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Abstract. The word problem for inverse monoids generated by a setΓ subject
to relations of the forme = f , wheree andf are both idempotents in the free
inverse monoid generated byΓ , is investigated. It is shown that for every fixed
monoid of this form the word problem can be solved in polynomial time which
solves an open problem of Margolis and Meakin. For the uniform word problem,
where the presentation is part of the input, EXPTIME-completeness is shown.
For the Cayley-graphs of these monoids, it is shown that the first-order theory
with regular path predicates is decidable. Regular path predicates allow to state
that there is a path from a nodex to a nodey that is labeled with a word from
some regular language. As a corollary, the decidability of the generalized word
problem is deduced. Finally, some results on free partially commutative inverse
monoids are presented.
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1 Introduction

The decidability and complexity of algebraic questions in various kinds of structures is
a classical topic at the borderline of computer science and mathematics. The most basic
algorithmic question concerning algebraic structures is the word problem, which asks
whether two given expressions denote the same element of the underlying structure.
Markov and Post proved independently that the word problem for finitely presented
monoids is undecidable in general. This result can be seen as one of the first undecid-
ability results that touched real mathematics. Later, Novikov and Boone extended the
result of Markov and Post to finitely presented groups, see [1] for references.

In this paper, weare interested in a class of monoids that lies somewhere between
groups and general monoids: inverse monoids [2]. In the same way as groups can be
represented by sets of permutations,inverse monoids can be represented by sets of par-
tial injections [2]. Algorithmic questions for inverse monoids received increasing atten-
tion in the past,and inverse monoid theory found several applications in combinatorial
group theory, see e.g. the survey [3]. In [4], Margolis and Meakin presented a large
class of finitely presented inverse monoids with decidable word problems. An inverse
monoid from that class is of the formFIM(Γ )/P , whereFIM(Γ ) is the free inverse
monoid generated by the setΓ andP is a presentation consisting of a finite number of
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identitiesbetween idempotents ofFIM(Γ ); we call such a presentation idempotent. In
fact, in [4] it is shown that even the uniform word problem for idempotent presentations
is decidable. In this problem, also the presentation is part of the input.

The decidability proof of Margolis and Meakin uses Rabin’s seminal tree theorem
[5], concerning the decidability of the monadic second-order theoryof the complete
binary tree. From the view point of complexity, the use of Rabin’s tree theorem is
somewhat unsatisfactory, because it leads to a nonelementary algorithm for the word
problem, i.e., the running time is not bounded by an exponent tower of fixed height.
Therefore, in [6,4] the question for a more efficient approach was asked. In this ex-
tendedabstract we present solutions to this question based on techniques from the the-
ory of automata and verification. In Section6 we show by using tree automata that for
every fixed idempotent presentation the word problem forFIM(Γ )/P can be solved in
polynomial time. For the uniform word problem for idempotent presentations we prove
completeness for EXPTIME (deterministic exponential time). Similarly to the method
of Margolis and Meakin, we use results from logic for the upper bound. But instead of
translating the uniform word problem into monadic second-order logic over the com-
plete binary tree, we exploit a translation into the modalµ-calculus, which is a popular
logic for the verification of reactive systems. Then, we can use a result from [7,8] stat-
ing that the model-checking problem of the modalµ-calculus over context-free graphs
[9] is EXPTIME-complete.

In Section7 we study Cayley-graphs of inverse monoids of the formFIM(Γ )/P .
The Cayley-graph of a finitely generated monoidM w.r.t. a finite generating setΓ is
aΓ -labeled directed graph with node setM and ana-labeled edge from a nodex to a
nodey if y = xa in M. Cayley-graphs of groups are a fundamental tool in combinato-
rial group theory [1] and serve as a link to other fields like topology, graph theory,and
automata theory, see, e.g., [10,9]. Here we consider Cayley-graphs from a logical point
of view, see [11,12] for previous results in this direction. More precisely, we consider
an expansion of the Cayley-graphG that contains for every regular languageL over
the generators ofM a binary predicatereachL. Two nodesu andv of G are related by
reachL if there exists a path fromu to v in the Cayley-graph, which is labeled with a
word from the languageL. Our main result of Section7 states that this structure has a
decidablefirst-order theory, whenever the underlying monoid is of the formFIM(Γ )/P
for an idempotent presentationP (Theorem6). An immediate corollary of this result is
thatmembership in rational subsets ofFIM(Γ )/P is decidable.

Our decidability result for Cayley-graphs should be also compared with two unde-
cidability results from the literature: (i) the monadic second-order theory of the Cayley-
graph ofFIM({a}) [13] as well as (ii) the existential theory ofFIM({a, b}) (i.e. the
set of all true statements overFIM({a, b}) of the form∃x1 · · · ∃xm : ϕ, whereϕ is a
boolean combination of word equations with constant) [14] are undecidable.

In Section8 we briefly consider free partially commutative inverse monoidsand
their quotients by idempotent presentation. A free partially commutative inverse monoid
is the quotient of a free inverse monoids by a partial commutation relation. Hence, these
monoids can be seen as analoges of free partially commutative monoids (also known
as trace monoids, see e.g. [15]) and free partially commutative groups (also known as
graphgroups or right-angled Artin groups, see e.g. [16]). It turns out that for some re-
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strictedcases our algorithmic techniques for free inverse monoids modulo idempotent
presentations can be generalzed to the partially commutative case.

This extended abstract is based on the papers [17,18,19].

2 Preliminaries

For a finite alphabetΓ , we denote withΓ−1 = {a−1 | a ∈ Γ} a disjoint copy
of Γ . For a−1 ∈ Γ−1 we define(a−1)−1 = a; thus,−1 becomes an involution on
the alphabetΓ ∪ Γ−1. We extend this involution to words from(Γ ∪ Γ−1)∗ by set-
ting (b1b2 · · · bn)−1 = b−1

n · · · b−1
2 b−1

1 , wherebi ∈ Γ ∪ Γ−1. The set of all regu-
lar languages over an alphabetΓ is denoted byREG(Γ ). We assume that the reader
has some basic background in complexity theory. Analternating Turing-machine[20]
T = (Q,Σ, δ, q0, qf ) is a nondeterministic Turing-machine (whereQ is the state set,Σ
is the tape alphabet,δ is the transition relation,q0 is the initial state, andqf is the unique
accepting state), where the set of nonfinal statesQ \ {qf} is partitioned into two sets:
Q∃ (existential states) andQ∀ (universal states). We assume thatT cannot make transi-
tions out of the final stateqf . A configurationC with current stateq is accepting, if (i)
q = qf , or (ii) q ∈ Q∃ and there exists a successor configuration ofC that is accepting,
or (iii) q ∈ Q∀ and every successor configuration ofC is accepting. An input wordw
is accepted byT if the corresponding initial configuration is accepting. It is known that
EXPTIME (deterministic exponential time) equals APSPACE (the class of all problems
that can be accepted by an alternating Turing-machine in polynomial space) [20].

3 Relational structures and logic

See any text book on logic for more details on the subject of this section. A signature
is a countable setS of relational symbols, where each relational symbolR ∈ S has
an associated aritynR. A (relational) structure over the signatureS is a tupleA =
(A, (RA)R∈S), whereA is a set (the universe ofA) andRA is a relation of aritynR

over the setA, which interprets the relational symbolR. We will assume that every
signature contains the equality symbol= and that=A is the identity relation on the
setA. As usual, a constantc ∈ A can be encoded by the unary relation{c}. Usually,
we denote the relationRA also withR. ForB ⊆ A we define the restrictionA↾B =
(B, (RA ∩BnR)R∈S); it is again a structure over the signatureS.

Next, let us introducemonadic second-order logic (MSO-logic). LetV1 (resp.V2)
be a countably infinite set offirst-order variables(resp.second-order variables) which
range over elements (resp. subsets) of the universeA. First-order variables (resp. second-
order variables) are denotedx, y, z, x′, etc. (resp.X,Y, Z,X ′, etc.).MSO-formulasover
the signatureS are constructed from the atomic formulasR(x1, . . . , xnR

) andx ∈ X
(whereR ∈ S, x1, . . . , xnR

, x ∈ V1, andX ∈ V2) using the boolean connectives
¬,∧, and∨, and quantifications over variables fromV1 andV2. The notion of a free
occurrence of a variable is defined as usual. A formula without free occurrences of vari-
ables is called anMSO-sentence. Ifϕ(x1, . . . , xn, X1, . . . , Xm) is an MSO-formula
such that at most the first-order variables amongx1, . . . , xn and the second-order vari-
ables amongX1, . . . , Xm occur freely inϕ, anda1, . . . , an ∈ A, A1, . . . , Am ⊆ A,



4 M. Lohrey

thenA |= ϕ(a1, . . . , an, A1, . . . , Am) means thatϕ evaluates to true inA if the free
variablexi (resp.Xj) evaluates toai (resp.Aj). The MSO-theoryof A, denoted by
MSOTh(A), is the set of all MSO-sentencesϕ such thatA |= ϕ. A first-order for-
mula over the signatureS is an MSO-formula that does not contain any occurrences
of second-order variables. In particular, first-order formulas do not contain atomic sub-
formulas of the formx ∈ X. Thefirst-order theoryFOTh(A) of A is the set of all
first-order sentencesϕ such thatA |= ϕ.

Several times, we will use implicitly the well-known fact that reachability in graphs
can be expressed in MSO. More precisely, there exists an MSO-formulareach(x, y)
(over the signature containing a binary relation symbolE) such that for every directed
graphG = (V,E) and all nodess, t ∈ V we haveG |= reach(s, t) iff (s, t) ∈ E∗.
Another important fact is that finiteness of a subset of a finitely-branching tree can
be expressed in MSO: There is an MSO-formulafin(X) (over the signature contain-
ing a binary relation symbolE) such that for every finitely-branching (and downward-
directed) treeT = (V,E) and all subsetsU ⊆ V we haveT |= fin(U) iff U is finite
(by König’s lemma,U is infinite iff the upward-closure ofU contains an infinite path),
see also [5, Lemma 1.8].

In Section6 we will make use of themodalµ-calculus, which is a popular logic for
the verification of reactive systems. Formulas of this logic are interpreted over edge-
labeled directed graphs. LetΣ be a finite set of edge labels. The syntax of the modal
µ-calculus is given by the following grammar (we only introduce those operators that
are needed later; other operators like¬ϕ or [a]ϕ are defined as usual):ϕ ::= true | X |
ϕ∨ϕ | ϕ∧ϕ | 〈a〉ϕ | µX.ϕ. HereX ∈ V2 is a second-order variable ranging over
sets of nodes anda ∈ Σ. Variables fromV2 are bounded by theµ-operator. We define
the semantics of the modalµ-calculus w.r.t. an edge-labeled graphG = (V, (Ea)a∈Σ)
(Ea ⊆ V × V is the set of alla-labeled edges) and a valuationσ : V2 → 2V . To each
formulaϕ we assign the setϕG(σ) ⊆ V of nodes whereϕ evaluates to true under the
valuationσ. For a valuationσ, a variableX ∈ V2, and a setU ⊆ V defineσ[U/X] as
the valuation withσ[U/X](X) = U andσ[U/X](Y ) = σ(Y ) for X 6= Y . Now we
can defineϕG(σ) inductively as follows:

– trueG(σ) = V ,XG(σ) = σ(X) for everyX ∈ V2,
– (ϕ ∨ ψ)G(σ) = ϕG(σ) ∪ ψG(σ), (ϕ ∧ ψ)G(σ) = ϕG(σ) ∩ ψG(σ),
– (〈a〉ϕ)G(σ) = {u ∈ V | ∃v ∈ V : (u, v) ∈ Ea ∧ v ∈ ϕG(σ)},
– (µX.ϕ)G(σ) is the smallest fixpoint of the monotonic functionU 7→ ϕG(σ[U/X])

Note that only the values of the valuationσ for free variables is important. In particular,
if ϕ is a sentence (i.e., a formula where all variables are bounded byµ-operators), then
the valuationσ is not relevant and we can writeϕG instead ofϕG(σ), whereσ is an
arbitrary valuation. For a sentenceϕ and a nodev ∈ V we write(G, v) |= ϕ if v ∈ ϕG.

A context-free graph[9] is the transition graph of a pushdown automaton, i.e., nodes
are the configurations of a given pushdown automaton, and edges are given by the
transitions of the automaton. A more formal definition is not necessary for the purpose
of this paper. We will only need the following result:

Theorem 1 ([7,8]).The following problem is in EXPTIME:



Application of verification techniques to inverse monoids 5

INPUT: A pushdown automatonA defining a context-free graphG(A), a nodev of
G(A), and a formulaϕ of the modalµ-calculus

QUESTION:(G(A), v) |= ϕ?

4 Word problems and Cayley-graphs

Let M = (M, ◦, 1) be a finitely generated monoid with identity1 and letΣ be a finite
generating set forM, i.e., there exists a surjective monoid homomorphismh : Σ∗ →
M. Theword problemfor M w.r.t.Σ is the computational problem that asks for two
given wordsu, v ∈ Σ∗, whetherh(u) = h(v). It is well-known that ifΣ1 andΣ2 are
two finite generating sets forM, then the word problem forM w.r.t. Σ1 is logspace
reducible to the word problem forM w.r.t.Σ2. Thus, the computational complexity of
the word problem does not depend on the underlying set of generators.

The Cayley-graphof the monoidM w.r.t. the generating setΣ is the relational
structureC(M, Σ) = (M, ({(u, v) ∈ M ×M | u ◦ h(a) = v})a∈Σ , 1). It is a rooted
directed graph, where every edge has a label fromΣ and{(u, v) | u ◦ h(a) = v} is the
set ofa-labeled edges. SinceΣ generatesM, everyu ∈ M is reachable from the root
1. Cayley-graphs of groups play an important role in combinatorial group theory [1].

Thefree groupFG(Γ ) generated by the setΓ is the quotient(Γ ∪ Γ−1)∗/δ, where
δ is the smallest congruence on(Γ ∪ Γ−1)∗ that contains all pairs(bb−1, ε) for b ∈
Γ ∪ Γ−1. Let γ : (Γ ∪ Γ−1)∗ → FG(Γ ) denote the canonical morphism mapping a
wordu ∈ (Γ ∪ Γ−1)∗ to the group element represented byu. It is well known that for
everyu ∈ (Γ ∪ Γ−1)∗ there exists a unique wordr(u) ∈ (Γ ∪ Γ−1)∗ (the reduced
normalform ofu) such thatγ(u) = γ(r(u)) andr(u) does not contain a factor of the
form bb−1 for b ∈ Γ ∪ Γ−1. The wordr(u) can be calculated fromu in linear time.
It holdsγ(u) = γ(v) iff r(u) = r(v). The Cayley-graph ofFG(Γ ) w.r.t. the standard
generating setΓ ∪ Γ−1 will be denoted byC(Γ ); it is a finitely-branching tree and a
context-free graph [9].

Similarly to the word problem, ifΣ1 andΣ2 are finite generating sets for the same
monoidM, thenFOTh(C(M, Σ1)) is logspace reducible toFOTh(C(M, Σ2)) and
the same holds for the MSO-theories, see [12]. It is easy to see that the decidability of
thefirst-order theory of the Cayley-graph implies the decidability of the word problem.
On the other hand, there exists a finitely presented monoid for which the word problem
is decidable, but the first-order theory of the Cayley-graph is undecidable [12]. When
restrictingto groups, the situation is different: The Cayley-graph of a finitely generated
group has a decidable first-order theory iff the group has a decidable word problem [11].
Moreover, the Cayley-graph of a finitely generated group has a decidable MSO-theory
iff the group is virtually free (i.e., has a free subgroup of finite index) [11,9]. We will
only need this result for the Cayley-graphC(Γ ) of the free groupFG(Γ ):

Theorem 2 ([9]). For every finiteΓ , MSOTh(C(Γ )) is decidable but nonelementary.

5 Inverse monoids

A monoid M is called aninverse monoidif for eachm ∈ M there is a unique
m−1 ∈ M such thatm = mm−1m andm−1 = m−1mm−1. For detailed ref-
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erenceon inverse monoids see [2]; here we only recall the basic notions. Since the
classof inverse monoids forms a variety it follows from universal algebra thatfree
inverse monoidsexist. The free inverse monoid generated by a setΓ is denoted by
FIM(Γ ); it is isomorphic to(Γ ∪ Γ−1)∗/ρ, whereρ is the smallest congruence on the
free monoid(Γ ∪ Γ−1)∗ which contains for all wordsv, w ∈ (Γ ∪ Γ−1)∗ the pairs
(w,ww−1w) and (ww−1vv−1, vv−1ww−1) (which are also called the Vagner equa-
tions). Letα : (Γ ∪ Γ−1)∗ → FIM(Γ ) denote the canonical morphism mapping a
word u ∈ (Γ ∪ Γ−1)∗ to the element ofFIM(Γ ) represented byu. Obviously, there
exists a morphismβ : FIM(Γ ) → FG(Γ ) such thatγ = β ◦ α. The free inverse
monoidFIM(Γ ) can be also represented viaMunn trees: The Munn treeMT(u) of
u ∈ (Γ ∪ Γ−1)∗ is MT(u) = {γ(v) ∈ FG(Γ ) | ∃w ∈ (Γ ∪ Γ−1)∗ : u = vw}; it
is a finite and connected subset of the Cayley-graphC(Γ ) of the free groupFG(Γ ). In
other words,MT(u) is the set of all nodes along the unique path inC(Γ ) that starts in
1 and that is labeled with the wordu. We identifyMT(u) with the subtreeC(Γ )↾MT(u)

of C(Γ ). Munn’s theorem [21] states thatα(u) = α(v) for u, v ∈ (Γ ∪ Γ−1)∗ iff
r(u) = r(v) (i.e., γ(u) = γ(v)) andMT(u) = MT(v). It is well known that for a
word u ∈ (Γ ∪ Γ−1)∗, the elementα(u) ∈ FIM(Γ ) is an idempotent element, i.e.,
α(uu) = α(u), iff r(u) = ε, i.e.,γ(u) = 1.

For a finite setP ⊆ (Γ ∪Γ−1)∗× (Γ ∪Γ−1)∗ defineFIM(Γ )/P = (Γ ∪Γ−1)∗/τ
to be the inverse monoid with the setΓ of generators and the setP of relations, where
τ is the smallest congruence on(Γ ∪ Γ−1)∗ generated byρ ∪ P . Then the canon-
ical morphismµP : (Γ ∪ Γ−1)∗ → FIM(Γ )/P factors asµP = νP ◦ α with
νP : FIM(Γ ) → FIM(Γ )/P . For the rest of the paper, the meaning of the morphisms
α, γ, µP , andνP will be fixed. We say thatP ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ is an
idempotent presentationif for all (e, f) ∈ P , α(e) andα(f) are both idempotents of
FIM(Γ ), i.e.,r(e) = r(f) = ε. In this paper, we are concerned with inverse monoids of
the formFIM(Γ )/P for a finite idempotent presentationP . To solve the word problem
for such a monoid, Margolis and Meakin [4] constructed a closure operation for Munn
trees.We shortly review the ideas here. As remarked in [4], every idempotent presen-
tationP canbe replaced by the presentationP ′ = {(e, ef), (f, ef) | (e, f) ∈ P}, i.e.,
FIM(Γ )/P ∼= FIM(Γ )/P ′. SinceMT(e) ⊆ MT(ef) ⊇ MT(f) if r(e) = r(f) = ε,
we can restrict in the following to idempotent presentationsP such thatMT(e) ⊆
MT(f) for all (e, f) ∈ P . Let V ⊆ FG(Γ ). Define setsVi ⊆ FG(Γ ) (i ≥ 1) induc-
tively as follows: (i)V1 = V and (ii) forn ≥ 1 let

Vn+1 = Vn ∪
⋃

(e,f)∈P

{u ◦ v | u ∈ Vn,∀w ∈ MT(e) : u ◦ w ∈ Vn, v ∈ MT(f)},

where◦ refers to the multiplication in the free groupFG(Γ ). Finally, define the closure
of V w.r.t. the presentationP asclP (V ) =

⋃

n≥1 Vn.

Theorem 3 ([4]). LetP bean idempotent presentation and letu, v ∈ (Γ∪Γ−1)∗. Then
µP (u) = µP (v) iff r(u) = r(v) (i.e.,γ(u) = γ(v)) andclP (MT(u)) = clP (MT(v)).

The result of Munn forFIM(Γ ) mentioned above is a special case of this result.
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Example1. Let Γ = {a, b}, u = aa−1bb−1, andP = {(aa−1, a2a−2), (bb−1, b2b−2)}.
The Munn trees for the words in the presentationP andu are shown below; the bigger
circle represents the1 of FG(Γ ).

a a

a

= b b

b

= a b

ThenclP (MT(u)) = {an | n ≥ 0} ∪ {bn | n ≥ 0} ⊆ FG(Γ ).

In the next section, instead of specifying a wordw ∈ (Γ ∪ Γ−1)∗ (that represents an
idempotent inFIM(Γ ), i.e., r(w) = ε) explicitly, we will only show its Munn tree,
where as above the1 of FG(Γ ) is drawn as a bigger circle. In fact, one can replacew
by any word that labels a path from the circle back to the circle and that visits all nodes;
the resulting word represents the same element ofFIM(Γ ) as the original one.

Margolis and Meakin used Theorem3 in order to decide the word problem for
FIM(Γ )/P . More precisely, they have shown that from a finite and idempotent presen-
tationP one can effectively construct an MSO-formulaCLP (X,Y ) over the signature
of the Cayley-graphC(Γ ) such that for all wordsu ∈ (Γ ∪ Γ−1)∗ and all subsets
A ⊆ FG(Γ ): C(Γ ) |= CLP (MT(u), A) iff A = clP (MT(u)). The decidability of the
word problem forFIM(Γ )/P is an immediate consequence of Theorem2 and Theo-
rem3. But the application of Theorem2 results in a nonelementary algorithm.

6 Complexity of the word problem

Using the efficient translation of MSO-formulas over trees into tree automata, and the
fact that the membership for a fixed tree automaton can be checked in (i) linear time on
a RAM and (ii) logspace on a Turing machine [22], we can prove:

Theorem 4. For every finite idempotent presentationP ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗

the word problem forFIM(Γ )/P can be solved in (i) linear time on a RAM and (ii)
logspace on a Turing machine.

An alternative proof of Theorem4, which does not rely on the translation of MSO
into tree automata, was given in [18]. Moreover, that proof works for a larger class of
inverse monoids, where Munn trees over free groups are replaced by subgraphs of the
Cayley-graph of a virtually-free group.

In the uniform case, where the presentationP is part of the input, the complexity
increases considerably:

Theorem 5. The following problem is EXPTIME-complete:
INPUT: A finite alphabetΓ , wordsu, v ∈ (Γ ∪ Γ−1)∗, and a finite idempotent

presentationP ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗

QUESTION:µP (u) = µP (v)?
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Proof. For the lower bound we use the fact that EXPTIME equals APSPACE. Thus, let
T = (Q,Σ, δ, q0, qf ) be a fixed alternating Turing machine that accepts an EXPTIME-
complete language. Assume thatT works in spacep(n) for a polynomialp on an input
of lengthn. W.l.o.g. we assume that:

– T alternates in each state, i.e., it either moves from a state ofQ∃ to a state from
Q∀ ∪ {qf} or from a state ofQ∀ to a state fromQ∃ ∪ {qf}.

– The initial stateq0 belongs toQ∃.
– For each pair(q, a) ∈ (Q \ {qf}) × Σ, the machineT has precisely two choices

according toδ, which we call choice 1 and choice 2.
– If T terminates in the final stateqf , then the symbol that is currently read by the

head is some distinguished symbol$ ∈ Σ.

DefineΓ = Σ ∪ (Q × Σ) ∪ {a1, a2, b1, b2,#}, where all unions are assumed to be
disjoint. A configuration ofT is encoded as a word from#Σ∗(Q × Σ)Σ∗# ⊆ Γ ∗.
Now letw ∈ Σ∗ be an input of lengthn and letm = p(n). Then a configuration ofT is
a word from

⋃m−1
i=0 #Σi(Q×Σ)Σm−i−1# ⊆ Γm+2. Clearly, the symbol at position

1 < i < m + 2 at timet + 1 in a configuration only depends on the symbols at the
positionsi− 1, i, andi+ 1 at timet. Assume thatc, c1, c2, c3 ∈ Σ ∪ (Q×Σ) ∪ {#}

such thatc1c2c3 ∈ {ε,#}Σ∗(Q×Σ)Σ∗{ε,#}. We writec1c2c3
j
→ c for j ∈ {1, 2} if

the following holds: If three consecutive positionsi− 1, i, andi+ 1 of a configuration
contain the symbol sequencec1c2c3, then choicej of T results in the symbolc at

positioni. We writec1c2c3
∃
→ (d1, d2) for c1, c2, c3, d1, d2 ∈ Σ ∪ (Q × Σ) ∪ {#} if

one of the following two cases holds: (i)c1c2c3 ∈ {ε,#}Σ∗(Q∃ × Σ)Σ∗{ε,#} and

c1c2c3
j
→ dj for j ∈ {1, 2} or (ii) c1c2c3 ∈ {ε,#}Σ∗{ε,#} andd1 = d2 = c2.

The notationc1c2c3
∀
→ (d1, d2) is defined analogously, except that in the first case we

requirec1c2c3 ∈ {ε,#}Σ∗(Q∀ ×Σ)Σ∗{ε,#}.
We encode a configuration#c1c2 · · · cm#, where the current state is fromQ∃ by

the following subtree ofC(Γ ), wherei = 1 or i = 2.

ai ai ai

# c1 c2 cm #
. . .

If the current state is fromQ∀, then we take the same subgraph, except thatbi replaces
ai.

The idempotent presentationP ⊆ (Γ ∪Γ−1)∗× (Γ ∪Γ−1)∗ is constructed in such
a way from the machineT that building the closure from a Munn tree that represents
the initial configuration (in the above sense) corresponds to generating the whole com-
putation tree of the Turing machineT starting from the initial configuration. We will
describe each pair(e, f) ∈ P by the Munn trees ofe andf .

For allx ∈ {a1, a2, b1, b2} put the following identity intoP , which propagates the
end-marker# along intervals of lengthm+ 2 (here, thexm-labeled edge abbreviates a
path consisting ofm manyx-labeled edges).
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x

#

x

xm

#

#

=

Successorconfigurations of the current configuration are generated by the equations

below, wherei ∈ {1, 2}, 0 ≤ k ≤ m − 1, andc1c2c3
∃
→ (d1, d2) (resp.c1c2c3

∀
→

(d1, d2)) for the left (resp. right) equation:
c1

c2

c3

#

ai

ai

ak
i

c1

c2

c3

#

ai

ai

ak
i

bm−k
1

bm−k
2

d1 d2

=

c1

c2

c3

#

bi

bi

bki

c1

c2

c3

#

bi

bi

bki

am−k
1

am−k
2

d1 d2

=

The remaining equations propagate acceptance information back to the initial Munn
tree. Here the separation of the state set into existential and universal states becomes
important. Letf = (qf , $); recall that$ is the symbol under the head ofT whenT
terminates in stateqf . For all i, j ∈ {1, 2} and allx ∈ {a1, a2, b1, b2} we put the
following equations intoP :

f

x

x f

fx

x
=

f

ai

bj

f

f

ai

bj

= bi
a1 a2

f f

bi
a1 a2

f

f f

=

This concludes the description of the presentationP . Now define the wordsu, v ∈
(Γ ∪ Γ−1)∗ as follows: Assume that the input word for our alternating Turing machine
w is of the formw = w1w2 · · ·wn with wi ∈ Σ. Forn + 1 ≤ i ≤ m definewi = �,
where� is the blank symbol ofT . Then the Munn trees ofu andv are (we assume
r(u) = r(v) = ε):

a1

a1

...
a1

#

(q0, w1)

w2

wm

a1

a1

...
a1

#

f (q0, w1)

w2

wm

MT(u) MT(v)
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We claim thatµP (u) = µP (v) iff the machineT accepts the wordw. From the con-
struction ofu, v, andP it follows thatT accepts the wordw iff MT(v) ⊆ clP (MT(u)).
SinceMT(u) ⊆ MT(v) this is equivalent toclP (MT(v)) = clP (MT(u)), i.e.,µP (u) =
µP (v) due to Theorem3 (note thatr(u) = r(v) = ε). This proves the EXPTIME lower
bound.

For the upper bound letP ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ be an idempotent pre-
sentation andu, v ∈ (Γ ∪ Γ−1)∗. Sincer(u) = r(v) can be checked in linear time,
it suffices by Theorem3 to show that we can verify in EXPTIME whetherMT(v) ⊆
clP (MT(u)) (notethat clP (MT(v)) = clP (MT(u)) iff MT(u) ⊆ clP (MT(v)) and
MT(v) ⊆ clP (MT(u))). LetG be the graph that results from the Cayley-graphC(Γ )
by taking a new edge label#, adding a new nodev0, and adding a#-labeled edge from
node1 (i.e., the origin) ofC(Γ ) to the new nodev0. SinceC(Γ ) is a context-free graph,
alsoG is context-free. By Theorem1 it suffices to construct in polynomial time a modal
µ-calculusformulaϕu,v,P such thatMT(v) ⊆ clP (MT(u)) iff (G, 1) |= ϕu,v,P .

Forw = a1a2 · · · am (ai ∈ Γ ∪ Γ−1) and two positionsi, j ∈ {1, . . . ,m}, i ≤ j,
let w[i, j] = ai · · · aj . If i > j, then setw[i, j] = ε. Moreover, we use〈w〉φ as an
abbreviation for〈a1〉〈a2〉 · · · 〈am〉φ. Assume thatP = {(ei, fi) | 1 ≤ i ≤ n}, where
MT(ei) ⊆ MT(fi). First, let

ϕu,P = µX.





|u|
∨

i=0

〈u[1, i]−1〉〈#〉true ∨

n
∨

i=1

|fi|
∨

j=0

〈fi[1, j]
−1〉(

|ei|
∧

k=0

〈ei[1, k]〉X)



 .

Then (G, x) |= ϕu,P iff x ∈ clP (MT(u)). The disjunction
∨|u|

i=0〈u[1, i]
−1〉〈#〉true

expressesMT(u) ⊆ clP (MT(u)), whereas
∨n

i=1

∨|fi|
j=0〈fi[1, j]

−1〉(
∧|ei|

k=0〈ei[1, k]〉X)
defines all nodes such that via the inverse of some prefix of some wordfi a nodex can
be reached such that the whole path starting inx and labeled withei already belongs to
X. Finally, setϕu,v,P =

∧|v|
i=0〈v[1, i]〉ϕu,P . ⊓⊔

7 Cayley-graphs of inverse monoids

LetM = (M, ◦, 1) be a monoid with a finite generating setΣ and leth : Σ∗ → M be
the canonical morphism. We define the following expansionC(M, Σ)reg of the Cayley-
graphC(M, Σ): C(M, Σ)reg = (M, (reachL)L∈REG(Σ), 1) with reachL = {(u, v) ∈
M ×M | ∃w ∈ L : u ◦ h(w) = v}. Thus,C(M, Σ) = (M, (reach{a})a∈Σ , 1). The
main result of this section is:

Theorem 6. LetP ⊆ (Γ∪Γ−1)∗×(Γ∪Γ−1)∗ be a finite and idempotent presentation.
Then the first-order theory of the structureC(FIM(Γ )/P, Γ ∪ Γ−1)reg is decidable.

The following undecidability result of Calbrix [13] contrasts Theorem6. It is easy to
seethat for every Cayley-graphC(M, Γ ), if MSOTh(C(M, Γ )) is decidable, then also
FOTh(C(M, Γ )reg) is decidable.

Theorem 7. MSOTh(C(FIM({a}), {a, a−1})) is undecidable.
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Theorem7 canbe shown by identifying an infinite grid as a minor of the Cayley-graph
C(FIM({a}), {a, a−1}).

Before we prove Theorem6, let us first state a corollary. Thegeneralized word prob-
lemfor M asks whether for given wordsu, u1, . . . , un ∈ Σ∗ the monoid elementh(u)
belongs to the submonoid ofM that is generated by the elementsh(u1), . . . , h(un).
Theorem6 easily implies:

Corollary 1. LetP ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ be a finite and idempotent presenta-
tion. Then the generalized word problem forFIM(Γ )/P is decidable.

To prove Theorem6 we first need some lemmas.

Lemma 1. There exists a fixed MSO-formulaϕ(x, y) (over the signature consisting of
a binary relation symbolE) such that for every finite directed graphG = (V,E) and
all nodess, t ∈ V we have:G |= ϕ(s, t) iff there is a path inG with initial vertexs and
terminal vertext visiting all vertices fromV .

For the proof of Lemma1 one defines a partial order≺ onthe set of strongly connected
components ofG: U ≺ V for two different strongly connected componentsU andV if
and only if there is a (directed) path from a node ofU to a node ofV . Then there is a
path inG with initial vertexs and terminal vertext visiting all vertices fromV iff ≺ is
a total order ands (resp.t) belongs to the minimal (resp. maximal) strongly connected
component ofG. These conditions can be easily formalized in MSO-logic.

Lemma 2. LetΣ be a finite alphabet and letL ∈ REG(Σ). Then one can construct an
MSO-sentenceψL (over a signature consisting of binary relation symbolsEa (a ∈ Σ)
and two constantss and t) such that for every finite structureG = (V, (Ea)a∈Σ , s, t)
we haveG |= ψL iff there exists a pathp = (v1, a1, v2, a2, . . . , vn) (vi ∈ V , ai ∈ Σ)
such that:v1 = s, vn = t, (vi, vi+1) ∈ Eai

for all 1 ≤ i < n, a1a2 · · · an−1 ∈ L, and
V = {v1, v2, . . . , vn}.

Let us just give a brief sketch of the proof of Lemma2. LetA = (Q,Σ, δ, q0, F ) be a
deterministic finite automaton withL(A) = L. W.l.o.g.Q = {1, . . . ,m}. Define the
structurefA(G) by fA(G) = (V ×Q,E,∆, Is, Ft), where

E = {((u, i), (v, j)) | ∃a ∈ Σ : (u, v) ∈ Ea ∧ δ(i, a) = j},

∆ = {((v, 1), . . . , (v,m)) | v ∈ V }, Is = {(s, q0)}, andFt = {t} × F.

Then one can show thatfA is an MSO-transduction in the sense of [23]. Thus, there
existsa backwards translationf ♯

A such that for every MSO-sentenceφ over the signature
of fA(G) we have:fA(G) |= φ iff G |= f ♯

L(φ) [23]. Now, using Lemma1 and the
relation∆ it is easy to write down an MSO-sentenceφ over the signature offA(G)
expressing that there exists a path from(s, q0) to a node inFt such that the set of first
components of nodes along that path is preciselyV . Then the sentencef ♯

A(φ) is the
desired sentence.

Lemma2 easily implies the next lemma.
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Lemma 3. Let Σ be a finite alphabet and letL ∈ REG(Σ). Then one can con-
struct an MSO-formulaθL(X) (over a signature consisting of binary relation sym-
bolsEa (a ∈ Σ) and two constantss and t) such that for every finite structureG =
(V, (Ea)a∈Σ , s, t) and every finite setU ⊆ V we haveG |= θL(U) iff there exists
a pathp = (v1, a1, v2, a2, . . . , vn) (vi ∈ V , ai ∈ Σ) such that:v1 = s, vn = t,
(vi, vi+1) ∈ Eai

for all 1 ≤ i < n, a1a2 · · · an−1 ∈ L, andU ⊆ {v1, v2, . . . , vn}.

We are now able to finish the proof of Theorem6. LetP ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗

bea finite and idempotent presentation. We want to show that the first-order theory of
the structureA = C(FIM(Γ )/P, Γ ∪ Γ−1)reg is decidable. For this, we use Theorem
3 and translate each first-order sentenceϕ overA into an MSO-sentence||ϕ|| over the
Cayley graphC(Γ ) of the free groupFG(Γ ) such thatA |= ϕ iff C(Γ ) |= ||ϕ||. Together
with Theorem2 this will complete the proof of Theorem6.

To every variablex (ranging overFIM(Γ )/P ) in ϕ we associate two variables in
||ϕ||: (i) an MSO-variableX ′ representingclP (MT(u)), whereu is any word represent-
ingx, and (ii) an FO-variablex′ representingγ(u) ∈ FG(Γ ). The relationship between
x′ andX ′ is expressed by the MSO-formula (over the signature ofC(Γ )) MT(x′, X ′) =
∃X : Θ(x′, X,X ′), whereΘ(x′, X,X ′) = (1, x′ ∈ X ∧ X is connected and finite∧
CLP (X,X ′)). Recall that finiteness and connectedness of a subset of the finitely-
branching treeC(Γ ) can be expressed in MSO, see the remarks in Section3. Here
CLP (X,X ′) is the MSO-formula constructed by Margolis and Meakin in [4], see
the remark at the end of Section5. Next, note that by Lemma3 for every language
L ∈ REG(Γ ∪ Γ−1) there exists an MSO-formulaξL(x′, X, y′, Y ) over the signa-
ture ofC(Γ ) such that for all finite setsU, V ⊆ FG(Γ ) and all nodesu′, v′ ∈ FG(Γ )
we have:C(Γ ) |= ξL(u′, U, v′, V ) iff U ⊆ V and there is a path fromu′ to v′ in
C(Γ )↾V that visits all vertices ofV \U and which is labeled with a word from the
languageL. Now letϕ be an FO-formula over the signature ofA. We define||ϕ|| induc-
tively: ||reachL(x, y)|| = ∃X,Y : Θ(x′, X,X ′) ∧ Θ(y′, Y, Y ′) ∧ ξL(x′, X, y′, Y ),
||¬ψ|| = ¬||ψ||, ||ψ1∧ψ2|| = ||ψ1||∧||ψ2||, and||∀x : ψ|| = ∀x′ ∀X ′ : MT(x′, X ′) ⇒ ||ψ||.
It is straight-forward to verify thatA |= ϕ iff C(Γ ) |= ||ϕ||. This concludes the proof of
Theorem6. ⊓⊔

8 Partially commutative inverse monoids

In this section we briefly consider free partially commutative inverse monoids and their
quotients by idempotent presentations. These monoids generalize the inverse monoids
that we have considered so far.

Let us fix again a finite alphabetΓ , and letΓ−1 = {a−1 | a ∈ Γ} be a disjoint
copy ofΓ . By an independence relationwe mean here an irreflexive and symmetric
binary relationI onΓ ∪ Γ−1 such that(a, b) ∈ I implies(a−1, b) ∈ I for all a, b ∈ Γ .
Clearly, I is uniquely defined by its restrictionI ∩ (Γ × Γ ). Let us define thefree
partially commutative inverse monoidgenerated by(Γ, I) as the quotient

FIM(Γ, I) = FIM(Γ )/{ab = ba | (a, b) ∈ I}.

Da Costa has studiedFIM(Γ, I) in his thesis from a more general viewpoint of
graph products [24]. As a consequence he showed thatFIM(Γ, I) has a decidable word
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problem.In his construction he used the general approach via Schützenberger graphs
and Stephen’s iterative procedure [25]. The decidability of the word problem follows
becauseda Costa can show that Stephen’s procedure terminates. However, no complex-
ity bounds are given in [24].

In [17], a concrete realization of free partially commutative inversemonoid, which
is based on closed subsets of free partially commutative groups (which are also known
as graph groups [16]), is presented. Using this realization, the following resultsare
proved:

Theorem 8. For a fixed free partially commutative inverse monoidFIM(Γ, I), the
word problem can be solved in timeO(n log(n)) on a RAM.

Theorem 9. For every fixed free partially commutative inverse monoidFIM(Σ, I), the
membership problem for rational subsets ofFIM(Σ, I) belongs to NP. Moreover, al-
ready membership in a finitly generated submonoid ofFIM({a, b}) is NP-hard.

An idempotent presentationover(Γ, I) is a finite set of identitiesP = {(ei, fi) | 1 ≤
i ≤ n}, where everyei andfi is an idempotent element inFIM(Γ, I).

In case the complement of the independence relationI is transitive, one obtains the
same results for the word problem ofFIM(Γ, I) modulo an idempotent presentation as
in the non-commutative case. The proof of the EXPTIME upper bound in the following
theorem is again based on a closure operation. But this time, the closure is not computed
in the free groupFG(Γ ) but in the graph group GG(Γ, I). In case(Γ × Γ ) \ I is
transitive, this group is a direct product of free groups, which allows to express the
closure w.r.t. an idempotent presentationP in the modalµ-calculus withsimultaneous
fixpoint definitionsover the Cayley-graph of a free group (of suitable rank).

Theorem 10. The following problem is EXPTIME-complete:
INPUT: An independence relationI overΓ ∪Γ−1 such that(Γ×Γ )\I is transitive,

an idempotent presentationP over(Γ, I) and wordsu, v ∈ (Γ ∪ Γ−1)∗.
QUESTION:u = v in FIM(Γ, I)/P?

Theorem 11. If I is an independence relation overΓ ∪ Γ−1 with (Γ × Γ ) \ I tran-
sitive andP is an idempotent presentation over(Γ, I), then the word problem for
FIM(Γ, I)/P can be solved in (i) linear time on a RAM and (ii) logspace on a Tur-
ing machine.

In the non-transitive case, we can encode the acceptance problem for a Turing-machine
T in the word problem forFIM(Γ, I)/P . LetΓ = {a, b, c} and assume that(a, b) ∈ I
but (a, c), (b, c) 6∈ I. Thena andb generate in the Cayley graph of the graph group
GG({a, b, c}, I) a two dimensional grid. Using the letterc, which is dependent from
botha andb, we can encode a labelling of the grid-points with tape symbols and states
of T . By computing the closure w.r.t. a suitable idempotent presentationP , we generate
a labelling consistent with the transition function ofT and the input ofT . Hence, we
have:

Theorem 12. Let I be an independence relation overΓ ∪ Γ−1 with (Γ × Γ ) \ I not
transitive. Then there exists an idempotent presentationP over (Γ, I) such that the
word problem forFIM(Γ, I)/P is undecidable.
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9 Openproblems

We plan to investigate for which monoidsM the structureC(M, Γ )reg has a decidable
first-order theory. In particular, the group case is interesting. It is easy to see that the
decidability of the MSO-theory ofC(M, Γ ) implies the decidability of the first-order
theory ofC(M, Γ )reg. Thus, the class of groupsG for whichC(G, Γ )reg is decidable lies
somewhere between the virtually-free groups (i.e., those groups for which the MSO-
theory of the Cayley-graph is decidable) and the groups with a decidable word problem
(i.e., those groups for which the first-order theory of the Cayley-graph is decidable).
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