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Abstract. We give a new simple proof of the decidability of the First

Order Theory of (ωω
i

, +) and the Monadic Second Order Theory of
(ωi

, <), improving the complexity in both cases. Our algorithm is based
on tree automata and a new representation of (sets of) ordinals by (in-
finite) trees. The present paper is partly based on [?]

1 Introduction

The connections between automata and logic have been fruitful for many years,
see [13] for an introduction. In 1960 Büchi [4] showed that sets of finite words
can be equivalently defined by Monadic Second Order (MSO) formulas and by
finite automata. This gives in particular a decision procedure for this logic. This
result has been extended later to other classes of structures and automata: MSO
over infinite words and Büchi automata in [5], MSO over transfinite ordinals and
transfinite automata [6], MSO over the full binary tree and Rabin automata in
[18], MSO over graphs of the Caucal hierarchy and graph automata [7,15].

The decidability of the first order logic over the integers with addition, also
known as Presburger arithmetic, can be easily obtained by using finite automata
reading binary representation of numbers. A central idea in all these results is
that formulas can be represented by automata: by induction on the formula one
can build an automaton accepting exactly the models of the formula. See [22]
for a clear exposition of many of the previous results.

More recently many authors have used automata to improve the complexity
of certain decisions procedures. In particular in [14] the Presburger arithmetic
is considered and in [16] the first order theory of the ordinals with addition.

We address in this article the decision algorithms for the First Order theory
(FO) of (ωω

i

,+) and the Monadic Second Order theory (MSO) of (ωi, <) for
any integer i. Our proposal is to use finite labeled trees to represent ordinals
and infinite trees to represent sets of ordinals. Then one can use tree automata
to represent formulas (namely, all their models). In this way we improve the
best known complexity, and we hope that our constructions are easier to under-
stand than previous ones. Note that already MSO(ω,+) is undecidable, and the
decision procedure for MSO(ω,<) has a non elementary lower bound. In [12]
trees are already used to represent ordinals, but only termination of preocesses
is considered. Our infinite trees in Section 3 are close to those in [3], where only
inclusion of languages is considered.
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The paper is organized as follows. The next section is concerned with the
first order theory. After recalling definitions we present our tree encoding and
our decidability proof. In Section 3 the encoding is adapted to the Monadic
Second Order theory, before comparisons to other results and techniques are
given.

2 Decidability of the First Order Theory of (ωω, +)

2.1 Definitions: Ordinal Addition, First Order Logic, Tree

Automata

We assume basic knowledge about ordinals, see e.g. [20,21]. An ordinal is a
well and totally ordered set. It is either 0 or a successor ordinal of the form
β + 1 or a limit ordinal. The first limit ordinal is denoted ω. For all ordinal α:
β < α ⇔ β ∈ α and α = {β : β < a}. The set of natural numbers is identified
with ω. Recall e.g. that 1+ω = ω = 2 ·ω and ω+ω2 = ω2 but ω+1 6= ω 6= ω ·2.
By the Cantor Normal Form theorem, for all 0 < α < ωω there exist unique
integers p, n0, n1, . . . , np such that np > 0 and

α = ωpnp + ωp−1np−1 + · · · + ω1n1 + n0 .

Ordinal addition has an absorption property: for any p < p′, ωp + ωp
′

= ωp
′

.
Given two ordinals α = ωpnp+ · · ·+ω1n1 +n0 and α′ = ωp

′

n′

p′ + · · ·+ω1n′

1 +n′

0

both written in Cantor Normal Form, the ordinal α+ α′ is

ωpnp + · · · + ωp
′

(np′ + n′

p′) + · · · + ω1n′

1 + n′

0 .

Formulas of the First Order Logic (FO) over (ωω,+) are built from

– a countable set of individual variables x, y, z, . . .
– the addition +, seen as a ternary relation,
– the Boolean connectives ¬, ∧, ∨, → and ↔,
– existential first order quantification ∃ over individual variables (∀ is seen as

an abbreviation for ¬∃¬).

Example 1. The order relation x ≤ y can be easily defined as ∃z : x+ z = y.
The relation x < y is defined by ¬(y ≤ x).
The ordinal 0 is the only ordinal x such that ¬∃y : y < x or equivalently such
that x+ x = x.
The equality between x and y can be defined e.g. by x ≤ y ∧ y ≤ x.
The ordinal 1 is definable by φ(x) = (x > 0) ∧ ¬∃y(0 < y ∧ y < x).

Example 2. The first limit ordinal, ω, is the only ordinal satisfying the formula

ϕ1(x) = (x > 0) ∧ ∀y(y < x→ y + 1 < x) ∧

∀x′[(x′ > 0) ∧ ∀y(y < x′ → y + 1 < x′) → x ≤ x′] .

Similarly and by induction ωi+1 is defined by

ϕi+1(x) = (x > 0) ∧ ∀y(y < x→ y + ωi < x) ∧

∀x′[(x′ > 0) ∧ ∀y(y < x′ → y + ωi < x′) → x ≤ x′] .
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A finite binary tree T is a finite prefix closed subset of {a, b}∗. The root is the
empty word ε, and for all u ∈ {a, b}∗, ua is the left successor of u and ub the right
one. For simplicity we impose that each node has 0 or 2 successors: ∀u ∈ {a, b}∗,
ua ∈ T ⇔ ub ∈ T . A leaf has no successor. Given a finite alphabet Σ, a Σ-
labeled tree is a couple 〈T, λ〉 where T is a tree and λ is a function λ : T 7→ Σ.
A tree automaton is a tuple (Q,Σ,∆, I, F ) where Q is a finite set of states, Σ
is a finite alphabet, ∆ ⊆ Q × Σ × Q × Q is the transition relation, I ⊆ Q and
F ⊆ Q are the sets of initial and accepting states (“final states”). A Σ-labeled
tree is accepted by such a tree automaton iff there exists a run ρ : T 7→ Q such
that

ρ(ε) ∈ F , and ∀u ∈ T : either (ρ(u), λ(u), ρ(ua), ρ(ub)) ∈ ∆

or u is a leaf (ua 6∈ T ) and ρ(u) ∈ I .

This presentation is unusual: the labels at the leafs are not important in our
constructions. These (bottom up) tree automata can be determinized by a usual
subset construction. By exchanging initial and final states they can be seen as
top down automata (but can not be determinized in that case).

2.2 Binary Trees Representing Ordinals

Ordinals less than ωω can be easily represented by finite binary trees. The tree
representing α = ωpnp+ · · ·+ω1n1 +n0 (where np > 0) has a leftmost branch of
length (at least) p. At depth i on this branch a right branch is attached, holding
the binary encoding of the number ni. For example the ordinal ω3.5 +ω.3 + 8 is
represented essentially as the following tree.

A

0

0

0

1

A

1

1

A

E

1

0

1

The letter E marks the last position where
there is a non zero right branch. We allow
all possible ways to add dummy symbols
# at the bottom of the tree. There are not
represented on the picture, but they are
needed for every node to have 0 or 2 suc-
cessors (not 1). To be more formal the set
of tree representations of a given ordinal
α = ωpnp + · · · + ω1n1 + n0 is exactly the
language accepted by the tree automaton
to be defined next. The initial state is q#,
the accepting state q0.

If σ0
i σ

1
i . . . σ

mi

i is the (least significant digit first) binary encoding of ni:
(

ni =
∑mi

j=0 2jσji

)

,

then the transitions are:

(qi, A, qi+1, p
0
i ) if i < p and ni > 0 (pji , σ

j
i , q#, p

j+1
i ) if j < mi

(qi, A, qi+1, q#) if i < p and ni = 0 (pji , σ
j
i , q#, q#) if j = mi

(qi, E, q#, p
0
i ) if i = p (q#,#, q#, q#)

In the special case where α = 0 we have a transition (q0,#, q#, q#). We denote
Tα the tree representing an ordinal α.
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2.3 Decidability Using Tree-Automata

We adapt a well known method for proving decidability of logic theories. A
single tree over the alphabet {A,E,#, 0, 1}k represents the values of k variables
by superposing k corresponding trees (and adding dummy symbols #). For every
formula ψ ∈ FO(ωω,+) with free variables x1, . . . , xk we want to build a tree
automaton over the alphabet {A,E,#, 0, 1}k such that a tree is accepted by this
automaton iff the corresponding valuation of the variables satisfies ψ. This can
be done by induction on the formula. The case of Boolean connectives is easy
using standard automata techniques of product and complementation, see [10].
Existential quantification results in projecting out the corresponding variable.
The main point is to define an automaton recognizing the relation x + y = z,
and this is easy with our coding.

Let Tower stand for the “tower of exponentials” function, i.e., Tower(0, n) =
n and Tower(k + 1, n) = 2Tower(k,n).

Theorem 1. The First Order Theory of (ωω,+) is decidable in time
O(Tower(n, c)), for some constant c, where n is the length of the formula.

To our knowledge the best known algorithm for deciding FO(ωω,+) goes via a
(linear) reduction to the Weak Monadic Second Order logic of (ωω, <), which in
turn is decidable in time O(Tower(6n, c′)) [16]. See Section 3 for the definition
of this logic. Like for many automata based decision procedures, the most ex-
pensive step is the determinization of automata. It costs exponential time and
the result is an automaton of exponential space. The number of steps of the con-
struction is the number of Boolean connectives and quantifiers of the formula,
whereas the constant c is essentially the number of states of the automaton for
x+ y = z.

To slightly improve the complexity one can easily construct directly automata
recognizing the relations x = y, x < y, x ≤ y of Example 1. Of course every
ordinal ωi can also be easily defined directly, without using the formulas of
Example 2.

It is also possible to replace → and ↔ by equivalent formulas using only ¬,∧
and ∨ and to push negations symbols inwards (using De Morgan’s laws, etc).
See [14] for a careful discussion about the cost of these transformations: they
can increase the length of the formula and add new quantifiers. Here we do not
assume that the formula is in prenex normal form.

2.4 Beyond ωω

By using a new letter (B) in the alphabet, it is possible to encode ordinals greater

than ωω. Any ordinal β < ωω
2

can be uniquely written in the form

ωω.pαp + · · · + ωω.2α2 + ωωα1 + α0 , where p < ω, αi < ωω, αp > 0 .
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and we can encode it as a tree where each Tαi
appears

as a subtree. Namely the leftmost branch will have
length p. At depth i on this branch the tree Tαi

is
attached. The skeleton of the tree is depicted on the
right. It is easy to see that a tree automaton can
recognize the relation x+ y = z, and that the proof
of Theorem 1 carries over. Note that the letter B is
used here only for clarity, one could use A instead.

B

B

E

Tα0

Tα1

Tαp

This can be generalized by induction, and for all i < ω we can encode ordinals
less than ωω

i

.

Theorem 2. For each i < ω there exists a constant ci such that the First Order
Theory of (ωω

i

,+) is decidable in time O(Tower(n, ci)), where n is the length of
the formula.

Note that the height of the tower of exponentials do not depend on i, and that
ci is linear in i. When considering FO(ωω

i

,+), even the ordinal 1 is coded by
a tree of depth at least i: we need each tree to have the same skeleton to allow
the automaton to proceed the addition locally. It was already proved in [?,11]
that any ordinal α < ωω

ω

is tree-automatic, that is to say that the structure
(α,<) —without addition— is definable using tree-automata. Moreover any tree-
automatic ordinal is less than ωω

ω

[?,11].

3 Monadic Second Order Theory of (ωk, <)

In this section we use full infinite binary trees. They are given by a mapping
λ : {a, b}∗ 7→ Σ for some finite alphabet Σ. Their domain is always {a, b}∗ so we
do not need to mention it. One can adapt the idea of Section 2 to represent sets
of ordinals. Given a subset S ⊆ ω2 it is represented by the tree λ : {a, b}∗ 7→
{0, 1,#} such that

∀i, j ≥ 0 : λ(aibj) ∈ {0, 1} ∀u 6∈ a∗b∗ : λ(u) = #

∀i, j ≥ 0 : λ(aibj) = 1 ⇔ ω.i+ j ∈ S .

So positions are associated to ordinals according to the left tree of the next
picture. Accordingly the right tree represents the set {0, ω+1, ω+2, ω.2+2, ω.3}.
In this way one can represent any subset of ω2.

0

1

2
. . .

ω

ω + 1

ω + 2
.. .

ω.2

ω.2 + 1

ω.2 + 2
. . .

ω.3
. . .

...

1

0

0
. . .

0

1

1
. . .

0

0

1
. . .

1
. . .

...
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Languages of infinite trees can be defined by top down Muller automata [17]. A
Muller automaton A is a tuple (Q,Σ,∆, I,F) where Q,Σ,∆ are the same as in
Section 2.1, I ⊆ Q is the set of initial states and F ⊆ P(Q) is the acceptance
component (P(Q) is the powerset of Q). A run of A on a Σ-labeled tree λ is a
labeling ρ : {a, b}∗ 7→ Q such that

ρ(ε) ∈ I and ∀u ∈ T : (ρ(u), λ(u), ρ(ua), ρ(ub)) ∈ ∆ .

A run is accepting iff on each (infinite) branch of the run, the set of states
appearing infinitely often is equal to some F ∈ F . A tree is accepted iff there
exists an accepting run. Muller automata cannot be determinized in general, but
the class of languages accepted by Muller automata is effectively closed under
union, intersection, projection and complementation. In particular an automaton
accepting all trees where only one node is labeled by 1 cannot be deterministic:
it has to guess where is the 1.

Formulas of the (full) Monadic Second Order Logic (MSO) over (ωω, <) are
built from

– a countable set of first order variables x, y, z, . . .
– a countable set of second order variables (in capitals) X,Y, Z, . . .
– the order relation (x < y) over first order variables,
– the membership relation (x ∈ X), also written X(x),
– the Boolean connectives ¬, ∧ and ∨ (→ and ↔ are seen here as abbrevia-

tions),
– existential quantification (∃) over first order and second order variables (∀

is seen as an abbreviation for ¬∃¬).

The syntax of the Weak Monadic Second Order Logic (WMSO) is exactly the
same, the difference is that second order variables are interpreted by finite subsets
of the structure.

Example 3. The formulas of Example 1 above are also expressible in MSO(ωω, <)
because they do not use the addition. One can also define a successor relation
(x = y + 1) without addition, and the ordinals ωi for any integer i, similarly to
Example 2. The next formula shows that the set of even ordinals (less than ωω)
can be defined in MSO:

∃X : ∀x (x ∈ X ↔ ¬(x+ 1 ∈ X)) ∧ (¬∃y(x = y + 1) → x ∈ X) .

We consider trees labeled over {0, 1}k where k is the number of first-order and
second-order free variables. It should be clear that one can construct Muller
automata recognizing the relations x ∈ X and x < y. Note that for each first-
order variable the automaton has to check that only one node in the tree is
labeled by 1, i.e., x is treated as a second-order variable X ′ = {x}. See [2] for a
clear exposition of a similar construction in the framework of ordinal automata.

Theorem 3. The Monadic Second Order Theory of (ω2, <) is decidable in time
O(Tower(n, c)), for some constant c, where n is the length of the formula.
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Recall that the upper bound of [16] is in O(Tower(6n, 1)) for the weak variant
WMSO(ωω, <). Already MSO(ω,<) has a lower bound in Ω(Tower(n, d)) for
some constant d > 0 [19], so our bound is really tight. The most expensive step
is the complementation, it can be done in (almost) exponential time, and the
result has also exponential size, see [17,22]. At the end the test of emptiness is
also exponential. Note that for the case of disjunction the automaton has to
guess at the root which subformula can be true. For a formula ψ = ψ1 → ψ2 we
cannot do better than transform it into ¬ψ1∨ψ2. It is not correct to simply build
the product of Aψ1

and Aψ2
and adapt the acceptance component, because the

acceptance condition is checked independently on each branch.
Using an idea similar to that of Section 2.4, one can attach an ω-sequence of

trees of the form presented above to a left-most branch to encode subsets of ω3.
This can be extended by induction to ωi for all i < ω.

Theorem 4. For each i < ω there exists a constant ci such that the Monadic
Second Order Theory of (ωi, <) is decidable in time O(Tower(n, ci)), where n is
the length of the formula.

In other works such as [8,1] the emphasis is not placed on the complexity, but it
seems that the complementation of ordinal automata is double exponential. It
is open how to extend the tree encoding to subsets of ωω.

3.1 MSO-interpretation. Comparison with Ordinal Automata

It is possible to put a different light on the previous constructions. The MSO the-
ory of the full binary tree [22], called S2S, is build from the atomic propositions
Sa(x, y), Sb(x, y) and P (x), where Sa is the relation “left successor”, Sb is “right
successor” and P is a predicate that indicates that the label of a node is 1. In
other words, given an infinite labeled tree λ : {a, b}∗ 7→ {0, 1} and x, y ∈ {a, b}∗:

Sa(x, y) ⇔ y = x.a , Sb(x, y) ⇔ y = x.b , P (x) ⇔ λ(x) = 1 .

Recalling the left figure in page 5, the order among the ordinals/positions in the
tree can be interpreted in S2S. That is, one can write a formula φ(x, y) such that
φ(x, y) is true iff the ordinal of position x is less than that of y. It is easy if one
first write formulas φa(x, y) and φb(x, y) that checks that y is a left descendant
of x (resp. right descendant).

Alternatively one can see the ordering ω2

as the transitive closure of the graph pic-
tured on the right. In other words the
graphs of the orderings ωi, i < ω, are
prefix-recognizable graphs [9]. It is open
whether graphs of greater ordinals are in
the Caucal hierarchy.

. . .

. . .

. . .

. . .
...
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The usual proof that MSO(ωω, <) is decidable uses ordinal automata reading
ordinal words. An ordinal word of length α is a mapping α 7→ Σ, where Σ is
a finite alphabet. An ordinal automaton has a state space Q, usual one-step
transitions of the form (q, σ, q′) ∈ Q × Σ × Q and limit transitions of the form
(P, q′) ∈ P(Q) × Q, see e.g. [2]. They are a generalization of Muller (word)
automata. A run is a mapping ρ : α + 1 7→ Q. For a successor ordinal β + 1,
ρ(β + 1) is defined in the usual way. For a limit ordinal β, the state ρ(β) is
obtained by a limit transition according to the states appearing infinitely often
“before” β.

We want to point out that a run of a Muller automaton on a tree representing
S ⊆ ω2 is very similar to a run of length ω2 of an ordinal automaton. Consider
a node v at depth i on the left most branch. It corresponds to an ordinal ω.i.
The right-most branch from v must satisfy the Muller condition, and the state
reached at the left successor of v is like the state reached at the limit transition
at ω.(i+ 1). In this way we get a new proof that languages accepted by ordinal
automata are closed under complementation, restricted to the case of words of
length ωj, for all j < ω.

Comparing both approaches, we see that tree automata can not be deter-
minized in general, they can be complemented, however, using an exponential
construction. On the other side ordinal automata can be determinized (and com-
plemented) using a doubly exponential construction, due to the nesting of Muller
conditions. We are not aware of a better complementation algorithm for ordinal
automata, see e.g. [8] for a more general result. The transformation from a tree
automaton to an equivalent ordinal automaton according to our coding is very
simple. The state space remains the same except for one extra final state for the
last limit transition. If (q, λ, qa, qb) ∈ ∆ in the tree automaton, add transitions
(q, λ, qb), and (P, qa) for all P ∈ F , where F is the Muller acceptance condition.
The other way around is more complicated because the tree automaton has to
guess what states are going to be visited infinitely often on the right branch,
and then allow only these states to be visited infinitely often.

3.2 Weak MSO and FO

We introduce here new material to compare MSO and FO. Any ordinal β can
be written in a unique way in the form

2γn−1 + · · · + 2γ0 , where (γn−1, . . . , γ0)

is a strictly decreasing sequence of ordinals. The set {γn−1, . . . , γ0} is called
the 2-development of β. For example 2ω = ω, 2ω·i+j = 2ω·i · 2j = ωi · 2j ,
2ω

2

= (2ω)
ω

= ωω. Let E be the binary relation on ordinals such that (x, y) ∈ E

iff x = 2γ for some γ that belongs to the 2-development of y. It is known [6]
that the theories WMSO(α,<) and FO(2α,+, E) are equireducible in linear time.
Recall that the (weak) theory WMSO is the monadic theory where quantification
is restricted to finite sets. This mean that any formula of one of the logics can
be translated into an equivalent formula of the other logic in linear time.
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To extend Theorem 2 to the decidability of FO(2α,+, E) for α = ωi, we only
need a tree automaton recognizing the relation E. In our coding x = 2γ means
that exactly one label is 1 in the tree Tx, and (x, y) ∈ E if moreover the same
node is labeled by 1 in the tree Ty. The automaton recognizing E needs only
three states, so the complexity bounds of Theorem 2 are not changed.

On the other side we have proved decidability of the full MSO theory of (ωi, <
) in Theorem 4. It remains to interpret WMSO in MSO. It is known in general
how to construct a Muller tree automaton that checks that only finitely many
nodes of a tree are labeled by 1. It is possible with only 2 states and can be used to
adapt the proof of Theorem 3 to WMSO: this automaton should be used at each
quantification. Using this reduction, the complexity of the decision procedure of
WMSO(ωi, <) is in O(Tower(n+1, c′i)) for some constant c′i. Alternatively, using
the property that every subset of an ordinal is also well ordered, it is possible to
write an MSO formula that checks that a set of ordinals is finite. This formula
should be used together with each second order quantification.

An extension of the previous tree-automata techniques to higher ordinals such
as MSO(ωω, <) would gives also tree-automata techniques for WMSO(ωω, <)
and then FO(ωω

ω

,+, E), which is impossible [?,11] (see end of Section 2).

Related to the Cantor Normal Form (see Section 2), any ordinal β can yet
be written in a unique way in the form

α = γ.ωω + ωpnp + ωp−1np−1 + · · · + ω1n1 + n0 .

where np > 0. The ω-character of α is the sequence (σ, np, . . . , n0) where σ = 0
if γ = 0, and σ = 1 if γ > 0. The theories WMSO(α,<) and WMSO(β,<) are
equal iff α and β have the same ω-character [6]. It follows that FO(2α,+, E) and
FO(2β,+, E) are equal iff α and β have the same ω-character.

4 Perspectives

We gave a new decision procedure for FO(ωω
i

,+) and MSO(ωi, <) achieving
better complexity bounds. We hope our constructions are easy to understand.
As a byproduct we have a new proof of the complementation of ordinal automata
restricted to words of length ωi.

According to [?,11] (see end of Section 2) and Section 3.2 it is not possible
to extend the tree-automata techniques to higher ordinals. But we would like
to extend it to other linear orderings. A bi-infinite word is a mapping from the
relative integers to a finite alphabet. It is easy to represent it as an infinite tree
where only the right most and the left most branches are relevant. It seems easy
to represent also orderings like ω∗ or ω · (ω∗). Using a special letter, one could
mark branches where the “reverse” ordering w∗ is used. We conjecture that one
can extend the results of Section 3 to more general linear orderings than just
ordinals, and give a new proof of the results of [8].
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21. Wac law Sierpiński. Cardinal and ordinal numbers. Second revised edition. Mono-
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