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Abstract

In this paper we provide properties of moments of matrix exponential distributions and joint
moments of matrix exponential processes. Based on the provided properties, an algorithm is pre-
sented to compute any finite dimensional moments of these processes based on a set of required (low
order) moments. This algorithm does not require the computation of any representation of the given
process. We present some related examples to demonstrate the potential use of the properties of
moments.
Keywords: Matrix exponential process, Markov arrival process, Matrix exponential distribution,
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1 Introduction

Phase type (PH) distributions and Markovian arrival processes (MAP) are simple stochastic models
that enjoy a simple stochastic interpretation based on Markov chains. They are widely used in traffic
engineering because efficient numerical techniques are available for the solution of queueing models with
PH distributions and MAPs [6, 10, 11]. Matrix exponential (ME) distributions and processes (MEP)
are more general stochastic models than PH distributions and MAPs [2, 5]. They do not have a simple
stochastic interpretation and most of the methods applied to Markovian models cannot be directly
applied to them. Still, in recent years we have seen a growing interest in these models and several results
for queueing systems have been presented [1, 3, 8, 4].

To apply PH, ME distributions, MAPs and MEPs in stochastic models, we need good understanding
of their properties. In this paper we investigate issues regarding the moments of these distributions and
processes. The paper is organised as follows. Section 2 presents results for PH and ME distributions,
while Section 3 deals with MAPs and MEPs. We formulate the results for ME distributions and MEPs,
but they are directly applicable to PH distributions and MAPs as well. We conclude with Section 4.

2 Matrix exponential and Phase type distributions

2.1 Basic definitions

Let X be a continuous non-negative random variable with cumulative distribution function (cdf)

F (t) = Pr(X < t) = 1− αeAt1I , (1)

where row vector α is referred to as the initial vector, square matrix A as the generator and 1I as the
closing vector. Without loss of generality (see [7]), we assume that the closing vector, 1I, is a column
vector of ones. When the cardinality of the vectors and the square matrix is n, X is referred to as
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an order n matrix exponential distribution (ME(n)). As X is a continuous random variable, it has no
probability mass at zero, i.e., α1I = 1. The density, the Laplace transform and the moments of X can
be computed as

f(t) = αeAt(−A)1I , (2)

f∗(s) = E(e−sX) = α(sI −A)−1(−A)1I , (3)

µn = E(Xn) = n!α(−A)−n1I . (4)

In general, the elements of α and A may be arbitrary real numbers. If α is a probability vector and A
is the generator matrix of a continuous-time Markov chain, then X is an order n phase type distributed
(PH(n)). α is a probability vector when αi ≥ 0 (∀i = 1, . . . , n) and α1I = 1 and matrix A is a transient
Markovian generator when Aii < 0 (∀i = 1, . . . , n), Aij ≥ 0 (∀i, j = 1, . . . , n, i 6= j) , A1I ≤ 0, A1I 6= 0.

To ensure that f(t) in (2) is a density function, A has to fulfill the necessary but not sufficient
condition that the real part of its eigenvalues are negative (consequently A is non-singular).

The vector together with the square matrix, (α, A), is referred to as the representation of the ME
(PH) distribution. In general, the (α, A) representation is not unique.

Definition 1 An (α, A) representation is non-redundant if the cardinality of vector α and square matrix
A is equal to the degree of the denominator of f∗(s) (which is a rational function of s).

Throughout the paper we assume that the representations of ME (PH) distributions are non-
redundant.

2.2 Doubly infinite Hankel matrix

We define the doubly infinite Hankel matrix as

R =
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where ri = α(−A)−i1I. For i ≥ 0, ri is the ith reduced moment, E(Xn)/n!, while for i < 0, ri is related
to the ith derivative of the cdf, since the ith derivative of the cdf of the ME distribution given by α and
A at t = 0 is

diF (t)

dti

∣

∣

∣

∣

t=0

= −αAi1I = (−1)i+1α(−A)i1I = (−1)i+1 r−i.

Theorem 1 The rank of R is n.

Proof 1 R can be expressed as

R =

























...
α(−A)2

α(−A)1

α
α(−A)−1

α(−A)−2

...

























[

· · · (−A)21I (−A)11I 1I (−A)−11I (−A)−21I · · ·
]

.
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where the size of the first matrix is ∞×n and the size of the second matrix is n×∞. As a consequence
the rank of R is at most n.

The n × n sub-matrix of R whose upper left element is r0 is non-singular when (α, A) is non-
redundant [13]. As a consequence the α(−A)0, α(−A)−1, . . . , α(−A)−n+1 row vectors as well as the
(−A)01I, (−A)−11I, . . . , (−A)−n+11I column vectors are linearly independent.

As a consequence of Theorem 1 the determinant of any (n + 1)× (n + 1) submatrix of R must be 0.
Having the series ri1 , ri2 , . . . , rik

, where i1 < i2 < . . . < ik and ij 6= 0, ∀j ∈ 1, . . . , k

det
(

R{0,1,2,...,n},{i,i+1,i+2,...,i+n}

)

= 0, i1 ≤ i ≤ ik − 2n (5)

provides a set of ik− i1−2n+1 equations with ik− i1−k unknowns. These equations are not necessarily
linear in the unknowns.

2.3 Examples of application of (5)

Generation of the ri series of ME distributions

By Rc1,c2
where c1 and c2 are two sets of indices we denote the submatrix of R which consists of rows

according to c1 and columns according to c2. For example,

R{1,3,4},{0,2} =





r1 r3

r3 r5

r4 r6



 .

Theorem 1 and (5) defines the relations in the ri series. Based on these relations we can compose
an explicit algorithm to generate any element of the ri series of a ME(n) distribution based on the
r0, r1, . . . , r2n−1 reduced moments without computing any representation of this distribution (α,A).

Given the first 2n reduced moments, r0, r1, ..., r2n−1, det
(

R{0,1,...,n},{0,1,...,n}

)

= 0 and

det
(

R{0,1,...,n},{−1,0,1,...,n−1}

)

= 0 give a single unknown linear equation for r2n and r−1, respectively.

Having determined r0, . . . , r2n−1+i, i>0, (ri, . . . , r2n−1, i<0) det
(

R{0,1,...,n},{j,j+1,...,j+n−1}

)

= 0 with
j = i+1 (j = i−1) gives a single unknown linear equation for r2n+i (ri−1).

Non-unique PH(3) feasible solutions for k = 2n− 1

Assuming that

r0 = 1, ri1 = r10 = 0.000295999, ri2 = r20 = 6.9987 10−13, ri3 = r30 = 1.01758 10−23,

ri4 = r40 = 5.24414 10−36, ri5 = r50 = 2.23015 10−49

the set of equations in (5) is composed of ik − 2n + 1 = 45 equations with ik − k = 45 unknowns. There
are several different solutions of this set of equations and there are more than one which are PH(3)
feasible. E.g., the moments of

α1 =
[

0.1 0.2 0.7
]

A1 =





−1 1 0
0 −2 2
1 0 −3





and

α2 =
[

0.586119 0.309469 0.104413]
]

A2 =





−2.51342 0 0.796945
2.51342 −2.51342 0

0 0.927169 −0.927169





are solutions of (5) for this set of reduced moments. Table 1 lists the first reduced moments of the two
PH(3). The differences vanish for large moments, but the numerical value of the relative differences in

the last row of the table ((r
(1)
i − r

(2)
i )/r

(1)
i ) indicates that the r10 reduced moments are identical while

the r9 and r11 reduced moments are different. This periodicity of the moments remain valid forever,
i.e, all tenth moments of the two PH(3) remains identical. It is interesting to note that the probability
density function (pdf) of the two PH(3) exhibit a similar behaviour to that of the moments (see Figure
1). The two pdfs cross each others infinitely many times. Indeed, it implies that two PH(3) distributions
whose pdfs are identical in infinitely many points are not necessarily identical.
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ri 0. 1. 2. 3. 4. 5.
{α1, A1} 1. 1.5 1.4875 1.03021 0.537956 0.224808
{α2, A2} 1. 1.54536 1.50213 1.03248 0.538182 0.224824

ri 6. 7. 8. 9. 10. 11.
{α1, A1} 0.0782855 0.0233666 0.00610259 0.00141671 0.000295999 0.000056222
{α2, A2} 0.0782863 0.0233666 0.00610259 0.00141671 0.000295999 0.000056222
rel. diff. -1.10324 10−5 -1.51817 10−6 -1.78306 10−7 -1.51422 10−8 -3.66286 10−16 3.94147 10−10

Table 1: The reduced moments of PH(3) {α1, A1} and {α2, A2}

1 2 3 4
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0.4

0.6

0.8

1

1.2

1.4

2 4 6 8 10 12

-1

-0.5

0.5

1

Figure 1: Density function of PH(3) {α1, A1} and {α2, A2} and their difference (f1(t)− f2(t))e
2.8t

Fitting 3 reduced moments out of 5

Assume that we are given the first five reduced moments of a random variable and our aim is to
construct a PH distribution with two phases to approximate it. The five reduced moments are r1 =
1, r2 = 1.25, r3 = 4.16̇, r4 = 104.16̇, r5 = 8333.3̇. A PH distribution with two phases is determined
by its first three reduced moments. However, we are not limited to use r1, r2 and r3. For example, we
can choose to fit reduced moments r1, r3 and r5. In order to obtain PH distribution with two phases
and reduced moments r1, r3 and r5, we do the following. We assume that r1, r3 and r5 are reduced
moments of a PH distribution with two phases and we compute the first three reduced moments of this
distribution based on (5). Then the fitting is performed based on these first three reduced moments.

In the following table we report fittings which are different in the choice of the utilised three reduced
moments. In all the cases the mean is maintained and hence we have to choose two out of the four
remaining reduced moments. The reduced moments that are set are indicated with bold characters.
The reduced moments in the last row are chosen in such way that the sum of the relative errors in the
reduced moments,

∑5
i=2 |r̂i − ri|/ri, are minimal. The distribution determined by this reduced moment

set is referred to as opt.
r2 r3 r4 r5

1.25 4.16̇ 35.5903 371.817

1.25 6.31469 104.16̇ 1990.25

1.25 9.3729 265.489 8333.3̇

1.09182 4.16̇ 104.16̇ 3353.48

1.05945 4.16̇ 163.533 8333.3̇

1.01543 2.27679 104.16̇ 8333.3̇
1.03826 3.22754 126.341 7047.53

In Figure 2 the pdf of the different fitted distribution are depicted. The legend indicates the reduced
moments that are fitted. The figure depicts the fitting with three phases as well which matches all the
five reduced moments. The logarithmic plot suggests that a better fitting of the lower moments results
in a better body fitting, while the better fitting of the higher moments results better tail fitting.
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Figure 2: Body and tail of pdf of different fittings

PH matching based on the derivatives of the cdf at zero

The continuous PH(2) distributions are uniquely defined by their first 3 reduced moments and [12]
proposes a way to compute an α probability vector and an A generator matrix based on these reduced
moments. We use this algorithm to create a “derivative matching” method for PH(2) distributions.

When the first three derivatives of the cdf of a PH(2) at t = 0 are r−1 = 4, r−2 = 17, r−3 = 76, we
use

det





r−3 r−2 r−1

r−2 r−1 r0

r−1 r0 r1



 = 0, det





r−2 r−1 r0

r−1 r0 r1

r0 r1 r2



 = 0, det





r−1 r0 r1

r0 r1 r2

r1 r2 r3



 = 0

and r0 = 1 to obtain r1, r2, r3. Solving the equations from left to right, the number of unknown is always
1, and the equations are linear in this unknown. The solution is

r1 =
4

15
, r2 =

17

225
, r3 =

76

3375
.

From r1, r2, r3 we obtain ([12]):

α = [0.2 0.8], A =

[

−3 3
0 −5

]

.

An example of ME(3) feasibility check based on r−2, . . . , r3

One can perform a numerical ME(3) feasibility check based on the r−j , r−j+1, . . . , r5−j , 0 < j < 6, series
in three steps:

• compute the r0, r1, . . . , r5 series using the determinants of the (n + 1)× (n + 1) submatrices of R,

• calculate a vector α and a matrix A based on r0, . . . , r2n−1 such that ri = α(−A)−i1I, (i =
0, 1, . . . , 2n− 1) using the procedure of [13],

• decide the non-negativity of f(t) = αeAt(−A)1I.

Starting from

r−3 =
24

5
, r−2 = 0, r−1 =

6

5
, r0 = 1, r1 =

3

5
, r2 =

7

20
,

we can compute r3 = 5/24 using det
(

R{−3,−2,−1,0},{0,1,2,3}

)

= 0, r4 = 1/8 using

det
(

R{−2,−1,0,1},{0,1,2,3}

)

= 0 and r5 = 3/40 using det
(

R{−1,0,1,2},{0,1,2,3}

)

= 0.
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Having r0, . . . , r5 we compute α and A which are

α =

[

1

3

1

3

1

3

]

, A =

















−
152

9

7702

225
−

3962

225

−
395

81

631

81
−

341

81

305

81
−

721

81

251

81

















.

Then we plot f(t) = αeAt(−A)1I as shown in Figure 3. Assuming that one can decide the non-negativity
of f(t) based on Figure 3 we conclude that the given {r−2, r−1, r0, r1, r2, r3} series is ME(3) feasible.
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Figure 3: The density function, f(t), and its tail on log-log scale constructed from the
{r−2, r−1, r0, r1, r2, r3} series

3 Matrix exponential and Markov arrival processes

3.1 Preliminaries

Let X(t) be a stationary arrival process, defined by matrices A0 and A1, whose sequence of interarrival
times is X0, X1, . . .. The joint density of X0, X1, . . . , Xm is

f(x0, x1, . . . , xm) = αeA0x0A1e
A0x1A1 . . . eA0xmA11I , (6)

where α is the solution of α(−A0)
−1A1 = α and α1I = 1. The marginal densities of

f(x0, x1, . . . , xm) can be obtained using
∫ ∞

0 eA0xdx = (−A0)
−1. For example, f(x0, x2, x3, . . . , xm) =

αeA0x0A1(−A0)
−1A1e

A0x2A1 . . . eA0xmA11I.
The cardinality of the square matrices A0 and A1 is n. Similarly to the previous section, we consider

the following cases:

• If f(x0, x1, . . . , xm) ≥ 0, ∀ m ≥ 0 and ∀ x1, x2, . . . , xm ≥ 0 and
∫

x1

. . .
∫

xm

f(x0, x1, . . . , xm)dx1 . . . dxm = 1, ∀ m ≥ 0, then X(t) is a matrix-exponential pro-

cess of order n, MEP(n). MEP is identical to the rational arrival process defined in [2].

• If A0 is a transient Markovian generator matrix and A1 ≥ 0, then X(t) is a Markov arrival process
of order n, MAP(n).

When X(t) is a MEP(n), it has the following properties:

• The stationary inter-arrival time distribution is matrix-exponential with parameters α and A0.
Therefore, A0 fulfills the conditions of ME distributions provided in the previous section.

• Starting from an arbitrary initial vector (α0), the respective initial vectors at the consecutive
inter-arrivals (α1, α2, . . .) satisfy αi = αi−1G, where G = (−A0)

−1A1. Matrix G has the following
properties:
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– αG = α and G1I = 1I,

– 1I = G1I = (−A0)
−1A11I implies −A01I = A11I and

– 1I = G1I implies that the respective initial vectors of the consecutive arrivals (α1, α2, . . .)
satisfy αi1I = 1, if α01I = 1.

• If X(t) is a MEP(n), matrix G has n eigenvalues on the unit disk and one of them is 1 (otherwise
the α1, α2, . . . series does not converge or limi→∞ αi depends on α0).

When X(t) is a MAP(n), it has the following additional properties:

• The phases of the system at arrival epochs form a DTMC, which means that matrix G is a transition
probability matrix, or stochastic matrix, i.e., the elements of G are non-negative and not greater
than 1.

• α is a probability vector.

The major differences of the MEP and the MAP cases are the following. In the case of MEPs the
row sum and the diagonal element of A0 can be positive, the elements of α and G can be negative or
greater than one and A1 can contain negative elements. However, the row sums of A0 +A1 must be zero
in both cases.

The pair of square matrices (A0, A1) is referred to the representation of the MEP (MAP). In general,
the (A0, A1) representation is not unique.

Definition 2 An (A0, A1) representation of cardinality n is said to be non-redundant if the inter-arrival
time distribution defined by (A0, A1) is a non redundant ME(n) distribution.

Throughout the paper we assume that the representations of MEPs (MAPs) are non-redundant.
Since the inter-arrival times have a ME(n) distribution with generator A0 and initial vector α, the

reduced moments of the inter-arrival times are (in accordance with (4)) ri = α(−A0)
−i1I, and the

results of the previous section are applicable to compute the relation of the elements of the ri series for
i = {0,±1,±2, . . .}.

The joint moments of the a0 = 0 < a1 < a2 < . . . < am−1-th inter-arrival times are

E(X i1
0 X i2

a1
. . . X im

am−1
) = α i1!(−A0)

−i1Ga1−a0 i2!(−A0)
−i2 . . . Gam−1−am−2im!(−A0)

−im1I. (7)

To shorten the notation we introduce E = (−A0)
−1 and

γi1,i2,...,im

k2,...,km
=

1
∏m

j=1 ij !
E

(

X i1
0 X i2

k2
. . .X im

k2+...+km

)

= αEi1Gk2Ei2Gk3Ei3 . . . GkmEim1I . (8)

We refer to the γi1,i2,...,im

k2,...,km
as reduced joint moments. Special cases of (7) include

• m = 1, i1 = i:
E(X i

0) = i!α(−A0)
−i1I = γi = ri,

indicates that γi1,i2,...,im

k2,...,km
is a generalisation of the reduced moment series. Since γi = ri, we use

the γi notation to emphasise the relation with other γi1,i2,...,im

k2,...,km
quantities and the ri notation to

refer to the results of Section 2 in the remainder of the paper.

• m = 2, a1 = k, i1 = i2 = 1: The joint mean,

E(X0Xk) = α(−A0)
−1Gk(−A0)

−11I = γ1,1
k ,

is the basic quantity to characterise the lag-k correlation of the process.

• m = 2, a1 = k: The joint moments of the inter-arrival times X0 and Xk,

E(X i1
0 X i2

k ) = i1!i2!α(−A0)
−i1Gk(−A0)

−i21I = i1!i2! γi1,i2
k ,

carries information about the joint distribution of the k-apart inter-arrival times. We refer to
E(X i

0X
j
k) as lag-k quantities.
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The following subsections extend the concept of a Hankel matrix to find the relation between the
various moments of the inter-arrival times of MEP(n)s. Similar to the ME distribution case, we present
methods to compute the relations between all possible reduced moments of the inter-arrival times without
computing any (A0, A1) representation. We show that the first 2n−1 reduced moments of the inter-arrival
times, E(X i

0), 1 ≤ i ≤ 2n− 1, and the first (n− 1)2 lag-1 reduced moments, E(X i
0X

j
1), 1 ≤ i, j ≤ n− 1,

uniquely determine all other reduced moments of a non-redundant MEP(n), and we present an algorithm
for computing them.

3.2 Relation of reduced joint moments of a MEP(n) processes

Let

M1(i1, . . . , im, k2, . . . , km) =































γi1,i2,...,im

k2,...,km
γ

i1,i2,...,im−1

k2,...,km−1
γ

i1,i2,...,im−1+1
k2,...,km−1

. . . γ
i1,i2,...,im−1+n−1
k2,...,km−1

γim r0 r1 . . . rn−1

γ1,im

km
r1 r2 . . . rn

γ2,im

km
r2 r3 . . . rn+1

...
...

...
...

...

γn−1,im

km
rn−1 rn . . . r2n−2































and

M2(i1, i2, k) =































γi1,i2
k γi1 γi1,1

1 . . . γi1,n−1
1

γi2 r0 r1 . . . rn−1

γ1,i2
k−1 r1 r2 . . . rn

γ2,i2
k−1 r2 r3 . . . rn+1

...
...

...
...

...

γn−1,i2
k−1 rn−1 rn . . . r2n−2































.

Theorem 2 The rank of M1 and M2 is n.

Proof 2

M1(i1, . . . , im, k2, . . . , km) =



















αEi1Gk2Ei2 . . . Gkm−1Eim−1

α
αE
αE2

...
αEn−1



















[

GkmEim1I 1I E11I E21I . . . En−11I
]

,

M2(i1, i2, k) =



















αEi1G
α

αE
αE2

...
αEn−1



















[

Gk−1Ei21I 1I E11I E21I . . . En−11I
]

and the rest of the proof is the same as for Theorem 1.
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From Theorem 2, the equation

det(Mℓ(i1, . . . , im, k2, . . . , km)) = 0, ℓ = 1, 2 (9)

establishes the basic relation of the reduced joint moments of MEP(n)s. The upper left element of
M1(i1, . . . , im, k2, . . . , km) and M2(i1, i2, k) are the ones with the highest order and (9) gives an explicit
expression to compute these elements from the lower order reduced joint moments of the same process.

3.3 Computation of any reduced joint moment of MEP(n) processes

Assume that the parameters, r0 = 1, ri = γi for 1 ≤ i ≤ 2n− 1 and γi,j
1 for 1 ≤ i, j ≤ n− 1 are known.

Our aim is to compute γi1,i2,...,im

k2,...,km
with m > 1. This can be done by the iterative application of (9).

Based on M1(i1, . . . , im, k2, . . . , km), it is possible to obtain an explicit expression for γi1,i2,...,im

k2,...,km
in

terms of γ
i1,i2,...,im−1+j

k2,...,km−1
, 0 ≤ j ≤ n− 1, and γj,im

km
, 1 ≤ j ≤ n− 1, and γj , 1 ≤ j.

Then by constructing the matrices M1(i1, . . . , im−1 + j, k2, . . . , km−1), 0 ≤ j ≤ n− 1 we can obtain

explicit expressions for the quantities γ
i1,i2,...,im−1+j

k2,...,km−1
, 0 ≤ j ≤ n− 1 in terms of γ

i1,i2,...,im−2+j

k2,...,km−2
, 0 ≤ j ≤

n− 1, and γ
j1,im−1+j2
km

, 1 ≤ j1 ≤ n− 1, 0 ≤ j2 ≤ n− 1, and γj , 1 ≤ j.

By repeating the above step finally we obtain an expression for γi1,i2,...,im

k2,...,km
in terms of quantities such

as γj,i
k , 1 ≤ j ≤ n− 1, and γj, 1 ≤ j.
Quantities such as γj = rj , 1 ≤ j can be computed as described in Section 2. M2(i1, i2, k) will be used

instead to deal with the quantities such as γj,i
k , 1 ≤ j ≤ n− 1. Based on (9), it is possible the construct

an explicit expression for γi1,i2
k in terms of quantities such as γi1,j

1 , 1 ≤ j ≤ n−1, and γj,i2
k−1, 1 ≤ j ≤ n−1,

and γj , 1 ≤ j.
Since 1 ≤ i1 ≤ n − 1, the quantities γi1,j

1 , 1 ≤ j ≤ n − 1 are assumed to be known, while γj , 1 ≤ j

can be computed as described in Section 2. In order to deal with γj,i2
k−1, 0 ≤ j ≤ n − 1 we construct

M2(j, i2, k − 1), 1 ≤ j ≤ n − 1 from which we can have expressions for these quantities in term of
γj1,j2
1 , 1 ≤ j1, j2 ≤ n− 1, and γj,i2

k−2, 1 ≤ j ≤ n− 1, and γj , 1 ≤ j.

By successive application of the above step we obtain an expression for γj,i
k , 1 ≤ j ≤ n− 1 in terms

of γj,i
1 , 1 ≤ j ≤ n− 1, and γj , 1 ≤ j.

The quantities γj,i
1 , 1 ≤ j ≤ n− 1 can instead be computed by constructing the following special case

of the M2(i1, i2, k) matrix.
M2(i1, i2, 1) = (10)



















αEi1G
α

αE
αE2

...
αEn−1



















[

Ei21I 1I E11I E21I . . . En−11I
]

=





























γi1,i2
1 γi1 γi1,1

1 . . . γi1,n−1
1

γi2 r0 r1 . . . rn−1

γi2+1 r1 r2 . . . rn

γi2+2 r2 r3 . . . rn+1

...
...

...
...

...

γi2+n−1 rn−1 rn . . . r2n−2





























.

Based on (10), it is possible to construct an explicit expression for γi1,i2
1 in terms of quantities that are

all known since 1 ≤ i1 ≤ n − 1 or can be computed by the algorithm given in Section 2 and γi1,i2
1 is

given for 1 ≤ i1, i2 ≤ n− 1.

Application of the procedure for computing E(X2
0X2X3)

In the following we list the matrices that we need to compute γ2,1,1
2,1 from which it is straightforward to

determine E(X2
0X2X3) as a function of the known parameters. We assume that n = 2 and hence the

matrices are of size 3 × 3 and we know γi, 0 ≤ i ≤ 3 and γ1,1
1 . All the matrices are used to obtain an
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expression for the (1,1) entry of the matrix based on the fact that the determinant of the matrix must
be 0. In all the matrices bold characters are used to indicate the variables that we do not know yet.

M1(2, 1, 1, 2, 1) =









γ
2,1,1

2,1
γ

2,1

2
γ

2,2

2

γ1 γ0 γ1

γ
1,1

1
γ1 γ2









, M1(2, 1, 2) =









γ
2,1

2
γ2 γ3

γ1 γ0 γ1

γ
1,1

2
γ1 γ2









, M1(2, 2, 2) =









γ
2,2

2
γ2 γ3

γ2 γ0 γ1

γ
1,2

2
γ1 γ2









,

M2(1, 1, 2) =









γ
1,1

2
γ1 γ

1,1

1

γ1 γ0 γ1

γ
1,1

1
γ1 γ2









, M2(1, 2, 2) =









γ
1,2

2
γ1 γ

1,1

1

γ2 γ0 γ1

γ
1,2

1
γ1 γ2









, M2(1, 2, 1) =









γ
1,2

1
γ1 γ

1,1

1

γ2 γ0 γ1

γ3 γ1 γ2









Based on the above matrices and the facts that γ0 = 1 and γi = ri we have that

γ2,1,1
2,1 =

1

((r1)2 − r2)
4

(

r2

(

γ1,1
1 (r2)

4 − (r1)
4γ1,1

1

(

(γ1,1
1 )2 + 4γ1,1

1 r2 − 8(r2)
2
)

+

(r1)
2γ1,1

1 r2

(

2(γ1,1
1 )2 − γ1,1

1 r2 − 4(r2)
2
)

+ (r1)
6
(

2(γ1,1
1 )2 − 2γ1,1

1 r2 − (r2)
2
))

+

r1

(

(r1)
2 − γ1,1

1

)2 (

r2

(

−3γ1,1
1 + r2

)

+ (r1)
2
(

γ1,1
1 + r2

))

r3 −
(

(r1)
2 − γ1,1

1

)3

(r3)
2

)

.

We have seen that the r0 = 1, ri, 1 ≤ i ≤ 2n − 1 reduced moments and the γi,j
1 , 1 ≤ i, j ≤ n − 1

reduced joint moments uniquely defines any reduced joint moment of a MEP(n). By this reason we
define the basic moment set as follows.

Definition 3 The basic moment set of a MEP(n) is the set of r0 = 1, ri, 1 ≤ i ≤ 2n − 1 reduced
moments together with the γi,j

1 , 1 ≤ i, j ≤ n − 1 reduced joint moments. The basic moment set is
composed of n2 moments and an additive constraint, r0 = 1.

3.4 Dependent MEP(n) moments

Suppose we are given the r1, r2, r3, r4, r5 reduced moments and the γ1,1
1 , γ1,2

1 , γ1,3
1 , γ1,4

1 reduced joint
moments of a MEP(3). Similar to the number of moments in the basic moment set, this is a set of n2

moments and based on this fact one might expect to compute all other moments of the MEP(n) from
this moment set.

We have that det(M2(1, 3, 1)) = 0 and det(M2(1, 4, 1)) = 0. These equations define relations for the
given set of moments, that is,

M2(1, 3, 1) =

















γ1,3
1 γ1 γ1,1

1 γ1,2
1

γ3 γ0 γ1 γ2

γ4 γ1 γ2 γ3

γ5 γ2 γ3 γ4

















, M2(1, 4, 1) =

















γ1,4
1 γ1 γ1,1

1 γ1,2
1

γ4 γ0 γ1 γ2

γ5 γ1 γ2 γ3

γ6 γ2 γ3 γ4

















.

It can be seen that det(M2(1, 3, 1)) = 0 and det(M2(1, 4, 1)) = 0 can be used to determine γ1,3
1 , γ1,4

1 ,
as a function of r1, r2, r3, r4, r5 and γ1,1

1 , γ1,2
1 , using that r0, r1, r2, r3, r4, r5 also defines r6 = γ6.

The det(M2(1, 3, 1)) = 0 equation can also be used to show that the r1, r2, r3, r4 reduced moments
and the γ1,1

1 , γ1,2
1 , γ1,3

1 , γ2,1
1 , γ2,2

1 reduced joint moments uniquely determine the elements of the basic
moment set.

From this example we draw the following conclusions. It is not obvious to see the dependencies of
the various sets of moments. There is more than one set of n2 moments that uniquely determine all
moments of a MEP(n) process and, therefore, the choice of the basic moment set is not unique.
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3.5 Two different MEPs with equal marginal distribution and lag-
correlations

In [9] a procedure is presented for the construction of a MEP based on the first 2n− 1 moments of the
marginal distribution and the first 2n− 3 lag-correlations. Here we show that there are different MEPs
that realize the same marginal distribution and lag-correlations.

Assume that n = 3 and we are given the basic moment set of the MEP(3), in particular we have
γ1,2
1 = x1 and γ2,1

1 = x2. Based on these parameters, as shown in Subsection 3.3, it is possible to
compute the quantities that determine the lag-correlations. By following these computations, it can be
seen that the given parameter set with γ1,2

1 = x1 and γ2,1
1 = x2 results in the same lag-correlations as

the ones with γ1,2
1 = x2 and γ2,1

1 = x1.
As an example we consider the following two cases:

r1 =
559

1350
, r2 =

469081

1215000
, r3 =

4660039019

12028500000
, r4 =

4237895351171

10825650000000
, r5 =

42422816639765929

107173935000000000
,

E(X1
0X1

1 ) =
1309691

26730000
, E(X2

0X2
1 ) =

525968309171

5412825000000
,

E(X1
0X2

1 ) =
703719119

12028500000
or

1031769119

12028500000
,

E(X2
0X1

1 ) =
1031769119

12028500000
or

703719119

12028500000
.

In both cases the lag-correlations are identical and the first lag-correlations are

E(X0X2) =
4146491

17820000
, E(X0X3) =

3011771

21384000
, E(X0X4) =

39937801

213840000
, E(X0X5) =

23351837

142560000
.

In order to show that the two MEPs are different, in Figure 4 we depict the joint density of X0 and X1

for a given value of X0.

0.01 0.02 0.03 0.04 0.05

5

10

15

20

25

30

← E(X1
0X

2
1 ) =

703719119

12028500000

Figure 4: Joint density, fX0,X1
(1, x), for the two MEPs with equal marginal moments and lag-correlation

4 Conclusion

This paper provides a methodology to investigate the relation of moments of ME distributions and
MEPs. The presented results are also valid for PH distributions and MAPs as they are proper subsets
of ME distributions and MEPs, respectively.

In our future work we intend to apply this compact moment representation of MEPs in moment
matching and fitting.
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