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Abstract. The ways in which an agent’s actions affect the world can
often be modeled compactly using a set of relational probabilistic plan-
ning rules. This extended abstract addresses the problem of learning such
rule sets for multiple related tasks. We take a hierarchical Bayesian ap-
proach, in which the system learns a prior distribution over rule sets. We
present a class of prior distributions parameterized by a rule set proto-
type that is stochastically modified to produce a task-specific rule set.
We also describe a coordinate ascent algorithm that iteratively optimizes
the task-specific rule sets and the prior distribution. Experiments using
this algorithm show that transferring information from related tasks sig-
nificantly reduces the amount of training data required to predict action
effects in blocks-world domains.
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1 Introduction

One of the most important types of knowledge for an intelligent agent is that
which allows it to predict the effects of its actions. For instance, imagine a robot
that retrieves items from cabinets in a kitchen. This robot needs to know that
if it grips the knob on a cabinet door and pulls, the door will swing open; if it
releases its grip when the cabinet is only slightly open, the door will probably
swing shut; and if it releases its grip when the cabinet is open nearly 90 degrees,
the door will probably stay open. Such knowledge can be encoded compactly
as a set of probabilistic planning rules [1,2]. Each rule specifies a probability
distribution over sets of changes that may occur in the world when an action
is executed in a certain context. To represent domains concisely, the rules must
be relational rather than propositional: for example, they must make statements
about cabinets in general rather than individual cabinets.

Algorithms have been developed for learning relational probabilistic planning
rules by observing the effects of actions [3,4]. But with current algorithms, if a
robot learns planning rules for one kitchen and then moves to a new kitchen
where its actions have slightly different effects, it must learn a new rule set from
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pickup(X, Y ) : on(X, Y ), block(Y ), clear(X),
inhand-nil,¬wet

→



.7 : inhand(X),¬clear(X),
¬on(X, Y ), clear(Y ),
¬inhand-nil

.2 : on(X, TABLE),¬on(X, Y )

.05 : no change

.05 : noise

pickup(X, Y ) : on(X, Y ), block(Y ), clear(X),
inhand-nil,wet

→



.2 : inhand(X),¬clear(X),
¬on(X, Y ), clear(Y ),
¬inhand-nil

.2 : on(X, TABLE),¬on(X, Y )

.3 : no change

.3 : noise

Fig. 1. Two rules for the pickup action in the “slippery gripper” blocks world.

scratch. Current rule learning algorithms fail to capture an important aspect
of human learning: the ability to transfer knowledge from one task to another.
We address this transfer learning problem in this extended abstract. A more
complete treatment is given in our conference paper [5] and in the master’s
thesis by Deshpande [6].

2 Probabilistic Planning Rules

A set of probabilistic planning rules defines a distribution p(st|st−1, at) for the
state reached by taking action at in state st−1. A state is an interpretation of a
set of predicates over a fixed domain of objects. For instance, the sentence,

inhand-nil ∧ on(B-A, B-B) ∧ on(B-B, TABLE) ∧ clear(B-A)
∧block(B-A) ∧ block(B-B) ∧ table(TABLE) ∧ ¬wet

(1)

describes a blocks-world state where the gripper holds nothing, block B-A is on
top of block B-B which is on the table, and the gripper is not wet. An action at is
a ground atom: for example, at = pickup(B-A, B-B) represents an attempt to pick
block B-A up off of block B-B.

Fig. 1 shows two rules for the pickup(X,Y ) action. Each rule r has two parts
that determine when it is applicable: an action term z and a context formula
Ψ , which is a conjunction of literals. Given a particular state st−1 and action
a, we can determine whether a rule applies by computing a variable binding θ
that unifies z with a, and then testing whether the context formula holds for
this binding. For example, for a state s described by sentence (1) and an action
a = pickup(B-A, B-B), only the first rule in Fig. 1 applies, because wet is not
true in s. A default rule handles cases where no other rule applies; we disallow
overlapping rules that apply to the same (s, a) pair.

Given the applicable rule r, we can look to the right of the → to find a
discrete distribution p over a set of outcomes O, defining what changes may
happen from st−1 to st. Each non-noise outcome o ∈ O is a conjunction of
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literals. If outcome o occurs, then the resulting state st is formed by taking
st−1 and changing the values of the relevant literals to match θ(o). For instance,
in the first rule in Fig. 1, the first outcome is where the picking up succeeds:
it sets five truth values, including setting on(B-A, B-B) to false. We enforce the
restriction that outcomes do not overlap: for each pair of outcomes o1 and o2 in
a rule r, there cannot exist a state–action pair (s, a) such that r is applicable
and the resulting states for o1 and o2 are the same. The noise outcome is a
special case: it just gives a small probability pmin to every outcome, allowing
the rule learner to avoid modeling overly complex, rare action effects [4]. The
probability p(st|st−1, at) is thus equal to po if st is the result of an outcome o in
the applicable rule, and pnoisepmin otherwise.

3 Hierarchical Bayesian Model

We formalize our transfer learning problem by assuming that we have training
sets from K related source tasks, plus a limited set of examples from a target
task K+1, and our goal is to find the best rule set R∗K+1 for the target task. Our
approach is based on hierarchical Bayesian models, which have long been used
to transfer predictions across related data sets in statistics [7]. The basic idea, as
illustrated in Fig. 2, is to regard the task-specific models R1, . . . , RK , RK+1 as
samples from a global prior distribution G. This prior distribution over models
is not fixed in advance, but is learned by the system; thus, the learner discovers
what the task-specific models have in common.

...

x1n x2n xKn

N1 N2 NK

R1 R2 RK

G

Fig. 2. A hierarchical Bayesian model with K tasks, where the number of ex-
amples for task k is Nk.

More precisely, by observing data from the first K tasks, the learner gets
information about R1, . . . , RK and hence about G. Then when it encounters
task K + 1, its estimates of RK+1 are influenced by both the data observed for
task K + 1 and the prior p(RK+1|G), which captures its expectations based on
the preceding tasks.

Although the hierarchical Bayesian approach has been used in a variety of
transfer learning settings [8,9,10], applying it to sets of relational probabilistic
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planning rules poses both conceptual and computational challenges. In most
existing applications, the models Rk are represented as real-valued parameter
vectors, and the hypothesis space for G is a class of priors over real vectors. But
what family of G-values could parameterize a class of priors over rule sets, which
are complicated discrete structures?

We propose to let the possible values of G be rule set prototypes that are
modified stochastically to create task-specific rule sets. A rule set prototype is a
set of rule prototypes. Each rule prototype is like an ordinary rule, except that
rather than specifying a probability distribution over its outcomes, it specifies a
vector Φ of Dirichlet parameters that define a prior over outcome distributions.

3.1 Overview of Model

Our model defines a joint distribution p(G,R1, . . . , RK+1, x1, . . . , xK+1). In our
setting, each example xkn is a state st obtained by performing a known action
at in a known initial state st−1. Thus, p(xkn|Rk) can be found by identifying the
rule in Rk that applies to (st−1, at), as discussed in Sec. 2.

The distribution for G and R1, . . . , RK+1 is defined by a generative process
that first creates G, and then creates R1, . . . , RK+1 by modifying G. Note that
this generative process is purely a conceptual device for defining our probability
model: we never actually draw samples from it. Instead, in Sec. 4, we will use
the joint probability as a scoring function for finding the best rule set prototype.

Two difficulties arise in using a generative process to define our desired joint
distribution. One is that the process can yield rule sets that are invalid, in
the sense of containing overlapping rules or outcomes. The other is that many
possible runs of the process may yield the same rule set. For instance, as we will
see, a rule set is generated by choosing a number m, generating a sequence of
m rules given the rule set prototype, and then returning the set of distinct rules
that were generated. In principle, a set of m∗ distinct rules could be created by
generating a list of any length m ≥ m∗ (with duplicates); we do not want to sum
over all these possibilities to compute the probability of a given rule set. Both of
these problems can be solved by excluding certain invalid or non-canonical runs
of the generative process.

Thus, we will define unnormalized measures PG(G) and Pmod(Rk|G) that give
the probability of generating a rule set prototype G, or a rule set Rk, through a
“valid” sampling run. The resulting joint distribution is:

p(G,R1, . . . , RK+1, x1, . . . , xK) =
1
Z
PG(G)

K+1∏
k=1

Pmod(Rk|G)p(xk|Rk) (2)

The normalization constant Z is the total probability of valid runs of our gen-
erative process. Since we are just interested in the relative probabilities of hy-
potheses, we never need to compute this constant.

The remainder of this section gives a brief description of the distributions
Pmod(Rk|G) and PG(G). Details are available in our conference paper [5].
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3.2 Modifying the Rule Set Prototype

We begin by describing how a rule set prototype G is modified to create a rule
set R. The first step is to choose the rule set size, m, from a distribution centered
on the number of rule prototypes in G. Next, for i = 1 to m, we generate a local
rule ri. The first step in generating ri is to choose which rule prototype it will
be derived from. With a certain probability, the rule is generated from scratch;
otherwise, its prototype is selected uniformly from G. Since this choice is made
independently for each local rule, a single rule in G may serve as the prototype
for several rules in R, or for none. Next, given the chosen prototype r∗, the local
rule ri is generated according to the distribution Prule(r|r∗) discussed in Sec. 3.3.

This process generates a list of rules r1, . . . , rm. We consider a run to be in-
valid if any of these rules are overlapping; in particular, this prohibits cases where
the same rule occurs twice. So the probability of generating a set {r1, . . . , rm}
on a valid run is the sum of the probabilities of all permutations of this set. This
is m! times the probability of generating the rules in any particular order.

3.3 Modifying and Creating Rules

We now define the distribution Prule(r|r∗), where r∗ may be either a rule proto-
type, or the value NIL, indicating that r is generated from scratch. The first step
is to choose the action term in r. If r∗ is not NIL, we assume the action term is
unchanged; otherwise, we choose an action predicate uniformly at random and
introduce a distinct logical variable for each argument. Next, we generate the
context for r using the formula-modification process described in Sec. 3.4. The
input to that process is r∗’s context, or an empty formula if r∗ is NIL.

To generate the outcome set in r from that in r∗, we use essentially the same
method we used to generate the rule set R from G. We begin by choosing n, the
size of the outcome set. Then, for i = 1 to n, we choose which prototype outcome
serves as the source for the ith local outcome. As in the case of rules, there is
some probability that an outcome is generated from scratch. To generate the
outcomes from their chosen prototypes, we again use the formula-modification
process in Sec. 3.4. A list of outcomes is considered valid if it contains no repeats
and no overlapping outcomes. Since repeats are excluded, the probability of a
set of n outcomes is n! times the probability of any corresponding list.

The last step is to generate the outcome probabilities in r. These probabili-
ties are sampled from a Dirichlet distribution whose parameters depend on the
prototype parameters Φ in r∗ and the mapping from local outcomes to prototype
outcomes. The Dirichlet weight for each prototype outcome is divided among the
local outcomes derived from it; see [5] for details.

3.4 Modifying Formulas

Since we restrict our formulas to be conjunctions of literals, we can think of
a given formula φ∗ simply as a set of literals. To obtain a new formula φ, we
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begin by choosing which literals in φ∗ will remain in φ. Each literal in φ∗ is kept
independently with a certain probability βliteral.

Next, we choose how many new literals (if any) to add to φ: this number is
chosen from a geometric distribution with parameter αliteral. For each new literal,
we choose a predicate uniformly at random, and then choose each argument
uniformly from the set of constant symbols plus the logical variables that are
currently in scope. The run is considered invalid if the resulting atomic formula
was already in φ. Finally, the polarity of this atomic formula in φ (positive or
negative) is chosen uniformly at random.

3.5 Generative Model for Rule Set Prototypes

The process that defines the hyperprior PG(G) is similar to the process that
generates local rule sets from G, but all the rule prototypes are generated from
scratch — there are no higher-level prototypes from which they could be derived.
We assume that the number of rule prototypes in G has a geometric distribution.

The distribution for generating a rule prototype is the same as that for gener-
ating a local rule from scratch, except that we must generate a vector of Dirichlet
weights Φ rather than a probability distribution over outcomes. We use a hyper-
prior on Φ in which the sum of the weights has an exponential distribution.

4 Learning

Given data for tasks 1, . . . ,K + 1, our hierarchical Bayesian model tells us that
the best target-task rule set R∗K+1 can be obtained from Eq. 2 by integrating out
the prototype G and the source-task rule sets R1, . . . , RK , and then maximizing
over RK+1. Rather than attempting the intractable integration over all rule set
prototypes, we approximate by maximizing over G. Thus, we work in two stages:
first, we find the best rule set prototype G∗ given the data for the K source tasks;
then, holding G∗ fixed, we find the best rule set R∗K+1 given G∗ and xK+1.

Our goal in the first stage, then, is to find the prototype G∗ with the greatest
posterior probability given x1, . . . , xK . In this optimization, we regard each rule
set Rk as consisting of a structure RS

k and parameters RP
k , namely the outcome

probability vectors for all the rules. To avoid intractable sums, we maximize
over RS

1 , . . . , R
S
K . However, we integrate out the parameters RP

k using standard
Dirichlet-multinomial formulas [11]. Maximizing over these parameters would be
inappropriate because their dimensionality varies with the number of rules and
outcomes, and the heights of density peaks in spaces of differing dimension are
not necessarily comparable.

4.1 Scoring Function

We thus find ourselves searching for values of G and RS
1 , . . . , R

S
K that maximize:

P (G,RS
1 , . . . , R

S
K) ∝ PG(G)

K∏
k=1

∫
RP

k

Pmod(Rk|G)P (xk|Rk) (3)
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This equation trades off three factors: the complexity of the rule set prototype,
represented by PG(G); the differences between the local rule sets and the proto-
type, Pmod(Rk|G); and how well the local rule sets fit the data, P (xk|Rk).

Computing the value of Eq. 3 for a given choice of G and RS
1 , . . . , R

S
K is

expensive because it involves summing over all possible mappings from local
rules to global rules and from local outcomes to prototype outcomes. Thus, as
a final approximation, we compute this score using a single correspondence for
each local rule and local outcome. Since our model assumes that a prototype is
chosen for each rule independently, we can optimize the correspondence for each
rule separately, and likewise for outcomes.

4.2 Coordinate Ascent

We find a local maximum of Eq. 3 using a coordinate ascent algorithm. We
alternate between maximizing over local rule set structures given an estimate
of the rule set prototype G, and maximizing over the rule set prototype given
estimates of the rule set structures (RS

1 , ..., R
S
K). We begin with an empty rule set

prototype, and use a greedy local search algorithm (described below) to optimize
the local rule sets. Since RS

1 , . . . , R
S
K are conditionally independent given G, we

can do this search for each task separately. When these searches stabilize — that
is, no search operator improves the objective function — we run another greedy
local search to optimize G. We repeat this cycle until no more changes occur.

4.3 Learning Local Rule Sets

Our search algorithm for finding the highest-scoring local rule set structure RS
k

given the prototype G is a modified version of the rule set learning algorithm
from Zettlemoyer et al. [4]. The search starts with a rule set that contains only
the default rule. At every step, we take the current rule set and apply a set of
search operators to create new rule sets. Each of these new rule sets is scored
using Eq. 3; the highest scoring set is selected as the new RS

k. The following
operators are used to create candidate rule sets:

– Add/Remove Rule. Rules can be created by an ExplainExamples proce-
dure [4] that uses a heuristic search to find high quality potential rules in a
data driven manner. In addition, rules can be created by copying the action
and context of one of the prototypes in the global rule set; this provides a
strong search bias towards rules that have been found to be useful for other
tasks. Also, any existing rule can be removed.

– Add/Remove Literal. Any literal may be added or removed in the context
of an existing rule.

– Split Rule. Any existing rule can be split on an atomic formula ` that does
not currently occur in its context: the rule is replaced by two rules, one with
` in its context and one with ¬`.
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Each of these operators also determines the outcomes for rules that it adds
or modifies. This is done with a subsidiary greedy search, where the operators
include adding or removing an outcome, adding or removing a literal in an out-
come, splitting an outcome on a literal, and merging outcomes. The interesting
part here is outcome addition: the added outcome may be derived by concate-
nating the changes seen in a training example (following [3]), or it may be any
outcome from the corresponding prototype rule.

4.4 Learning the Rule Set Prototype

The second optimization involves finding the highest scoring rule set prototype
G given rule set structures (RS

1 , ..., R
S
K). Again, we adopt an approach based on

greedy search through the space of possible rule sets. This search has exactly the
same initialization and uses all of the same search operators as the local rule set
search. However, the AddRule operator tries to add rules that are present in the
local rule sets, without directly referencing the training sets. Also, the Dirichlet
parameters for the outcomes in each candidate prototype rule are estimated
using a gradient ascent technique [11].

5 Experiments

We evaluate our learning algorithm on synthetic data from two families of re-
lated tasks, both variants of the classic blocks world (for additional experi-
ments, see [5]). We restrict ourselves to learning the effects of a single action,
pickup(X,Y ). Since the action is always observed, one could learn a rule set for
multiple actions by learning a rule set for each action separately.

5.1 Methodology

For each run of our experiments, we begin by generating K “source task” rule
sets from a prior distribution (implemented by a special-purpose program for
each family of tasks). Then, we generate a training set for each source task.
Each state transition in the training set is constructed by choosing the initial
state randomly, and then sampling the next state according to the task-specific
rule set. Note that the state transitions are sampled independently of each other;
they do not form a trajectory. Once we have these K source-task training sets,
we run our learning algorithm on them to find the best rule set prototype G∗.

Next, we generate a “target task” rule set RK+1 using the same distribution
used to generate the source task rule sets. We also generate a target-task training
set in the same way. Then we learn a rule set R̂K+1 for the target task using the
algorithm from Sec. 4.3, with G∗ as the fixed rule set prototype.

Finally, we generate a test set of 1000 initial states. For each initial state s,
we compute the variational distance between the next-state distributions defined
by the true rule set RK+1 and the learned rule set R̂K+1. This is defined in our
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case as follows, with a equal to pickup(a,b) and s′ ranging over possible next
states: ∑

s′

∣∣∣p(s′|s, a,RK+1)− p(s′|s, a, R̂K+1)
∣∣∣

To obtain a measure of accuracy, we use one minus the average variational dis-
tance over the whole test set.

5.2 Results

Our first experiment investigates transfer learning in a domain where the rule
sets are very simple — just single rules — but the rule contexts vary across
tasks. We use a family of tasks where the robot is equipped with grippers of
varying sizes: the robot can only pick up blocks that are the same size as its
gripper. Thus, each task can be described by a single rule saying that if block X
has the proper size (which varies from task to task), then pickup(X,Y ) succeeds
with some significant probability. The domain also includes distracter predicates
for block color and texture. Fig. 3(a) shows the transfer learning curves for this
domain: the transfer learners are consistently able to learn the dynamics of the
domain with fewer examples than the non-transfer learner.
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Fig. 3. Accuracy with an empty rule set prototype (labeled “No Transfer”) and
with transfer learning fromK source tasks withN examples each (labeledKxN).
Each experiment was repeated 20 times; these graphs show the average results
with 95% confidence bars.

To see how transfer learning works for more complex rule sets, our next
experiment uses a “slippery gripper” domain adapted from [1]. The correct model
for this domain has four fairly complex rules, describing cases where the gripper
is wet or not wet (which influences the success probability for pickup) and the
block is being picked up from the table or from another block (in the latter case,
the rule must include an additional outcome for the block falling on the table).
The various tasks are all modeled by rules with the same structure, but include
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relatively large variation in outcome probabilities. Fig. 3(b) shows that again,
transfer significantly reduces the number of examples required to achieve high
accuracy. Experiments on a more difficult set of tasks yield similar results [5].

6 Conclusion

In this work, we developed a transfer learning approach for relational proba-
bilistic world dynamics. We presented a hierarchical Bayesian model and an
algorithm for learning a generic rule set prior which, at least in our initial ex-
periments, holds significant promise for generalizing across different tasks. This
learning problem is particularly difficult due to the need to learn relational struc-
ture along with probabilities simultaneously for a large number of tasks. The
current approach addresses many of the fundamental challenges for this task
and provides a strong example that can be extended to work in more complex
domains and with a wide range of representation languages.
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