
Structural Statistical Software Testing with

Active Learning in a Graph

Nicolas Baskiotis1 and Michele Sebag1

CNRS − INRIA − Université Paris-Sud
LRI Bat 490, F-91405 Orsay, France

Nicolas.Baskiotis, Michele.Sebag @lri.fr

Abstract. Structural Statistical Software Testing exploits the control
flow graph of the program being tested to construct test cases. While test
cases can easily be extracted from feasible paths in the control flow graph,
that is, paths which are actually exerted for some values of the program
input, the feasible path region is a tiny fraction of the graph paths (less
than 10−5] for medium size programs). The S4T algorithm presented
in this paper aims to address this limitation; as an Active Relational
Learning Algorithm, it uses the few feasible paths initially available to
sample new feasible paths. The difficulty comes from the non-Markovian
nature of the feasible path concept, due to the long-range dependencies
between the nodes in the control flow graph. Experimental validation on
real-world and artificial problems demonstrates significant improvements
compared to the state of the art.

1 Introduction

Autonomic Computing is becoming a new application domain for Machine Learn-
ing (ML), motivated by the increasing complexity of current systems [RDTK06].
Ideally, systems should be able to automatically adapt, maintain and repair
themselves; a first step to this end is to build self-aware systems, using ML to
automatically model the system behaviour. Similar trends are observed in the
field of software design; various ML approaches have been proposed for Software
Testing [BGC01,BSGG07], Software Modeling [XSHW05] and Software Debug-
ging [ZJL+06].

Motivated by Statistical Structural Software Testing [DGG04] and resuming
an earlier work [BSGG07], this paper is concerned with sampling the feasible
paths in the control graph of the program being tested. For reasonable size
programs, there is a huge gap between the syntactical description of the program
(the control flow graph, Fig. 1) and its semantics (the set of paths which are
actually executed for some configurations of the program input variables, referred
to as feasible paths). In practice, the fraction of feasible paths is tiny, ranging
in [10−10, 10−5] for medium size programs; this makes the uniform sampling of
the control flow graph e.g. based on classical results from labelled combinatorial
structures [FZC94] inefficient.

Dagstuhl Seminar Proceedings 07161
Probabilistic, Logical and Relational Learning - A Further Synthesis
http://drops.dagstuhl.de/opus/volltexte/2008/1387

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 N. Baskiotis, M. Sebag

The use of supervised ML in order to characterize the set of feasible paths
is severely hindered by the available examples (feasible paths are very expensive
and hard to find), on one hand, and by the non-Markovian nature of the under-
lying target concept on the other hand; a path is infeasible as it violates subtle
and usually long-range dependencies among the program nodes. Reinforcement
learning (finding a good policy, i.e. walking in the control graph in order to ul-
timately construct a feasible path) is not applicable as the goal is to find new
feasible paths.

Using frugal propositional representations inspired from Parikh maps [HU79],
propositional learning can be applied to learn an approximation of the “Feasible
Path” concept [BSGG07]. However, this characterization is not constructive, i.e.
it does not directly allow for generating new feasible paths, which is the core task
for Statistical Structural Software Testing. A Generate-and-Test approach built
on the top of the Parikh map representation was thus proposed in [BSGG07] to
generate new feasible paths.

This paper presents a new algorithm called S4T (for Structural Sampling for
Statistical Software Testing) aimed at sampling the feasible paths. The contri-
bution of S4T is to hybridize a probabilistic approach with a divide and conquer
heuristics based on the Version Space [Mit82]. Empirical validation on real-world
and artificial problems shows that S4T significantly improves on the state of the
art.

The paper is organized as follows. Section 2 introduces the formal background
and prior knowledge related to the SST problem; it discusses the limitations of
supervised learning for SST and describes the extended Parikh representation
first presented in [BSGG07]. Section 3 gives an overview of the relational active
learning S4T algorithm. Section 4 reports on the empirical validation of the ap-
proach on real-world and artificial problems, and discusses the results compared
to the state of the art. The paper concludes with some perspectives for further
research.

2 Position of the problem

This section introduces statistical software testing (SST) and discusses how Ma-
chine Learning can be made to support SST. The representation used throughout
the paper, based on extended Parikh maps, is last described.

2.1 Statistical Structural Software Testing

Many Software Testing methods are based on the generation of test cases, where
a test case associates a value to every input variable of the program being tested.
For each test case, the program output is compared to the expected output
(determined e.g. after the program specifications) to find out misbehaviours
or bugs in the program implementation. The quality of the test thus reflects
the coverage of the test cases (see below). Statistical testing methods, enabling
intensive test campaigns, most often proceed by sampling the input space; the

Active Learning in a Graph 3

drawback is that rare cases, e.g. exceptions, are difficult to retrieve without
structural analysis. In order to overcome this limitation, [DGG04] introduce
a method combining statistical testing and structural analysis, based on the
control flow graph of the program being tested (Fig. 1).

vf

IN
IT

v
a0

t1
e1

i2
i3

t4
e4

i5
i2

2

i2
1

s6

b6
b2

3

i7
i2

4

t8
e8

t2
5

e2
5

t9
e9

t1
1

i1
2

e1
1

e1
3

i1
8

t2
6

e2
6

e2
8

i2
9

i3
0

i3
3

i3
4

I5 I7

I2
7

i0I0 C
1

C
4

I2
2

B
23

B
6

s2
3

I2
4

C
25

C
26

C
8

i2
0

C
9

C
11

i1
0

C
13

C
28i2

7
i3

2

t1
3

t2
8

i1
9

i1
4

C
15

t1
5

e1
5

i3
1

i1
7

i1
6

Fig. 1. Program FCT4 includes 36 nodes and 46 edges.

The control flow graph provides a syntactical representation of the program.
Formally, the control flow graph is a Finite State Automaton (FSA) noted (Σ,V)
where Σ is the set of program nodes (conditions, blocks of instructions), and V
specifies the allowed transitions between the nodes. For every node v in Σ, Suc(v)
denotes the set of successors of v, i.e. the set of all nodes w such that transition
(v, w) belongs to V . A program path is represented as a finite length string on
Σ, obtained by iteratively choosing a node among the successors of the current
node until the final node noted vf is found.

The semantics of the program is expressed by the fact that not every path
in the FSA is feasible, i.e. is such that the path is actually executed for some
values of the program input variables. The infeasibility of a given path arises as
it violates some dependencies between different parts of the program or it does
not comply with the program specifications. Two most general causes for path
infeasibility are the XOR and the Loop patterns.

XOR pattern. Given a program where two if nodes are based on some (un-
changed) expression, the successors of these nodes will be correlated in every
feasible path: if the successor of the first if node is the then (respectively,
else) node, then the successor of the second if node must be the then (resp.
else) node. Such patterns, referred to as XOR patterns, express the possibly
long-range dependencies between the fragments of the program paths.

Loop(n) pattern. The number of times a loop is executed happens to be
restricted by the semantics of the application; e.g. when the problem involves 18
or 19 uranium beams to be controlled, the control procedure will be executed
exactly 18 or 19 times. This pattern is referred to as Loop(n) pattern.

While the length of program paths is not upper bounded in general, for
practical reasons coverage-based approaches to software testing consider program
paths with bounded length T . Well-known results from labelled combinatorial
structures [FZC94] thus enable the uniform sampling of the T -length paths in the

4 N. Baskiotis, M. Sebag

control flow graph [DGG04]. Eventually, every path is rewritten as a Constraint
Satisfaction Problem, expressing the set of conditions on the input variables of
the program ensuring that the path is exerted. If the constraint solver finds a
solution, the path is labelled feasible and the solution precisely is the test case;
otherwise the path is infeasible.

As already mentioned, the main limitation of this approach is when the
fraction of feasible paths is tiny, which is the general case for medium length
programs [DGG04]. In such cases, the number of retrieved test cases remains
insufficient while the computational effort of the CSP resolution increases dra-
matically; it needs some days of computation to find out a few dozen or hundred
test cases. The test expert then proceeds by inspecting the program, manually
decomposing the control flow graph and/or adding conditions in order to get out
of the infeasibility region.

2.2 Software Testing and Supervised Learning

In order to support Statistical Structural Software Testing, one possibility is to
use supervised learning, exploiting a sample of labelled paths as training set.
From such a training set E = {(si, yi), si ∈ ΣT , yi ∈ {−1, +1}, i = 1 . . . , n},
where si is a path with length at most T and yi is 1 iff si is feasible, supervised
ML can be made to approximate the program semantics, specifically to construct
a classifier predicting whether some further path is feasible or infeasible. Such a
classifier would be used as a pre-processor on the CSP, filtering out the paths
that are deemed infeasible and thus significantly reducing the computational
cost.

In a supervised learning perspective, the SSST application presents some
specificities. Firstly, it does not involve noise, i.e. the oracle (constraint solver)
does not make errors1. Secondly, the complexity of the example space is huge
with respect to the number of available examples. In most real-world problems,
Σ includes a few dozen symbols; a few hundred paths are available, each a few
hundred symbols long. The number of available paths is limited by the labelling
cost, i.e. the runtime of the constraint solver (on average a few seconds per
program path). Thirdly, the data distribution is severely imbalanced (infeasible
paths outnumber the feasible ones by many orders of magnitude). Lastly, the
label of a path depends on its global structure; many more examples would be
required to identify the desired long-range dependencies between the transitions,
within a Markovian framework. Specifically, probabilistic FSAs and likewise sim-
ple Markov models can hardly model the infeasibility patterns such as the XOR
or Loop patterns. Indeed Variable Order Markov Models could accommodate
such patterns [BEYY04]; however they are ill-suited to the sparsity of the initial
data available.

1 In all generality, three classes should be considered (feasible, infeasible and undecid-
able) as the underlying constraint satisfaction problem is undecidable. However the
undecidable class depends on the constraint solver and its support is negligible in
practice.

Active Learning in a Graph 5

In summary, supervised learning is impaired by the poor quality of the avail-
able datasets relatively to the complexity of the instance space. This limitation is
addressed through a frugal and flexible representation inspired by Parikh maps,
first presented in [BSGG07].

2.3 Extended Parikh representation

Parikh maps [HU79,FMdR04] characterize a string from its histogram with re-
spect to alphabet Σ; to each symbol v in Σ is associated an integer attribute
av, counting the number of v occurrences in every string.

As this representation is clearly insufficient to account for long range depen-
dencies in the strings, additional attributes are defined. For each pair (v, i) in
Σ × IN, attribute av,i is defined as follows; to each string s in Σ∗ it associates
the successor of the i-th occurrence of the v symbol in s, or vf if the number of
v occurrences in the string is less than i.

v ∈ Σ → av : Σ∗ 7→ IN
(v, i) ∈ Σ × IN→ av,i : Σ∗ 7→ Σ

For s ∈ Σ∗av(s) = |{ti, s[ti] = v, ti < ti+1}|
av,i(s) = s[ti + 1] or vf if i > av(s)

Table 1. Extended Parikh representation

The size of this propositional representation is |Σ| × k where k << T is the
maximal number of occurrences of any symbol in a T -length string.

However, although the extended Parikh representation decreases the gap be-
tween the complexity of the instances and the number of available training ex-
amples, the number of training examples is still insufficient to enable supervised
learning.

In summary, the use of discriminant ML to support statistical structural soft-
ware testing faces a bootstrap problem: ML requires more feasible paths; but
more feasible paths is all what SSST requires, too. Therefore our goal switches
from discriminant learning to active learning, specifically aimed at the acquisi-
tion of new feasible paths.

3 Overview

This section describes the S4T system aimed at the generation of new feasible
paths based on the initial training set E .

3.1 Principle

New paths are constructed iteratively. At each time step, the point is to select
the next symbol to be concatenated to the current path s. Letting v denote the

6 N. Baskiotis, M. Sebag

current last symbol in s, the point is to select the symbol in Suc(v) in order to
maximize the probability for the path to be feasible, e.g.:

Select w = argmax{Pr(s′ feasible |Prefix(s′) = sw), w ∈ Suc(v)} (1)

However, this selection procedure faces two limitations. The first one results
from the fact that the training set does not include sufficiently many feasible
paths. This limitation was addressed through the use of the extended Parikh map
[BSGG07], replacing the conditioning on Prefix(s′) = sw by a generalization
thereof (section 3.3).
The second limitation is that, when several paths s′ are used to select the next
node symbol and estimate the probability for the path under construction to be
feasible, these estimates can be misleading. Actually, the feasible path concept
involves the conjunction of quite a few XOR patterns (section 2.1). With respect
to the Parikh map representation, the target concept tc can thus be viewed as a
small disjunct [HAP89], made of the disjunction of many conjunctive expressions:

tc = C1 ∨ . . . ∨ CK

Mixing the evidence derived from paths belonging to different Cis does not
provide reliable indications (for the same reason as selecting the attribute with
maximal entropy in a decision tree might be inappropriate when learning a dis-
junctive concept). Extending [BSGG07], this limitation was addressed through
the use of the Init module, estimating the conjunctive Ci represented in the
training set (section 3.2).

Finally, the S4T is made of three modules. The Init module constructs a
maximally specific disjunctive description of the initial feasible paths (the S set,
in terms of Disjunctive Version Space). The Constrained Exploration module
achieves the generation of paths subject to some constraints. The Generalization
module on one hand generalizes the S set based on the new feasible paths,
and on the other hand provides the Constrained Exploration module with new
constraints, focussing the exploration of the search space. All three modules
interact with the Oracle module (the CSP solver), labelling every new path
generated as feasible or infeasible.

3.2 Init Module

The Init module is a two step process, first determining for every pair of feasible
paths whether they can belong to the same conjunct, and thereafter constructing
a maximally specific description of every conjunct represented in the training set.
The identification of other conjuncts is left for further study.

The first step of the Init module exploits the prior knowledge on the problem
domain. By definition, if two feasible paths s and s′ belong to the same Ci, then
their least general generalization lgg(s, s′) is correct, i.e. it does not cover any
unfeasible path. Meanwhile, if s and s′ do not belong to the same Ci, then an
example generated in lgg(s, s′) will be unfeasible with high probability, for the
Ci coverage is tiny.

Active Learning in a Graph 7

Accordingly, a stochastic approximation of the predicate “s and s′ belong to
the same Ci”, noted R(s, s′), is implemented (Table 3.2.a). This approximation
calls the Constrained Exploration module to independently generate and label
p paths in lgg(s, s′). If all p paths are feasible, R(s, s′) returns true, otherwise it
returns false and the infeasible paths are added to E−.

(a) Routine R(s, s′)

If (lgg(s, s′) covers an unfeasible path)
return False

For i = 1 to p
s′′= Exploration (lgg(s, s′))
If (label(s′′) = unfeasible)

return False
Return True

(b) Routine Clique(s)

S0(s) = {s}
t = 1
Vt = {s′/R(s′, s′′)for all s′′ ∈ St−1(s)}
While Vt is not empty

s′ = argmaxVt
{|{s′′ in Vt/R(s′, s′′)}|}

St(s) = St−1(s) ∪ {s
′′}

t← t + 1
Return St(s)

Table 2. The Init Module

It is clear that R(s, s′) implements a complete but incorrect approximation
of the predicate s and s′ belong to the same conjunctive sub-concept, and the
incorrection probability exponentially decreases with p; a typical value for p in
the experiments (section 4) is p = 2.

In a second step, the Init module extracts maximal cliques from the graph
defined from the set E+ of the initial feasible paths, and the R relation. For
each path s in E+ (not already covered by a clique), the maximal clique S(s)
containing s is greedily and iteratively constructed as follows (Table 3.2.b). Let
S0(s) = {s}. At each step t > 0, let Vt(s) denote the set of elements related
by R to all elements of St(s). If Vt(s) is empty, stop; otherwise, determine the
element s′ in Vt(s) with highest connectivity (wrt R) in Vt(s) (ties are randomly
broken); add s′ to the clique (St+1(s) = St(s) ∪ {s′}).

Finally, the Init module produces a set of cliques noted Ĉi; every feasible
path in E+ belongs to at least one such clique. By abuse of notations, Ĉi is both
viewed as a set of feasible paths and their lgg.

It is shown that with high probability, for every target conjunct Ci repre-
sented in E+ there will be some Ĉi such that Ĉi is a specialization of Ci; the
probability exponentially increases with the number of representatives of Ci in
E+ (proof omitted due to space limitation).

3.3 Generalization Module

The Generalization module aims at maximally generalizing every Ĉ produced by
the Init module; it proceeds by generating new paths s “close” to Ĉ and using
them to generalize Ĉ if these are labelled feasible.

8 N. Baskiotis, M. Sebag

Two generation procedures are considered. The first one, referred to as ǫ-
Greedy generalization, is based on decorating the FSA (section 2.1) with proba-
bilities, alternatively exploiting these probabilities and updating them after the
current path has been labelled. The second one, referred to as Near-Miss-based
generalization, exploits the unfeasible paths close to Ĉ.

ǫ-Greedy generalization. Formally, let s denote the path under construction
(initialized to the start symbol), let v denote the last symbol in s and assume
that the number of v occurrences in s is i (av(s) = i).

Ideally, the next node in s is selected in order to maximize the probability
for s to be feasible after equation (1). However, as mentioned earlier on, such
probabilities cannot be estimated accurately due to the sparsity of the training
set. The conditioning on Prefix(s′) = sw is thus generalized as: the successor
of the i-th occurrence of the v symbol in s′ is w and the number of occurrences
of w in s′ is strictly greater than for s ((av,i(s

′) = w)AND(aw(s′) > aw(s)).
Finally, to each symbol w in Suc(v) one associates the frequency:

pw = Pr(s′ feasible |(av,i(s
′) = w)AND(aw(s′) > aw(s))) (2)

If pw is defined for all successors w of the current node, the ǫ-Greedy gen-
eralization selects the next node w that maximizes pw. Otherwise, (there exists
some successor w that was never encountered as successor of the i-th occur-
rence of v, neither for the feasible nor for the unfeasible paths), w is selected
with probability ǫ. Other heuristics enforcing a more sophisticated exploration
vs exploitation trade-off, e.g. based on the multi-armed bandit UCB algorithm
[ACBF02] were also considered; but they are hindered as the reward probability
is very low (being reminded that the fraction of feasible paths commonly is below
10−5).

Near-Miss-based generalization. Let Ĉ denote the current clique consid-
ered. Notably, Ĉ induces a partial ordering <C on the paths, defined as s <C

s′ iff lgg(C ∪ {s}) ≺ lgg(C ∪ {s′}) where A ≺ B is meant for A is more specific
than B in the extended Parikh representation.

Among the paths that are minimal after the above order relation, a specific
case is that of unfeasible paths which differ from Ĉ by a single attribute2. Other
minimal unfeasible paths are referred to as nearest-miss examples. For every
nearest-miss example s, the Constrained Exploration module is required to gen-
erate examples in lgg(Ĉ ∪ {s}) − lgg(Ĉ). The generated examples are labelled;
if they are feasible, Ĉ is generalized; otherwise, they are used to update the set
of near-miss.

2 Such unfeasible paths, referred to as near-miss examples, signal that the single dis-
criminant attribute must not be generalized [Mit82].

Active Learning in a Graph 9

3.4 Constrained Exploration module

Given a set of paths E and a set of constraints expressed in the extended Parikh
representation, the constrained generation module aims to generate a path s

which satisfies the constraints, noted c(s).
Two cases are distinguished. In the first case, referred to as explicit, the

constraints can be expressed by specializing the FSA (section 2.1) describing
the path search space. In this case, the uniform sampling of the T -length paths
based on the FSA can achieved analytically [FZC94].

In the second and most frequent case, referred to as implicit, the constraints
are expressed using the Parikh representation and they cannot be expressed
analytically within the FSA: ensuring that a given path in the FSA will satisfy
these constraints boils down to solving a CSP. In the implicit case, the ǫ-Greedy
generation procedure above is extended to account for the constraints c(s).

4 Experimental Validation

This section presents our experimental setting and goals, and reports on the
results of S4T.

4.1 Experimental Setting

S4T is first validated on the real-world Fct4 problem, including 36 nodes and
46 edges (Fig. 1). The ratio of feasible paths is circa 10−5 for a maximum path
length T = 250. This real-world program is a fragment of a program used in a
safety check for a nuclear plant [Gou04].

For the sake of extensive validation, a stochastic problem generator was also
designed, made of two modules. The first module defines the “program syntax”,
made of a control flow graph generated from a probabilistic BNF grammar3.
The second module constructs the “program semantics”, or target concept tc,
determining whether a given path in the above graph is feasible. After section
2, the target concept is a conjunction of XOR concepts and Loop conditions. In
order to generate satisfiable target concepts, a set P of paths uniformly generated
from the control flow graph is first constructed; iteratively, i) one selects a XOR
concept covering a strict subset of P ; ii) paths not covered by the XOR concept
are removed from P . Finally, the target concept tc is made of the conjunction of
the selected XOR concepts and the Loop concepts satisfied by the paths in P .
The coverage of each conjunction is measured on an independent set of 100, 000
paths uniformly generated in the conjunction.

3 Three non-terminal nodes were considered (the generic structure B, the if and
the while structures), together with two terminal nodes (the Instruction and the
Condition node. The probabilities on the production rules control the length and
depth of the control flow graph. Eventually, the instructions are pruned in such
a way that each instruction has at least two successor instructions; further, each
instruction and condition is associated a distinct label.

10 N. Baskiotis, M. Sebag

Ten artificial problems are considered, with coverage ratio ranging in [10−15, 10−3],
number of nodes in [20, 40] and path length in [120, 250]. Ten runs are launched
for each problem, considering independent training sets E composed of 50 fea-
sible and 50 infeasible paths4. For each conjunct Ĉ identified, the ǫ-Greedy or
Near-miss generalization module is launched 400 times; the new distinct feasible
paths are gathered in E∗.

The algorithm performance is assessed by comparing for each conjunct C of
the target concept represented in the training set, its initial and final coverage,
that is, the fraction of paths covered by C that respectively belong to E and
E∪E∗, noted i(C) and f(C). For a better visualization, the average final coverage

is computed using a Gaussian convolution: f(x) =
P

C∩E6=∅ f(C)exp(−κ(x−i(C))2)
P

C∩E6=∅ exp(−κ(x−i(C))2)

The standard deviation is similarly computed. In both cases, κ is set to 100.
The goal of the experiments is firstly to see whether S4T can efficiently

sample the conjuncts that are represented in the initial training set, and how the
efficiency depends on the initial coverage of the conjunct in the training set. The
second goal is to compare the two ǫ-greedy and Near-Miss based generalization
procedures.

4.2 ǫ-greedy S4T

Fig. 2.(a) displays the final vs initial coverage provided by S4T on 10 artificial
problems, using the ǫ-Greedy generalization module with ǫ = .1, .5 and 1. The
detailed results with standard deviation are reported on Fig. 2.(b) for ǫ = .5.
These results show that S4T efficiently samples the conjuncts that are repre-
sented in the training set. More detailed results are presented in Table 3; when
the initial coverage of the conjunct is tiny to small, the gain ranges from 5 to
2 orders of magnitude. A factor gain of 3 is observed when the initial coverage
is between 10% to 30%. For conjuncts which are already well represented in the
initial training set, the gain can only be moderate.

[0, 10−4] [10−4, 10−3] [10−3, 10−2] [10−2, 10−1] [.1, .3] [.3, .6] [.6, 1]

log(f/i) 5.7± 1.2 5.3± 1.2 3.7± .86 2± .72
f/i 3± .1 1.6± .3 1.1± .1

Table 3. Gain obtained with ǫ-greedy generalization for various ranges of the
initial coverage of the conjunct.

The Fig. 3 reports the gain obtained on the real-world fct4 problem compara-
tively to [BSGG07] for 10 independent runs for an identical number of generated
paths (around 3.000). The gain is considered excellent by the software testing
experts.

4 Increasing the number of infeasible training paths does not make any difference, as
only infeasible paths “close” to the feasible ones convey useful information.

Active Learning in a Graph 11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

e=0.1
e=0.5

e=1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

e=0.5

(a) Final vs Initial coverage (b) Final vs Initial coverage ±σ
for ǫ = .1, .5 and 1 for ǫ = .5

Fig. 2. S4T with ǫ-Greedy generalization. Final vs Initial conjunct coverage,
average results on 10 artificial problems × 10 runs.

The computational effort ranges from 3 to 5 minutes (on PC Pentium 3Ghz)
for the Init Module and is less than 3 minutes for 400 runs of the generalization
module (excluding labelling cost).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S4
T

C
ov

er
ag

e

IJCAI 07 Coverage

Initial Anonymous S4T
coverage Final Coverage Final Coverage
(0, .03) 0.01 ± 0.01 .25 ± 0.1

(.09, .13) 0.1 ± 0.06 .45 ± 0.07
(.21, .39) 0.44 ± 0.16 .78 ± 0.07
(.49, .52) 0.71 ± 0.05 .83 ± 0.07

Fig. 3. S4T with ǫ-Greedy generalization (ǫ = .5) vs Anonymous algorithm,
average results on 10 runs on FCT4.

4.3 Near-Miss S4T

In contrast, the Near-Miss variant of S4T did not provide satisfactory results, for
the following reason. As noted in section 3.3, near-miss unfeasible paths s only
signal that the single attribute discriminating s from the current conjunct Ĉ

should not be generalized [Mit82]. For this reason, only nearest-miss unfeasible

12 N. Baskiotis, M. Sebag

paths were used to guide the Constrained Exploration module. However, it turns
out that the Constrained Exploration module fails to construct examples in
lgg(Ĉ ∪ s) − Ĉ.

This failure is explained as the attributes in the extended Parikh representa-
tion are not independent: selecting one successor node instead of another one usu-
ally entails other consequences (e.g. increasing the number of occurrences of an-
other node). For this reason, most nearest-miss examples are actually near-miss,
in the sense that they are maximally close to the current conjunct: lgg(Ĉ∪s)−Ĉ

is empty.
Therefore, the Near-Miss generalization module should rather use unfeasi-

ble paths that are sufficiently “far” from Ĉ. Preliminary results along this line
show convincing improvements, although it remains to adjust the appropriate
Hamming distance between the useful unfeasible examples and the current Ĉ.

5 Conclusion and Perspectives

The presented application of Machine Learning to Software Testing relies on an
efficient representation of paths in a graph, coping with long-range dependencies
and data sparsity. Further research aims at a formal characterization of the
potentialities and limitations of this extended Parikh representation (see also
[CFW06]), in software testing and in other structured domains.

The second contribution of the presented work is to construct a distribution
on the top of this representation, enabling the active sampling of desired paths.
Active Learning, a hot topic in the Machine Learning field for over a decade
[CGJ95], is convincingly motivated by the cost of example labelling and the
abundance of unlabeled examples in quite a few application domains. However,
in other domains such as Numerical Engineering, examples must be constructed
on purpose and their construction is expensive. The ability of biasing the ex-
ample construction in order to satisfy desired properties, might thus open new
application perspectives to Relational Machine Learning.

With respect to Statistical Software Testing, the presented approach dra-
matically increases the ratio of (distinct) feasible paths generated, compared to
the former uniform sampling approach [DGG04]. Further research is concerned
with sampling conjuncts which are not represented in the initial training set.
In the longer run, the extension of this approach to related applications such
as equivalence testers or reachability testers for huge automata [Yan04] will be
studied.

References

ACBF02. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the mul-
tiarmed bandit problem. Machine Learning, 47(2-3):235–256, 2002.

BEYY04. R. Begleiter, R. El-Yaniv, and G. Yona. On prediction using variable order
markov models. JAIR, 22:385–421, 2004.

Active Learning in a Graph 13

BGC01. L. Bréhélin, O. Gascuel, and G. Caraux. Hidden markov models with
patterns to learn boolean vector sequences and application to the built-in
self-test for integrated circuits. IEEE Trans. Pattern Anal. Mach. Intell.,
23(9):997–1008, 2001.

BSGG07. N. Baskiotis, M. Sebag, M.-C. Gaudel, and S. Gouraud. A machine learning
approach for statistical software testing. In Proc. of the 20th Int. Conf. on
Artificial Intelligence, pages 2274–2279, 2007.

CFW06. A. Clark, C. C. Florencio, and C. Watkins. Languages as hyperplanes:
Grammatical inference with string kernels. In ECML, to appear, 2006.

CGJ95. David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan. Active learning
with statistical models. In G. Tesauro, D. Touretzky, and T. Leen, editors,
Advances in Neural Information Processing Systems, volume 7, pages 705–
712. The MIT Press, 1995.

DGG04. A. Denise, M.-C. Gaudel, and S.-D. Gouraud. A generic method for statis-
tical testing. In ISSRE, pages 25–34, 2004.

FMdR04. E. Fischer, F. Magniez, and M. de Rougemont. Property and equivalence
testing on strings. Electronic Colloquium on Computational Complexity
(ECCC), (096), 2004.

FZC94. P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the ran-
dom generation of labelled combinatorial structures. Theor. Comput. Sci.,
132(2):1–35, 1994.

Gou04. S.-D. Gouraud. Statistical Software Testing based on Structural Combina-
torics. PhD thesis, LRI, Université Paris-Sud, 2004.

HAP89. R.C. Holte, L.E. Acker, and B.W. Porter. Concept learning and the problem
of small disjuncts. In Proceedings of IJCAI-89, pages 813–818. Morgan
Kaufmann, 1989.

HU79. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

Mit82. T.M. Mitchell. Generalization as search. Artificial Intelligence, 18:203–226,
1982.

RDTK06. I. Rish, R. Das, G. Tesauro, and J. Kephart. ECML-PKDD Workshop
Automatic Computing: A new Challenge for Machine Learning. 2006.

XSHW05. G. Xiao, F. Southey, R. C. Holte, and D. F. Wilkinson. Software testing by
active learning for commercial games. In AAAI, pages 898–903, 2005.

Yan04. M. Yannakakis. Testing, optimization, and games. In ICALP, pages 28–45,
2004.

ZJL+06. A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical
debugging: simultaneous identification of multiple bugs. In ICML, pages
1105–1112, 2006.

	Structural Statistical Software Testing with Active Learning in a Graph
	Nicolas Baskiotis and Michele Sebag

