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Abstract. Given a binary classification task, a ranker is an algorithm that can sort
a set of instances from highest to lowest expectation that the instance is positive.
In contrast to a classifier, a ranker does not output class predictions – although
it can be turned into a classifier with help of an additional procedure to split
the ranked list into two. A straightforward way to compute rankings is to train
a scoring classifier to assign numerical scores to instances, for example the pre-
dicted odds that an instance is positive. However, rankings can be computed with-
out scores, as we demonstrate in this paper. We propose a lexicographic ranker,
LexRank , whose rankings are derived not from scores, but from a simple rank-
ing of attribute values obtained from the training data. Although various metrics
can be used, we show that by using the odds ratio to rank the attribute values
we obtain a ranker that is conceptually close to the naive Bayes classifier, in the
sense that for every instance of LexRank there exists an instance of naive Bayes
that achieves the same ranking. However, the reverse is not true, which means
that LexRank is more biased than naive Bayes. We systematically develop the
relationships and differences between classification, ranking, and probability es-
timation, which leads to a novel connection between the Brier score and ROC
curves. Combining LexRank with isotonic regression, which derives probabil-
ity estimates from the ROC convex hull, results in the lexicographic probability
estimator LexProb.
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1 Introduction

ROC analysis is increasingly being employed in machine learning. It has brought with
it a welcome shift in attention from classification to ranking. There are a number of
reasons why it is desirable to have a good ranker, rather than a good classifier or a good
probability estimator. One of the main reasons is that accuracy requires a fixed score
threshold, whereas it may be desirable to change the threshold in response to changing
class or cost distributions. Good accuracy obtained with one threshold does not imply
good accuracy with another. Furthermore, good performance in both classification and
probability estimation is easily and trivially obtained if one class is much more prevalent
than the other, but this wouldn’t be reflected in ranking performance.

In this paper we show that it is possible to have a good ranker and a good probability
estimator. In fact, we show that, once we have a good ranker, there is a straightforward
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procedure to obtain calibrated probabilities from the ROC convex hull. Interestingly,
the ranker we start from does not need to output probabilities or even scores. We pro-
pose a very simple non-scoring ranker, which is based on a linear preference ordering
on attributes, which is then used lexicographically. In extensive experiments reported
elsewhere [1] we demonstrate that both our lexicographic ranker and our lexicographic
probability estimators perform comparably with much more sophisticated models.

The outline of the paper is as follows. In Section 2 we compare and contrast the
notions of classification, ranking, and probability estimation. Section 3 is devoted to
performance assessment in each of these cases. Section 4 defines lexicographic rank-
ing and the LexRank algorithm. In Section 5 we uncover the fundamental relationship
between ROC curves and the Brier score or mean squared error of the probability es-
timates. Section 6 defines the lexicographic probability estimator LexProb through a
novel ROC-based calibration procedure. Section 7 concludes.

2 Classification, ranking, and probability estimation

Let X = A1× . . .×An be the instance space over the set of discrete attributes A1, . . . ,An.
A classifier is a mapping ĉ : X →C, where C is a set of labels. It partitions the instance
space into c = |C| decision regions. For a binary classifier, C = {+,−}.

A ranker orders the instance space X , expressing an expectation that some instances
are more likely to be positive than others. The ranking is a total order, possibly with
ties. The latter are represented by an equivalence relation over X , so the total order
is on those equivalence classes; we call them segments in this paper. For notational
convenience we represent a ranker as a function r̂ : X ×X → {>,=,<}, deciding for
any pair of instances whether the first is more likely (>), equally likely (=), or less
likely (<) to be positive than the second. (By a slight abuse of notation, we also use >
and < for the total order on the segments of X). If X1,X2 ⊆ X are segments such that
X1 > X2, and there is no segment X3 such that X1 > X3 > X2, we say that X1 and X2 are
adjacent.

We can turn a ranker into a binary classifier by selecting a pair of adjacent segments
X1 > X2 and assigning any instance in X1 or in any X ′ > X1 to the positive class, and
any instance in X2 or in any X ′′ < X2 to the negative class. Furthermore, given a ranker
r̂, we can construct another ranker r̂′ by joining two adjacent segments X1 and X2, and
removing X1 > X2 from the total order. We say that r̂′ is coarser than r̂, or equivalently,
that the latter is finer than the former. This induces a partial order on the set of all
rankers, with the trivial ranker (which maps all instances to the same segment, i.e.,
doesn’t express any preferences) as coarsest element, and all rankers without ties as
finest elements.

A scoring classifier is a mapping ŝ : X →R, assigning a numerical score ŝ(x) to each
instance x. We will use the convention that higher scores express more preference for the
positive class. A probability estimator is a scoring classifier that assigns probabilities,
i.e., a mapping p̂ : X → [0,1]. p̂(x) is taken to be an estimate of the posterior p(+|x),
i.e., the true probability that a random instance with attribute-value vector x belongs to
the positive class.
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Clearly, given a scoring classifier ŝ (or a probability estimator) we can construct a
ranker r̂ as follows:

r̂(x1,x2) =

> if ŝ(x1) > ŝ(x2)
= if ŝ(x1) = ŝ(x2)
< if ŝ(x1) < ŝ(x2)

Furthermore, we can turn a scoring classifier into a classifier by turning the associated
ranker into a classifier as described above, or equivalently, by setting a threshold t ∈ R
and assigning all instances x such that ŝ(x) ≥ t to the positive class and the remaining
instances to the negative class.

Example 1. [2] and [3] showed that decision trees can be used as probability estimators
and hence as rankers. For a given (unlabelled) tree, different rankers can be obtained
by imposing an ordering on the leaves. Once an ordering is fixed, we obtain a classi-
fier by labelling the first k+ leaves in the ordering positive and the remaining k− leaves
negative. We obtain a probability estimator by considering the numbers of positive (n+

i )
and negative (n−i ) training examples belonging to the i-th leaf. The estimated posterior

odds in lea fi is then P(+|lea fi)
P(−|lea fi)

= n+
i

n−i
(or n+

i +1
n−i +1

if we apply Laplace correction, as recom-

mended by [3]). Figure 1 shows a small example data set, and a decision tree induced
from it. The ranking obtained from the training set is leaf 1 – leaf 4 – leaf 2 – leaf 3.
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Fig. 1. A data set, and an induced decision tree. Instead of leaf labellings, the class
distributions of training instances are indicated for each leaf.

3 Assessing classifiers, rankers, and probability estimators

The performance of a binary classifier can be assessed by tabulating its predictions on
a test set with known labels in a contingency table or confusion matrix, with actual
classes in rows and predicted classes in columns. The most important quantities assess-
ing classification performance are true positive rate: the proportion of correctly labelled
positives; false positive rate: the proportion of incorrectly labelled negatives; accuracy:
the proportion of correctly labelled examples. An ROC plot plots true positive rate on



4 P. Flach, E. Matsubara

the Y-axis against false positive rate on the X-axis; a single contingency table corre-
sponds to a single point in an ROC plot.

The performance of a ranker can be assessed by drawing a piecewise linear curve in
an ROC plot, known as an ROC curve. The curve starts in (0,0), finishes in (1,1), and
is monotonically non-decreasing in both axes. Each segment of the curve corresponds
to one of the segments induced by the ranker; the order of the segments corresponds
to the total ordering on the segments. If the i-th segment contains n+

i out of a total
of n+ positives and n−i out of n− negatives, the segment’s vertical length is n+

i /n+,

its horizontal width is n−i /n− and its slope is li = n+
i

n−i
c−1, where c = n+/n− is the

prior odds. We will denote the proportion of positives in a segment as pi = n+
i

n+
i +n−i

=
li

li+1/c . We will call these empirical probabilities; they allow us to turn a ranker into a
probability estimator , as we will show later. Notice that, since c is constant, pi increases
monotonically with li.

Each point on an ROC curve connecting two segments corresponds to the true and
false positive rates achieved on the same test set by the classifier obtained from the
ranker by splitting the ranking between those two segments. Points on a segment cor-
respond to a classifier that assigns a random part of the instances in that segment to
the positive class and the rest to the negative class. The area under the ROC curve or
AUC estimates the probability that a randomly selected positive is ranked before a ran-
domly selected negative, and is a widely used measure of ranking performance, equiv-
alent to the Wilcoxon-Mann-Whitney sum-of-ranks test to decide whether two samples
are drawn from different distributions [4]. It can be calculated as 1

n+n− ∑i n−i (n+
i /2 +

∑ j>i n+
j ), which adds up, for each negative, all positives preceding it in the ranking

(ties count for 1/2).
An ROC curve is convex if the slopes li are monotonically non-increasing when

moving along the curve from (0,0) to (1,1). A concavity in an ROC curve, i.e., two or
more adjacent segments with increasing slopes, indicates a locally worse than random
ranking. In this case, we would get better ranking performance by joining the segments
involved in the concavity, thus creating a coarser classifier.

Example 2. Evaluating the decision tree from Example 1 on the training set results
in the ROC curve given in Figure 2. Notice that the curve has as many segments as
the tree has leaves. The non-optimal labellings of the tree are indicated as well. Since
the predicted probabilities of a decision tree are exactly the empirical probabilities, its
training set ROC curve is always convex.

The performance of a scoring classifier can be assessed in the same way as a ranker.
Alternatively, if we know the true scores s(x) we can calculate a loss function such as
mean squared error 1

|T | ∑x∈T (ŝ(x)− s(x))2, where T is the test set. In particular, for a
probabilistic classifier we may take s(x) = 1 for a positive instance and s(x) = 0 for a
negative; in that case, mean squared error is also known as the Brier score [5]. Other
loss functions are possible, but in this paper we use the Brier score as it allows an ex-
tremely useful connection with ROC curves through its decomposition into calibration
and refinement, as we will now show. Note that the Brier score takes probability esti-
mates into account but ignores the rankings (it does not require sorting the estimates).
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Fig. 2. Training set ROC curve of the decision tree from Figure 1.

Conversely, ROC curves take rankings into account but ignore the probability estimates.
Brier score and AUC thus measure different things and are not directly comparable.

4 Lexicographic ranking with LexRank

While a ranker is commonly obtained by sorting the scores of a scoring classifier as
indicated in Section 2, it is possible to define a ranker without scores. A very simple way
to do so – probably the simplest – is to assume a preference order on attribute values, and
to use that ordering to rank instances lexicographically. Experimental results indicate
that such a simple ranker can perform competitively with more sophisticated models
such as decision trees and naive Bayes. Moreover, it can be turned into an accurate and
calibrated probability estimator by using a simple probability assignment derived from
the ranker’s ROC curve, as we show in Section 6.

For notational convenience we will assume that all attributes are binary; since a
nominal attribute with k values can be converted into k binary attributes, this doesn’t
represent a loss of generality.

Definition 1 (Lexicographic ranking). Let A1, . . . ,An be a set of boolean attributes,
such that the index represents a preference order. Let vi+ denote the preferred value
of attribute Ai. The lexicographic ranker corresponding to the preference order on at-
tributes and attribute values is defined as follows:

r̂lex(x1,x2) =
{

> if A j(x1) = v j+
< if A j(x1) 6= v j+

where j denotes the lowest attribute index for which x1 and x2 have different values (if
no such index exists, the two instances are tied).
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A lexicographic ranker can be represented as an unlabelled binary decision tree with
the following properties: (1) the only attribute occurring at depth i is Ai – i.e., along each
path from root to leaf the attributes occur in the preference order; (2) in each split, vi+ is
the left branch. Consequently, the ranking order is represented by the left-to-right order
of the leaves. We call such a tree a lexicographic ranking tree.

Example 3. Figure 3 shows the lexicographic ranking tree obtained if A2 is preferred to
A1, 1 is the preferred value of A1, and 0 the preferred value of A2. .
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Fig. 3. A lexicographic ranker, represented as a decision tree. The class distributions in
the leaves correspond to the data from Example 1, and are not part of the ranker.

Obviously the size of a lexicographic ranking tree is exponential in the number of
attributes, and therefore not practical as a representation of a lexicographic ranker. We
use it here to demonstrate that every lexicographic ranker corresponds to a decision
tree ranker. The converse is, however, not true. This can be seen by noting that the
ROC curve corresponding to the data from Example 1 is not convex (this is immediate
from the leaf class distributions in Figure 3). For this data, none of the eight possible
lexicographic rankers has a convex ROC curve.

A similar, but tighter connection can be made with the naive Bayes classifier, as we
will now show.

Example 4. The naive Bayes ranker obtained from the data from Example 1 is as fol-
lows. We have LR(A1 = 0) = p(A1=0|+)

p(A1=0|−) = 5/6, LR(A1 = 1) = p(A1=1|+)
p(A1=1|−) = 5/4, LR(A2 =

0) = p(A2=0|+)
p(A2=0|−) = 6/4, and LR(A2 = 1) = p(A2=1|+)

p(A2=1|−) = 4/6. The prior odds doesn’t affect
the ranking, and so we can just use the products of these marginal likelihood ratios to
determine the ranking: LR(A1 = 1)LR(A2 = 0) = 30/16 > LR(A1 = 0)LR(A2 = 0) =
30/24 > LR(A1 = 1)LR(A2 = 1) = 20/24 > LR(A1 = 0)LR(A2 = 1) = 20/36. This is
a lexicographic ranking, which is equivalent to the lexicographic ranking tree in Figure
3.

We can further tighten this connection between lexicographic ranking and naive
Bayes by using the odds ratio as the preference criterion for attributes.
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Definition 2. LexRank is the lexicographic ranker which uses the following preference
criteria. The preferred value vi+ for attribute Ai is defined as the one which has LR(Ai =
vi+) > 1 (if there is no such value then the attribute doesn’t express preference and
can be discarded). The preference order on attributes is defined by sorting them on
decreasing odds ratio OR(Ai) = LR(Ai=vi+)

LR(Ai=vi−) , where vi− denotes the value of the non-

preferred value.3

The odds ratio can be interpreted as a decision tree splitting criterion. Its ROC iso-
metrics [6] are shown in Figure 4.
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Fig. 4. ROC isometrics for the odds-ratio splitting criterion.

It is possible to show that for two binary attributes LexRank always produces the
same ranker as naive Bayes. This is due to the fact that for binary attributes naive Bayes
is a linear classifier [7], and the coefficients of the decision hyperplane are the logs of the
odds ratio of each attribute. However, for more than two attributes there are naive Bayes
models that cannot be represented by a preference order on attributes. We conclude
that LexRank exhibits a stronger bias than naive Bayes, but experiments show this
added bias does not result in a loss of ranking performance. The extreme simplicity of
LexRank , which only involves a ranking of attributes and no probability calculations,
makes it therefore very attractive.

3 Strictly speaking, OR(Ai) is not a ratio of odds but a ratio of likelihood ratios, but since the
prior odds does not affect ranking the distinction between likelihood ratio and posterior odds
can be conveniently ignored.
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5 Brier score and ROC curves

In this section we demonstrate a fundamental and novel relationship between Brier
score and ROC curves. We do this by means of a decomposition of the Brier score in
terms of calibration loss and refinement loss. A very similar decomposition is well-
known in forecasting theory (see, e.g., [8]), but requires a discretisation of the proba-
bility estimates and is therefore approximate. Our decomposition uses the segments in-
duced by the ranking and is therefore exact. More importantly, our analysis provides a
straightforward way to turn a ranker into a probability estimator using only the ranker’s
ROC curve.

Theorem 1. 4 Given an ROC curve produced by a ranker on a test set T, let n+
i and

n−i be the number of positives and negatives in the i-th segment of the ROC curve,

ni = n+
i + n−i , pi = n+

i
ni

, and p̂i be the predicted probability in that segment. The Brier
score is equal to

BS =
1
|T |∑i

ni(p̂i− pi)2 +
1
|T |∑i

ni pi(1− pi)

Both of these terms are a weighted average over all segments of the ROC curve. The
first term, the calibration loss, is a weighted average of the squared prediction error in
each segment. It is important to note that the error is taken relative to pi, which is the
proportion of positives in the segment and thus not necessarily 0 or 1. In other words,
the calibration loss as defined above relates the predicted probabilities to the empirical
probabilities that can be obtained from the slopes of the segments of the ROC curve.

The second term in the Brier score decomposition is called refinement loss. This
term is 0 if and only if all ROC segments are either horizontal or vertical, which is the
case if all segments are singletons (or, more precisely, if all segments involve only ex-
amples of a single class). Consequently, refinement loss measures the coarseness of the
ranker, hence its name. For instance, refinement loss is maximal (0.25) for the ranker
which ties all test instances. Notice that refinement loss only takes empirical proba-
bilities into account, not predicted probabilities. It is therefore a quantity that can be
evaluated for any ranker, not just for probability estimators. Notice also that, while the
Brier score itself does not require ranking the probability estimates, its decomposition
into calibration loss and refinement loss does.

Example 5. The decision tree from Example 1 has 0 calibration loss on the training set
(if Laplace correction is not used) and refinement loss (5 ·4/5 ·1/5 +4 ·3/4 ·1/4 +5 ·
2/5 ·3/5+6 ·1/6 ·5/6)/20 = 0.18

We then have the following simple but important results.

Theorem 2. The calibration loss is 0 only if the ROC curve is convex.

A convex ROC curve is not a sufficient condition for perfectly calibrated proba-
bilities. The reason is that the scores may be in the right order but some error terms
may still be non-zero. However, simply setting the predicted probabilities equal to the
empirical probabilities in each segment will always decrease the Brier score.

4 Proofs of the theorems are given in [1].
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Theorem 3. Let p̂ be a probability estimator with a convex ROC curve but a non-
zero calibration loss. Let p̂′ be derived from p̂ by predicting pi rather than p̂i in each
segment. Then p̂′ has the same AUC as p̂ but a lower Brier score.

6 Probability estimation with LexProb

Even though LexRank doesn’t obtain its ranks from scores, we can turn it into a cal-
ibrated probability estimator by employing the insights from the previous section. Ac-
cording to Theorem 3, given a convex ROC curve we can obtain calibrated probability
estimates from the empirical probabilities derived from the slopes of the segments of the
curves. But, unlike decision trees, lexicographic rankers cannot be guaranteed to have
convex ROC curves on the training set. The answer is to use only part of the ranking,
by constructing the convex hull of the ROC curve [9].

This can be understood as creating a coarser ranking, by joining adjacent segments
that are in the wrong order5. Clearly, joining segments results in additional refinement
loss (unless the two segments have the same slope), but this is compensated by setting
the probability estimates equal to the empirical probabilities, hence obtaining zero cal-
ibration loss (in practice, we don’t achieve zero calibration loss because we apply the
Laplace correction in order to avoid overfitting).

Definition 3. Given a training set, the lexicographic probability estimator LexProb is
defined as follows:

1. let r̂lex be the ranker constructed by LexRank from the training set; ;
2. construct r̂lex’s ROC curve on the training set;
3. construct the convex hull of the ROC curve;
4. let r̂′lex be the corresponding coarser version of r̂lex;
5. let p̂lex be the probability estimator that assigns to each segment of r̂′lex the em-

pirical probability obtained from the slope of the ROC convex hull, smoothed with
Laplace correction.

Notice that this procedure can be applied (from step 2) with any ranker, not just
with a lexicographic one. As a calibration procedure it can be shown to be equivalent to
isotonic regression [10]; a proof can be found in [11].

7 Conclusions

In this paper we have investigated the relationship and differences between classifica-
tion, ranking and probability estimation. Machine learning has for (too) long concen-
trated on classification alone, and the relationships between the three are not yet widely
understood, but we believe our analysis is a step in that direction. We have furthermore
introduced the notion of lexicographic ranking, which simply employs a linear prefer-
ence order on attributes. To the best of our knowledge, this is the first ranker that doesn’t
base its ranking on numerical scores. Using the odds ratio for ranking attributes results

5 It can also be understood as pruning the lexicographic ranking tree.
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in a lexicographic ranker, called LexRank , which is close to naive Bayes. Finally, we
have demonstrated a close and fundamental connection between ROC curves and the
Brier score, linking in particular the calibration of probability estimates to the convex-
ity of the ROC curve. This immediately suggests a simple calibration procedure that
first constructs the ROC convex hull, which is in effect a discretisation of the scores,
followed by assigning the empirical probability derived from the ROC segment to each
bin. The fact that the ROC convex hull can be used for probability calibration was dis-
covered independently in [11], who show that the procedure is in fact equivalent to
isotonic regression. Here, we used it to obtain a calibrated lexicographic probability
estimator called LexProb.

The advantage of lexicographic ranking and probability estimation is its extreme
simplicity and robustness. It is remarkable that such a simple models holds its own
against much more sophisticated models.
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