' becomes an involution on
the alphabef” U I'~!. We extend this involution to words frofi” U I"~1)* by set-
ting (biby---b,)~' = b;'---by by ", whereb; € I'U I'"'. The set of all regu-
lar languages over an alphalétis denoted byREG(I"). We assume that the reader
has some basic background in complexity theory.aitarnating Turing-maching20]

T =(Q,%,6,q0,qy) is anondeterministic Turing-machine (whepes the state set,

is the tape alphabei,is the transition relatiory is the initial state, and is the unique
accepting state), where the set of nonfinal sttes{q,} is partitioned into two sets:
(5 (existential states) an@y (universal states). We assume tiiatannot make transi-
tions out of the final statg;. A configurationC' with current state is accepting, if (i)

q = gy, or (i) ¢ € Q5 and there exists a successor configuratio@’ tfiat is accepting,

or (iii) ¢ € Qv and every successor configuration(®fis accepting. An input wora

is accepted by if the corresponding initial configuration is accepting. It is known that
EXPTIME (deterministic exponential time) equals APSPACE (the class of all problems
that can be accepted by an alternating Turing-machine in polynomial sgé&je) [

3 Relationalstructures and logic

See any text book on logic for more details on the subject of this section. A signature
is a countable sef of relational symbols, where each relational symBok S has
an associated arityi. A (relational) structure over the signatufeis a tuple A =
(A, (R*)gres), whereA is a set (the universe ofl) and R is a relation of arityn
over the setd, which interprets the relational symb&. We will assume that every
signature contains the equality symbeland that=" is the identity relation on the
setA. As usual, a constant € A can be encoded by the unary relatipt}. Usually,
we denote the relatioR also with R. For B C A we define the restrictiol | B =
(B, (RA N B"®)ges); itis again a structure over the signatdte

Next, let us introducenonadic second-order logic (MSO-logic). L€t (resp.Vs)
be a countably infinite set dirst-order variableqresp.second-order variables) which
range over elements (resp. subsets) of the univérs@st-order variables (resp. second-
order variables) are denotedy, z, 2/, etc. (respX, Y, Z, X', etc.). MSO-formulasver
the signatureS are constructed from the atomic formulB$zy, ..., z,,) andz € X
(whereR € S, z1,...,xn,,x € Vi, and X € V,) using the boolean connectives
-, A, andV, and quantifications over variables frovh andV,. The notion of a free
occurrence of a variable is defined as usual. A formula without free occurrences of vari-
ables is called aMSO-sentence. Ip(z1,...,x,, X1,...,X,,) is an MSO-formula
such that at most the first-order variables among . . , z,, and the second-order vari-
ables amongXy, ..., X,, occur freely inp, anday,...,a, € A, Ay,..., A, C A,
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thenA = p(ay,...,an, 41,..., Ayn) means thap evaluates to true itd if the free
variablez; (resp.X;) evaluates tai; (resp.A;). The MSO-theoryof A, denoted by
MSOTh(.A), is the set of all MSO-sentencessuch that4d = ¢. A first-order for-
mula over the signatur& is an MSO-formula that does not contain any occurrences
of second-order variables. In particular, first-order formulas do not contain atomic sub-
formulas of the formz € X. Thefirst-order theoryFOTh(A) of A is the set of all
first-order sentences such that4d | ¢.

Several times, we will use implicitly the well-known fact that reachability in graphs
can be expressed in MSO. More precisely, there exists an MSO-fonruda(z, )
(over the signature containing a binary relation symBpkuch that for every directed
graphG = (V, E) and all nodes;,t € V we haveG [ reach(s,t) iff (s,t) € E*.
Another important fact is that finiteness of a subset of a finitely-branching tree can
be expressed in MSO: There is an MSO-formfitg X') (over the signature contain-
ing a binary relation symba¥) such that for every finitely-branching (and downward-
directed) treel’ = (V, E) and all subset& C V we haveT = fin(U) iff U is finite
(by Konig's lemmay is infinite iff the upward-closure dff contains an infinite path),
see also [5, Lemma 1.8].

In Section6 we will make use of thenodal:-calculus, which is a popular logic for
the verification of reactive systems. Formulas of this logic are interpreted over edge-
labeled directed graphs. Léf be a finite set of edge labels. The syntax of the modal
u-calculus is given by the following grammar (we only introduce those operators that
are needed later; other operators likeor [a| o are defined as usual):::= true | X |
eV | pAp | (a)p | unX.p.HereX € V5 is a second-order variable ranging over
sets of nodes and € X. Variables fromV, are bounded by thg-operator. We define
the semantics of the modalcalculus w.r.t. an edge-labeled graph= (V, (E;)qcx)
(E, C V x V is the set of alu-labeled edges) and a valuatien V, — 2V. To each
formula we assign the set (o) C V of nodes where> evaluates to true under the
valuationo. For a valuatiory, a variableX € V,, and a seV C V defines[U/X] as
the valuation witho [U/X](X) = U ando[U/X|(Y) = o(Y) for X # Y. Now we
can defines“ (o) inductively as follows:

—trué“(0) =V, X%(0) = o(X) for every X € Vs,

= (pV¥)9(0) = ¢ (o) Uy (), (¢ A ¥)%(0) = (o) NP (0),
y={ueV|weV:(uv)€E, Nvep)},

— (uX.0)% (o) is the smallest fixpoint of the monotonic functibh— ¢ (a[U/X])

Note that only the values of the valuatierfor free variables is important. In particular,
if p is a sentence (i.e., a formula where all variables are boundgddperators), then
the valuationo is not relevant and we can write“ instead ofo“ (o), whereo is an
arbitrary valuation. For a sentengeand a node € V we write (G, v) = ¢ if v € ¢©.

A context-free grapf9] is the transition graph of a pushdown automaton, i.e., nodes
are the configurations of a given pushdown automaton, and edges are given by the
transitions of the automaton. A more formal definition is not necessary for the purpose
of this paper. We will only need the following result:

Theorem 1 ([7,8]). The following problem is in EXPTIME:
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INPUT: A pushdown automaton defining a context-free grapH(A), a nodev of
G(A), and a formulap of the modaj:-calculus
QUESTION:(G(A),v) = ¢?

4 Word problems and Cayley-graphs

Let M = (M, o,1) be a finitely generated monoid with identityand letX' be a finite
generating set foM, i.e., there exists a surjective monoid homomorphismX-™* —
M. Theword problemfor M w.r.t. X is the computational problem that asks for two
given wordsu, v € X*, whetherh(u) = h(v). It is well-known that if ¥, and X, are
two finite generating sets fok1, then the word problem faM w.r.t. >, is logspace
reducible to the word problem fo¥1 w.r.t. X5. Thus, the computational complexity of
the word problem does not depend on the underlying set of generators.

The Cayley-graphof the monoid M w.r.t. the generating se¥ is the relational
structureC(M, X) = (M, ({(u,v) € M x M | uo h(a) = v})aex,1). Itis a rooted
directed graph, where every edge has a label ffoand{(u, v) | w o h(a) = v} is the
set ofa-labeled edges. SincE generates\, everyu € M is reachable from the root
1. Cayley-graphs of groups play an important role in combinatorial group thépry [

Thefree groupFG(I") generated by the sétis the quotientI" U I"~1)* /5, where
J is the smallest congruence off U I'~1)* that contains all pairgbb—*,¢) for b
rur-t Lety: (rur—YH* — FG(I') denote the canonical morphism mapping a
wordu € (I' U I'"1)* to the group element represented:byit is well known that for
everyu € (I' U I'"1)* there exists a unique wordu) € (I" U I'"1)* (the reduced
normalform ofu) such thaty(u) = ~v(r(u)) andr(u) does not contain a factor of the
form bb=! for b € I U I'. The wordr(u) can be calculated from in linear time.

It holds~y(u) = ~(v) iff r(u) = r(v). The Cayley-graph oF G(I") w.r.t. the standard
generating sef’ U I'~* will be denoted byC(I"); it is a finitely-branching tree and a
context-free graphd].

Similarly to the word problem, i, and Y, are finite generating sets for the same
monoid M, thenFOTh(C(M, X)) is logspace reducible tBOTh(C(M, X5)) and
the same holds for the MSO-theories, s&2|[ It is easy to see that the decidability of
thefirst-order theory of the Cayley-graph implies the decidability of the word problem.
On the other hand, there exists a finitely presented monoid for which the word problem
is decidable, but the first-order theory of the Cayley-graph is undecidap]e\[Vhen
restrictingto groups, the situation is different: The Cayley-graph of a finitely generated
group has a decidable first-order theory iff the group has a decidable word prddlgm [
Moreover, the Cayley-graph of a finitely generated group has a decidable MSO-theory
iff the group is virtually free (i.e., has a free subgroup of finite indéx),9]. We will
only need this result for the Cayley-graghl”) of the free groug*G(I"):

Theorem 2 ([9]). For every finitel’, MSOTh(C(I")) is decidable but nonelementary.

5 Inverse monoids

A monoid M is called aninverse monoidf for eachm € M there is a unique
m~! € M such thatm = mm~'m andm=! = m~'mm~!. For detailed ref-
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erenceon inverse monoids se@]f here we only recall the basic notions. Since the
classof inverse monoids forms a variety it follows from universal algebra fres
inverse monoidexist. The free inverse monoid generated by alsés denoted by
FIM(I'); itis isomorphic to(I" U I"~1)* / p, wherep is the smallest congruence on the
free monoid(I" U I'~1)* which contains for all words, w € (I" U I'"1)* the pairs
(w, ww~™tw) and (ww~tvv~t v~ lww=!) (which are also called the Vagner equa-
tions). Leta : (I'U I'"1)* — FIM(I") denote the canonical morphism mapping a
wordu € (I' U I'"1)* to the element o IM(I") represented by. Obviously, there
exists a morphisng : FIM(I') — FG(I") such thaty = § o «. The free inverse
monoid FIM(I") can be also represented \Wéunn trees: The Munn tre®IT(u) of
uwe (PUT 1) isMT(u) = {y(v) € FG(I') | 3w € (FU Y 1 u = vw}; it
is a finite and connected subset of the Cayley-gi@a@h) of the free grouG(I"). In
other wordsMT(u) is the set of all nodes along the unique patle {#i") that starts in
1 and that is labeled with the word We identifyMT () with the subtre€ (I") [vir(u)
of C(I'). Munn’s theorem 21] states thatv(u) = «(v) for u,v € (I' U I'"1)* iff
r(u) = r(v) (i.e.,v(u) = y(v)) andMT(u) = MT(v). It is well known that for a
wordu € (I' U I'"1)*, the elementy(u) € FIM(I") is an idempotent element, i.e.,
a(uu) = a(w), iff r(u) =¢,ie,y(u) = 1.

For afinite setP C (I'UI'Y)* x (MU' ~1)* defineFIM(I") /P = (T'Ul~1)* /7
to be the inverse monoid with the sEtof generators and the setof relations, where
7 is the smallest congruence ¢i" U I'~1)* generated by U P. Then the canon-
ical morphismup : (I' U I'"1)* — FIM(I')/P factors asup = vp o a with
vp : FIM(I') — FIM(I")/P. For the rest of the paper, the meaning of the morphisms
a,v, up, andvp will be fixed. We say that”> C (' U I'"1)* x (I'U I'"1)* is an
idempotent presentatiof for all (e, f) € P, a(e) anda(f) are both idempotents of
FIM(T"),i.e.,r(e) = r(f) = . Inthis paper, we are concerned with inverse monoids of
the formFIM(I")/ P for a finite idempotent presentatidh To solve the word problem
for such a monoid, Margolis and Meakid][constructed a closure operation for Munn
trees.We shortly review the ideas here. As remarked4} gvery idempotent presen-
tation P canbe replaced by the presentati®h = {(e,ef), (f.ef) | (e, f) € P}, i.e.,
FIM(I")/P = FIM(I')/P'. SinceMT(e) € MT(ef) 2 MT(f) if r(e) = r(f) =&,
we can restrict in the following to idempotent presentatiéhsuch thatMT(e) C
MT(f) forall (e, f) € P.LetV C FG(I"). Define setd/; C FG(I") (i > 1) induc-
tively as follows: (i)V, = V and (ii) forn > 1 let

Vo1 =V U U {uov|ueV,,VweMT(e) :uow € V,,v € MT(f)},
(e.f)ep

whereo refers to the multiplication in the free grolijé=(1"). Finally, define the closure
of V- w.r.t. the presentatiof? asclp (V) = U,>; Vi

Theorem 3 ([4]). Let P bean idempotent presentation andigty € (I'UI'~1)*. Then
pp(u) = pp() iff r(u) = r(v) (i.e.,v(u) = v(v)) andclp(MT(u)) = clp(MT(v)).

The result of Munn folFIM(1") mentioned above is a special case of this result.
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Examplel. Let I' = {a, b}, u = aa~'bb~ !, andP = {(aa!,a%a=2), (bb—1, %6~ 2)}.
The Munn trees for the words in the presentatidbandw are shown below; the bigger
circle represents theof FG(I').

Thenclp(MT(u)) = {a™ | n > 0} U{b™ | n > 0} C FG(I).

In the next section, instead of specifying a wards (I" U I'~1)* (that represents an
idempotent inFIM(1"), i.e., r(w) = &) explicitly, we will only show its Munn tree,
where as above theof FG(I") is drawn as a bigger circle. In fact, one can replace

by any word that labels a path from the circle back to the circle and that visits all nodes;
the resulting word represents the same elemeRibf(I") as the original one.

Margolis and Meakin used Theore&in order to decide the word problem for
FIM(I")/P. More precisely, they have shown that from a finite and idempotent presen-
tation P one can effectively construct an MSO-form@& p (X, Y) over the signature
of the Cayley-grapt€(I") such that for all words: € (I" U I'"!)* and all subsets
ACFG(I):C(I') E CLp(MT(u), A) iff A= clp(MT(u)). The decidability of the
word problem forFIM(I")/P is an immediate consequence of Theor2and Theo-
rem3. But the application of Theore@iresults in a nonelementary algorithm.

6 Complexity of the word problem

Using the efficient translation of MSO-formulas over trees into tree automata, and the
fact that the membership for a fixed tree automaton can be checked in (i) linear time on
a RAM and (ii) logspace on a Turing machir#?], we can prove:

Theorem 4. For every finite idempotent presentatiehC (I"'U I'4)* x (Fu 'Y~
the word problem fof*IM(I")/P can be solved in (i) linear time on a RAM and (ii)
logspace on a Turing machine.

An alternative proof of Theorem, which does not rely on the translation of MSO
into tree automata, was given itg]. Moreover, that proof works for a larger class of
inverse monoids, where Munn trees over free groups are replaced by subgraphs of the
Cayley-graph of a virtually-free group.

In the uniform case, where the presentatidis part of the input, the complexity
increases considerably:

Theorem 5. The following problem is EXPTIME-complete:

INPUT: A finite alphabetl”, wordsu,v € (I' U I'"1)*, and a finite idempotent
presentation” C (I'U '~ H)* x (U '—H*

QUESTION:up(u) = up(v)?
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Proof. For the lower bound we use the fact that EXPTIME equals APSPACE. Thus, let
T =(Q,X,4,q,qs) be afixed alternating Turing machine that accepts an EXPTIME-
complete language. Assume thatvorks in space(n) for a polynomialp on an input

of lengthn. W.l.o.g. we assume that:

— T alternates in each state, i.e., it either moves from a stagsab a state from
Qv U {gy} or from a state of)v to a state fron)s U {¢;}.

— The initial stateyy belongs taQs.

— For each paifg,a) € (Q \ {¢s}) x X, the machin& has precisely two choices
according ta, which we call choice 1 and choice 2.

— If T terminates in the final statg, then the symbol that is currently read by the
head is some distinguished symi§ot X.

DefineI" = Y U (Q x X) U {ay,as2,b1,ba,#}, where all unions are assumed to be
disjoint. A configuration ofl" is encoded as a word frog# X" (Q x X)X*# C I'*.
Now letw € X* be an input of length and letm = p(n). Then a configuration df is
aword from{J/" ' #24(Q x X)Xm—i=14 C '"™+2, Clearly, the symbol at position
1 < i< m+ 2attimet + 1 in a configuration only depends on the symbols at the
positionsi — 1, ¢, andi + 1 at timet. Assume that, ¢1, ¢z, ¢35 € X U (Q x X) U {#}
such that cycs € {e, #15*(Q x X)X*{e, #}. We writec; cycs 2 cfor j € {1,2} if
the following holds: If three consecutive positiohs 1, ¢, andi + 1 of a configuration
contain the symbol sequencecscs, then choicej of T' results in the symbot at
position:. We writec;cacs 3 (dy,dg) for e, co,c3,dy,do € XU (Q x X) U {#}if
one of the following two cases holds: ()cacs € {e, #}X*(Q3 x X)X*{e,#} and
creacs L d; for j € {1,2} or (i) cicacs € {e,#}X"{e,#} andd, = dy = ca.
The notatiornc; cacs ~, (dq,ds) is defined analogously, except that in the first case we
requirecycacs € {e, #}X*(Qv x X)X*{e, #}.

We encode a configuraticfc cs - - - ¢,,, #, Where the current state is fro@s by
the following subtree of (I"), wherei = 1 ori = 2.

el of 4

Cap o Ay T a;

If the current state is from)y, then we take the same subgraph, exceptithegplaces
Q.

The idempotent presentatighC (I"'UI'~1)* x (I"'U'~1)* is constructed in such
a way from the maching&’ that building the closure from a Munn tree that represents
the initial configuration (in the above sense) corresponds to generating the whole com-
putation tree of the Turing machirié starting from the initial configuration. We will
describe each paie, f) € P by the Munn trees of and f.

For allz € {a1,as,b1, by} put the following identity intaP, which propagates the
end-marke## along intervals of lengtin + 2 (here, ther-labeled edge abbreviates a
path consisting ofn. manyz-labeled edges).
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Successoconfigurations of the current configuration are generated by the equations
below, wherei € {1,2}, 0<k<m-1, and616263 i (dhdg) (reSp.010203 l
(d1, ds)) for the left (resp. right) equation:

C1 C1 C1 C1

O—>e O—>e O—>e O—>e
Qg Qg b; b;
19, 1, 1, 1,
a; — a; bz — bz
aj a; by
1. i )
am
2
d

The remaining equations propagate acceptance information back to the initial Munn
tree. Here the separation of the state set into existential and universal states becomes
important. Letf = (gy,$); recall that$ is the symbol under the head @fwhenT
terminates in statg;. For alli,j € {1,2} and allz € {ai,a2,b1,b2} We put the
following equations intaP:

(@] (@] —
No= N o= /bg ij L
SO T by s by s, NS LN

This concludes the description of the presentati®dnNow define the words, v €
(Iu I'~1)* as follows: Assume that the input word for our alternating Turing machine
w is of the formw = wyws - - - w,, With w; € X. Forn + 1 < ¢ < m definew; = O,
where(] is the blank symbol off’. Then the Munn trees af andv are (we assume
r(u) =r) =¢):

O————»o O————»
ay
ay
v(g0, w1 [ y(go, wr
ay a1
Y w9 Y Wa
—————>o ~————>po
Wm W
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We claim thatup(u) = pp(v) iff the machineT accepts the wordr. From the con-
struction ofu, v, andP it follows thatT accepts the word iff MT(v) C clp(MT(u)).
SinceMT(u) € MT(v) thisis equivalenttel p(MT(v)) = clp(MT(u)),i.e.,up(u) =
wp(v) due to Theorem (note that-(u) = r(v) = ¢). This proves the EXPTIME lower
bound.

For the upper bound le? C (I" U I'"Y)* x (I" U I'"1)* be an idempotent pre-
sentation and:,v € (I U I'"1)*. Sincer(u) = r(v) can be checked in linear time,
it suffices by Theoren3 to show that we can verify in EXPTIME wheth&fT(v) C
clp(MT(u)) (notethatclp(MT(v)) = clp(MT(w)) iff MT(u) C clp(MT(v)) and
MT(v) C clp(MT(u))). Let G be the graph that results from the Cayley-gré&gi)
by taking a new edge labé#, adding a new node,, and adding &¢-labeled edge from
nodel (i.e., the origin) ofC(I") to the new nodey. SinceC(I") is a context-free graph,
alsoG is context-free. By Theoretit suffices to construct in polynomial time a modal
p-calculusformulay,, , p such thatMT(v) C clp(MT(uw)) iff (G, 1) E ©uv,p-

Forw = ajas -+~ a,, (a; € I'U I'~1) and two positions, j € {1,...,m},i < 7,
let wli,j] = a;---a;j. If i > j, then setwli, j] = . Moreover, we uséw)¢ as an
abbreviation for{ay)(ag) - - - {(am)p. Assume tha = {(e;, f;) | 1 < i < n}, where
MT(e;) € MT(f;). First, let

|l n | fil el
Pu,p = pX. (\/(u[l,i]1><#)true vV \/<fi[1vj]1>(/\<ei[1ak]>X)) :

i=0 i=1j=0 k=0

Then (G, z) = ¢ p iff € clp(MT(u)). The disjunctionVL“:‘()(u[l, i~ 1) (#)true
expressedIT(u) C clp(MT(u)), whereas/;_, V/iEh (fill, 5] ) (AL (eil1, k) X)
defines all nodes such that via the inverse of some prefix of some fyardoder can
be reached such that the whole path starting amd labeled witle; already belongs to

vl

X. Finally, setp, , p = A\;_o(v[1,4])pu,p- 0

7 Cayley-graphs of inverse monoids

Let M = (M, o, 1) be a monoid with a finite generating sétand leth : ¥* — M be
the canonical morphism. We define the following expansioh, X'),., of the Cayley-
graphC(M, X): C(M, X)reg = (M, (reachr)Lerpc(s), 1) With reach, = {(u,v) €

M x M| 3we L:uoh(w) = v} Thus,C(M, X) = (M, (reachq})acx,1). The
main result of this section is:

Theorem 6. LetP C (I'UI'1)*x (I'ul’~1)* be afinite and idempotent presentation.
Then the first-order theory of the struct@eFIM(I") /P, I U '~ 1), is decidable.

The following undecidability result of CalbrixXtB] contrasts Theorer®. It is easy to
seethat for every Cayley-grapfi(M, I'), if MSOTh(C(M, I)) is decidable, then also
FOTh(C(M, I'),g) is decidable.

Theorem 7. MSOTh(C(FIM({a}), {a,a~'})) is undecidable.
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Theorem7 canbe shown by identifying an infinite grid as a minor of the Cayigaph
C(FIM({a}), {a,a1}).

Before we prove Theore®y let us first state a corollary. Tlgenerlized word prob-
lemfor M asks whether for given words u,, . . ., u,, € X* the monoid elemerit(u)
belongs to the submonoid 0¥ that is generated by the elementS:, ), . .., h(u,).
Theorem6 easily implies:

Corollary 1. LetP C (I'UI'"Y)* x (I'u I'"1)* be a finite and idempotent presenta-
tion. Then the generalized word problem M (") /P is decidable.

To prove Theorend we first need some lemmas.

Lemma 1. There exists a fixed MSO-formuldz, y) (over the signature consisting of
a binary relation symboFE) such that for every finite directed gragh = (V, E) and
all nodess, t € V we haveG = ¢(s, t) iff there is a path inG with initial vertexs and
terminal vertex visiting all vertices from/.

For the proof of Lemmad one defines a partial orderonthe set of strongly connected
components ofz: U < V for two different strongly connected componebtandV if

and only if there is a (directed) path from a nodd€bfo a node ofi’. Then there is a
path inG with initial vertex s and terminal vertex visiting all vertices fromV iff < is

a total order and (resp.t) belongs to the minimal (resp. maximal) strongly connected
component of7. These conditions can be easily formalized in MSO-logic.

Lemma 2. Let X be afinite alphabet and Idt € REG(Y'). Then one can construct an
MSO-sentencé, (over a signature consisting of binary relation symbals(a € )
and two constants andt) such that for every finite structu@ = (V, (E,)acx, S, 1)
we haveG |= vy, iff there exists a path = (v1,a1,v2,a2,...,v,) (v; € V,a; € X)
such thatvy = s, v, = t, (vi,vi41) € E,, forall 1 <i < n,ajas---a,—1 € L, and
V= {1}1,1}2, cen ,Un}.

Let us just give a brief sketch of the proof of LemidaLet A = (Q, X, 0, qo, F') be a
deterministic finite automaton with(A) = L. W.l.o.g.Q = {1,...,m}. Define the
structuref 4 (G) by fa(G) = (V x Q, E, A, I, F}), where

E={((u,1),(v,7)) | Ja € X : (u,v) € E, A 6(i,a) =j},
A={((v,1),...,(v,m)) v eV} I, ={(s,q)}, andF; = {t} x F.

Then one can show thgt is an MSO-transduction in the sense 28]. Thus, there
existsa backwards translatiofﬁ such that for every MSO-sentengever the signature
of f4(G) we have:f4(G) = ¢ iff G = fﬁ(¢) [23]. Now, using Lemmeél and the
relation A it is easy to write down an MSO-sentengever the signature of 4(G)
expressing that there exists a path frgimgg) to a node inF; such that the set of first
components of nodes along that path is preci$élyrhen the sentencﬁﬁ(@ is the
desired sentence.

Lemmaz2 easily implies the next lemma.
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Lemma3. Let X be a finite alphabet and let € REG(X). Then one can con-
struct an MSO-formul&,(X) (over a signature consisting of binary relation sym-
bols E, (a € X) and two constants andt) such that for every finite structu®@ =
(V,(Ey)aexs, s,t) and every finite se/ C V we haveG |= 0. (U) iff there exists
a pathp = (v1,a1,v2,a9,...,v,) (v; € V,a; € X) such thatv; = s, v, = {,
(vi,vi41) € B, forall 1 <i < n,ajas---an—1 € L,andU C {vy,va,...,0,}.

We are now able to finish the proof of TheorémietP C (I'u ' ~Y)* x (U —1)*
bea finite and idempotent presentation. We want to show that the first-order theory of
the structured = C(FIM(I")/P,I" U I'"'),., is decidable. For this, we use Theorem
3 and translate each first-order sentepcever A into an MSO-sentencfp| over the
Cayley graplt(I") of the free grouf*G(I") such thatd = ¢ iff C(I") = |¢|. Together
with Theorem? this will complete the proof of Theoref

To every variabler (ranging oveIM(I")/P) in ¢ we associate two variables in
[l (i) an MSO-variableX’ representingl »(MT(u)), whereu is any word represent-
ing z, and (ii) an FO-variable’ representing/(u) € FG(I). The relationship between
a2’ andX” is expressed by the MSO-formula (over the signatu@ é7)) MT (2, X') =
X : 0, X, X'), where® (2, X, X') = (1,2 € X A X is connected and finite\
CLp(X, X’)). Recall that finiteness and connectedness of a subset of the finitely-
branching treeC(I") can be expressed in MSO, see the remarks in Se@&idfiere
CLp(X, X’) is the MSO-formula constructed by Margolis and Meakin 4}, [see
the remark at the end of Sectidh Next, note that by Lemma for every language
L € REG(I' U I'"1) there exists an MSO-formulgy, (2, X, 4, Y) over the signa-
ture of C(I") such that for all finite set§, V' C FG(I") and all nodes.’, v’ € FG(I')
we have:C(I') | &p(u/,U,v', V) iff U C V and there is a path from’ to v’ in
C(I')|v that visits all vertices of"\U and which is labeled with a word from the
languagel. Now lety be an FO-formula over the signature.f We defing|y| induc-
tively: |reachr(z,y)| = 3X,Y : (', X, X') A O, Y, Y") N &(2, X,y Y),
|=9 = =[Pl [ Ave] = [ Alve], and|Va : ¢ = va' VX" MT (2", X7) = [¢].
It is straight-forward to verify thatl |= ¢ iff C(I") |= |¢]|. This concludes the proof of
Theoremg. O

8 Partially commutative inverse monoids

In this section we briefly consider free partially commutative inverse monoids and their
quotients by idempotent presentations. These monoids generalize the inverse monoids
that we have considered so far.

Let us fix again a finite alphabét, and let/'~! = {a~! | a € I'} be a disjoint
copy of I'. By anindependence relatiowe mean here an irreflexive and symmetric
binary relationf on I" U I'~! such thata, b) € I implies(a*,b) € I foralla,b € I".
Clearly, I is uniquely defined by its restrictiohN (I" x I'). Let us define thdree
partially commutative inverse monaignerated byI", I') as the quotient

FIM(I, I) = FIM(I")/{ab = ba | (a,b) € I}.

Da Costa has studieBIM(I", I) in his thesis from a more general viewpoint of
graph productsZ4]. As a consequence he showed Rt (7, I) has a decidable word
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problem.In his construction he used the general approach vid@t3ehberger graphs
and Stephen'’s iterative procedure [25]. The decidability of the word problem follows
because&a Costa can show that Stephen’s procedure terminates. However, no complex-
ity bounds are given in4].

In [17], a concrete realization of free partially commutative inversmoid, which
is based on closed subsets of free partially commutative groups (which are also known
as graph groupslp]), is presented. Using this realization, the following resals
proved:

Theorem 8. For a fixed free partially commutative inverse monditM (7, I), the
word problem can be solved in tindi&n log(n)) on a RAM.

Theorem 9. For every fixed free partially commutative inverse morfdi[( X, I), the
membership problem for rational subsetskiM (X, I') belongs to NP. Moreover, al-
ready membership in a finitly generated submonoiBIfi({a, b}) is NP-hard.

An idempotent presentatioover (I, I) is a finite set of identitie® = {(e;, fi) | 1 <
i < n}, where every; andf; is an idempotent element FIM(I, I).

In case the complement of the independence reldtigriransitive, one obtains the
same results for the word problem®IM (1", I) modulo an idempotent presentation as
in the non-commutative case. The proof of the EXPTIME upper bound in the following
theorem is again based on a closure operation. But this time, the closure is not computed
in the free grougFG(I") but in the graph group GG [). In case(I" x I') \ I is
transitive, this group is a direct product of free groups, which allows to express the
closure w.r.t. an idempotent presentatiBrin the modalu-calculus withsimultaneous
fixpoint definitionver the Cayley-graph of a free group (of suitable rank).

Theorem 10. The following problem is EXPTIME-complete:
INPUT: An independence relatidnover I"'UI"~! such that(I" x I")\ I is transitive,
an idempotent presentatidd over (I, I) and wordsu, v € (I" U I'"1)*.
QUESTIONu = v in FIM(I',I)/P?

Theorem 11. If [ is an independence relation ovéru I'~! with (I" x I") \ I tran-
sitive and P is an idempotent presentation ovéf, I), then the word problem for
FIM(I',I)/P can be solved in (i) linear time on a RAM and (ii) logspace on a Tur-
ing machine.

In the non-transitive case, we can encode the acceptance problem for a Turing-machine
T in the word problem foFIM(I, I)/P. LetI" = {a, b, c} and assume that,,b) € T

but (a,c), (b,c) ¢ I. Thena andb generate in the Cayley graph of the graph group
GG({a,b,c}, I) a two dimensional grid. Using the letter which is dependent from
botha andb, we can encode a labelling of the grid-points with tape symbols and states
of T'. By computing the closure w.r.t. a suitable idempotent present&tjove generate

a labelling consistent with the transition function’Bfand the input ofl". Hence, we

have:

Theorem 12. Let I be an independence relation ovErU I'~* with (I" x ') \ I not
transitive. Then there exists an idempotent presentafoover (I, I) such that the
word problem forFIM (I, I)/ P is undecidable.
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9 Openproblems

We plan to investigate for which monoids! the structur€ (M, I'),., has a decidable
first-order theory. In particular, the group case is interesting. It is easy to see that the
decidability of the MSO-theory of (M, I") implies the decidability of the first-order
theory ofC(M, I'),. Thus, the class of grougsfor whichC(G, I'),, is decidable lies
somewhere between the virtually-free groups (i.e., those groups for which the MSO-
theory of the Cayley-graph is decidable) and the groups with a decidable word problem
(i.e., those groups for which the first-order theory of the Cayley-graph is decidable).
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