
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 361-372
www.stacs-conf.org

FIXED PARAMETER POLYNOMIAL TIME ALGORITHMS FOR

MAXIMUM AGREEMENT AND COMPATIBLE SUPERTREES

VIET TUNG HOANG 1,2 AND WING-KIN SUNG 1,2

1 Department of Computer Science, National University of Singapore
E-mail address: {hoangvi2,ksung}@comp.nus.edu.sg

2 Genome Institute of Singapore

Abstract. Consider a set of labels L and a set of trees T = {T (1), T (2), . . . , T (k)} where

each tree T (i) is distinctly leaf-labeled by some subset of L. One fundamental problem
is to find the biggest tree (denoted as supertree) to represent T which minimizes the
disagreements with the trees in T under certain criteria. This problem finds applications
in phylogenetics, database, and data mining. In this paper, we focus on two particular
supertree problems, namely, the maximum agreement supertree problem (MASP) and the
maximum compatible supertree problem (MCSP). These two problems are known to be
NP-hard for k ≥ 3. This paper gives the first polynomial time algorithms for both MASP
and MCSP when both k and the maximum degree D of the trees are constant.

1. Introduction

Given a set of labels L and a set of unordered trees T = {T (1), . . . , T (k)} where each

tree T (i) is distinctly leaf-labeled by some subset of L. The supertree method tries to find
a tree to represent all trees in T which minimizes the possible conflicts in the input trees.
The supertree method finds applications in phylogenetics, database, and data mining. For
instance, in the Tree of Life project [10], the supertree method is the basic tool to infer the
phylogenetic tree of all species.

Many supertree methods have been proposed in the literature [2, 5, 6, 8]. This paper
focuses on two particular supertree methods, namely the Maximum Agreement Supertree
(MASP) [8] and the Maximum Compatible Supertree (MCSP) [2]. Both methods try to
find a consensus tree with the largest number of leaves which can represent all the trees in
T under certain criteria. (Please read Section 2 for the formal definition.)

MASP and MCSP are known to be NP-hard as they are the generalization of the
Maximum Agreement Subtree problem (MAST) [1, 3, 9] and the Maximum Compatible
Subtree problem (MCT) [7, 4] respectively. Jansson et al. [8] proved that MASP remains
NP-hard even if every tree is a rooted triplet, i.e., a binary tree of 3 leaves. For k = 2,
Jansson et al. [8] and Berry and Nicolas [2] proposed a linear time algorithm to transform
MASP and MCSP for 2 input trees to MAST and MCT respectively. For k ≥ 3, positive
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Rooted Unrooted

MASP for k trees of max degree D O((kD)kD+3(2n)k) † O((kD)kD+3(4n)k) †

MCSP for k trees of max degree D O(22kDnk) † O(22kDnk) †

MASP/MCSP for k binary trees
O

(

k(2n2)3k2)

[8]
O(8knk) [6]
O(6knk) †

Table 1: Summary of previous and new results († stands for new result).

results for computing MASP/MCSP are reported only for rooted binary trees. Jansson et

al. [8] gave an O
(

k(2n)3k2)

time solution to this problem. Recently, Guillemot and Berry

[6] further improve the running time to O(8knk).
In general, the trees in T may not be binary nor rooted. Hence, Jansson et al. [8]

posted an open problem and asked if MASP can be solved in polynomial time when k and
the maximum degree of the trees in T are constant. This paper gives an affirmative answer
to this question. We show that both MASP and MCSP can be solved in polynomial time
when T contains constant number of bounded degree trees. For the special case where the
trees in T are rooted binary trees, we show that both MASP and MCSP can be solved in
O(6knk) time, which improves the previous best result. Table 1 summarizes the previous
and new results.

The rest of the paper is organized as follows. Section 2 gives the formal definition of the
problems. Then, Sections 3 and 4 describe the algorithms for solving MCSP for both rooted
and unrooted cases. Finally, Sections 5 and 6 detail the algorithms for solving MASP for
both rooted and unrooted cases. Proofs omitted due to space limitation will appear in the
full version of this paper.

2. Preliminary

A phylogenetic tree is defined as an unordered and distinctly leaf-labeled tree. Given a
phylogenetic tree T , the notation L(T ) denotes the leaf set of T , and the size of T refers to
|L(T )|. For any label set S, the restriction of T to S, denoted T |S, is a phylogenetic tree
obtained from T by removing all leaves in L(T )−S and then suppressing all internal nodes
of degree two. (See Figure 1 for an example of restriction.) For two phylogenetic trees T

and T ′, we say that T refines T ′, denoted T DT ′, if T ′ can be obtained by contracting some
edges of T . (See Figure 1 for an example of refinement.)

Maximum Compatible Supertree Problem: Consider a set of k phylogenetic trees
T = {T (1), . . . , T (k)}. A compatible supertree of T is a tree Y such that Y |L(T (i)) D

T (i)|L(Y ) for all i ≤ k. The Maximum Compatible Supertree Problem (MCSP) is to find
a compatible supertree with as many leaves as possible. Figure 2 shows an example of a
compatible supertree Y of two rooted phylogenetic trees T (1) and T (2). If all input trees have
the same leaf sets, MCSP is referred as Maximum Compatible Subtree Problem (MCT).

Maximum Agreement Supertree Problem: Consider a set of k phylogenetic trees
T = {T (1), . . . , T (k)}. An agreement supertree of T is a tree X such that X|L(T (i)) =

T (i)|L(X) for all i ≤ k. The Maximum Agreement Supertree Problem (MASP) is to find
an agreement supertree with as many leaves as possible. Figure 2 shows an example of an
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Figure 1: Three rooted trees. A tree T , a tree T ′ such that T ′ = T | {a, c, d}, and a tree T ′′

such that T ′′ D T .

agreement supertree X of two rooted phylogenetic trees T (1) and T (2). If all input trees have
the same leaf sets, MASP is referred as Maximum Agreement Subtree Problem (MAST).
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Figure 2: An agreement supertree X and a compatible supertree Y of 2 rooted phylogenetic
trees T (1) and T (2).

In the following discussion, for the set of phylogenetic trees T = {T (1), . . . , T (k)}, we

denote n = |
⋃

i=1..k L(T (i))|, and D stands for the maximum degree of the trees in T . We
assume that none of the trees in T has an internal node of degree two, so that each tree
contains at most n− 1 internal nodes. (If a tree T (i) has some internal nodes of degree two,

we can replace it by T (i) | L(T (i)) in linear time.)

3. Algorithm for MCSP of rooted trees

Let T be a set of k rooted phylogenetic trees. This section presents a dynamic program-
ming algorithm to compute the size of a maximum compatible supertree of T in O

(

22kDnk
)

time. The maximum compatible supertree can be obtained in the same asymptotic time
bound by backtracking.
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For every compatible supertree Y of T , there exists a binary tree that refines Y . This
binary tree is also a compatible supertree of T , and is of the same size as Y . Hence in this
section, every compatible supertree is implicitly assumed to be binary.

Definition 3.1 (Cut-subtree). A cut-subtree of a tree T is either an empty tree or a tree
obtained by first selecting some subtrees attached to the same internal node in T and then
connecting those subtrees by a common root.

Definition 3.2 (Cut-subforest). Given a set of k rooted (or unrooted) trees T , a cut-

subforest of T is a set A = {A(1), . . . ,A(k)}, where A(i) is a cut-subtree of T (i) and at least
one element of A is not an empty tree.

T 
(1)

b

c

a

c

b a b

c

A
(1)T 

(2)

de f b

A 
(2)

e d f

Figure 3: A cut-subforest A of T .

For example, in Figure 3, {A(1),A(2)} is a cut-subforest of {T (1), T (2)}. Let O denote
the set of all possible cut-subforests of T .

Lemma 3.3. There are O
(

2kDnk
)

different cut-subforests of T .

Proof. We claim that each tree T (i) contributes 2Dn or fewer cut-subtrees; therefore there
are O

(

2kDnk
)

cut-subforests of T . At each internal node v of T (i), since the degree of v

does not exceed D, we have at most 2D ways of selecting the subtrees attached to v to
form a cut-subtree. Including the empty tree, the number of cut-subtrees in T (i) cannot go
beyond (n − 1)2D + 1 < 2Dn.

Figure 4 demonstrates that a compatible supertree of some cut-subforest A of T may
not be a compatible supertree of T . To circumvent this irregularity, we define embedded
supertree as follows.

Definition 3.4 (Embedded supertree). For any cut-subforest A of T , a tree Y is called an

embedded supertree of A if Y is a compatible supertree of A, and L(Y )∩L(T (i)) ⊆ L(A(i))
for all i ≤ k.

Note that a compatible supertree of T is also an embedded supertree of T . For each
cut-subforest A of T , let mcsp(A) denote the maximum size of embedded supertrees of A.
Our aim is to compute mcsp(T ). Below, we first define the recursive equation for comput-
ing mcsp(A) for all cut-subforests A ∈ O. Then, we describe our dynamic programming
algorithm.

We partition the cut-subforests in O into two classes. A cut-subforest A of T is terminal
if each element A(i) is either an empty tree or a leaf of T (i); it is called non-terminal,
otherwise.
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Figure 4: Consider T = {T (1), T (2)} and its cut-subforest A = {A(1),A(2)}. Although Z is
a compatible supertree of A, it is not a compatible supertree of T . The maximum
compatible supertree of T is Y that contains only 2 leaves.

For each terminal cut-subforest A, let

Λ(A) =
{

l ∈
⋃

j=1..k

L(A(j)) | l 6∈ L(T (i)) − L(A(i)) for i = 1, 2, . . . , k
}

. (3.1)

For example, with T in Figure 2, if A(1) and A(2) are leaves labeled by a and d respectively
then Λ(A) = {d}. In Lemma 3.5, we show that mcsp(A) = |Λ(A)|.

Lemma 3.5. If A is a terminal cut-subforest then mcsp(A) = |Λ(A)|.

Proof. Consider any embedded supertree Y of A. By Definition 3.4, every leaf of Y belongs
to Λ(A). Hence the value mcsp(A) does not exceed |Λ(A)|.

It remains to give an example of some embedded supertree of A whose leaf set is Λ(A).
Let C be a rooted caterpillar 1 whose leaf set is Λ(A). The definition of Λ(A) implies that
L(C) ∩ L(T (i)) ⊆ L

(

A(i)
)

for every i ≤ k. Since each A(i) has at most one leaf, it is
straightforward that C is a compatible supertree of A. Hence C is the desired example.

Definition 3.6 (Bipartite). Let A be a cut-subforest of T . We say that the cut-subforests

AL and AR bipartition A if for every i ≤ k, the trees A
(i)
L and A

(i)
R can be obtained by (1)

partitioning the subtrees attached to the root of A(i) into two sets S
(i)
L and S

(i)
R ; and (2)

connecting the subtrees in S
(i)
L (resp. S

(i)
R ) by a common root to form A

(i)
L (resp. A

(i)
R ).

Figure 5 shows an example of the preceding definition. For each non-terminal cut-
subforest A, we compute mcsp(A) based on the mcsp values of AL and AR for each bipartite
(AL,AR) of A. More precisely, we prove that

mcsp(A) = max{mcsp(AL) + mcsp(AR) | AL and AR bipartition A} . (3.2)

The identity (3.2) is then established by Lemmas 3.8 and 3.10.

Lemma 3.7. Consider a bipartite (AL,AR) of some cut-subforest A of T . If YL and YR

are embedded supertrees of AL and AR respectively then Y is an embedded supertree of A,
where Y is formed by connecting YL and YR to a common root.

1A rooted caterpillar is a rooted, unordered, and distinctly leaf-labeled binary tree where every internal
node has at least one child that is a leaf.
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Figure 5: A bipartite (AL,AR) of a cut-subforest A. The empty tree is represented by a
white circle.

Lemma 3.8. Let A be a cut-subforest of T . If (AL,AR) is a bipartite of A then mcsp(A) ≥
mcsp(AL) + mcsp(AR).

Proof. Consider an embedded supertree YL of AL such that |L(YL)| = mcsp(AL). Define
YR for AR similarly. Let Y be a tree formed by connecting YL and YR with a common root.
Note that Y is of size mcsp(AL) + mcsp(AR). By Lemma 3.7, Y is an embedded supertree
of A and hence the lemma follows.

Lemma 3.9. Given a cut-subforest A of T , let Y be a binary embedded supertree of A with
left subtree YL and right subtree YR. There exists a bipartite (AL,AR) of A such that either
(i) Y is an embedded supertree of AL; or (ii) YL and YR are embedded supertrees of AL and
AR respectively.

Lemma 3.10. For each non-terminal cut-subforest A of T , there exists a bipartite (AL,AR)
of A such that mcsp(A) ≤ mcsp(AL) + mcsp(AR).

Proof. Let Y be a binary embedded supertree of A such that |L(Y )| = mcsp(A). By
Lemma 3.9, there exists a bipartite (AL,AR) of A such that either (1) Y is an embedded
supertree of AL; or (2) YL and YR are embedded supertrees of AL and AR respectively,
where YL is the left subtree and YR is the right subtree of Y . In both cases, |L(Y )| ≤
mcsp(AL) + mcsp(AR). Then the lemma follows.

The above discussion then leads to Theorem 3.11.

Theorem 3.11. For every cut-subforest A of T , the value mcsp(A) equals to
{

|Λ(A)| , if A is terminal,
max{mcsp(AL) + mcsp(AR) | AL and AR bipartition A}, otherwise .

We define an ordering of the cut-subforests in O as follows. For any cut-subforests

A1,A2 in O, we say that A1 is smaller than A2 if A
(i)
1 is a cut-subtree of A

(i)
2 for i =

1, 2, . . . , k. Our algorithm enumerates A ∈ O in topologically increasing order and computes
mcsp(A) based on Theorem 3.11. Theorem 3.12 states the complexity of our algorithm.

Theorem 3.12. A maximum compatible supertree of k rooted phylogenetic trees can be
obtained in O

(

22kDnk
)

time .
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Proof. Testing if a cut-subforest is terminal takes O(k) times, and each terminal cut-
subforest A then requires O(k2) time for the computation of Λ(A). In view of Lemma 3.3, it
suffices to show that each non-terminal cut-subforest A has O(2kD) bipartites. This result
follows from the fact that for each i ≤ k, there are at most 2D ways to partition the set of
the subtrees attached to the root of A(i).

In the special case where every tree T (i) is binary, Theorem 3.13 shows that our algo-
rithm actually has a better time complexity. Note that the concepts of agreement supertree
and compatible supertree will coincide for binary trees. Hence, our algorithm improves the
O

(

8knk
)

-time algorithm in [6] for computing maximum agreement supertree of k rooted
binary trees.

Theorem 3.13. If every tree in T is binary, a maximum compatible supertree (or a maxi-
mum agreement supertree) can be computed in O

(

6knk
)

time.

Proof. We claim that the processing of non-terminal cut-subforests of T requires O
(

6knk
)

time. The argument in the proof of Theorem 3.12 tells that the remaining computation
runs within the same asymptotic time bound. Consider an integer r ∈ {0, 1, . . . , k}. We

shall be dealing with a cut-subforest A such that there are exactly r cut-subtrees A(i) whose
roots are internal nodes of T (i). The key of this proof is to show that the number of those

cut-subforests does not exceed

(

k

r

)

(n−1)r(n+1)k−r, and the running time for each cut-

subforest is O
(

4r2k−r
)

. Hence, the total running time for all non-terminal cut-subforests
is

k
∑

r=0

(

k

r

)

(n − 1)r(n + 1)k−rO
(

4r2k−r
)

= O
(

6knk
)

.

We can count the number of the specified cut-subforests A as follows. First there are
(

k

r

)

options for r indices i such that the roots of cut-subtrees A(i) are internal nodes of

T (i). For those cut-subtrees, we then appoint one of the (n − 1) or fewer internal nodes of

T (i) to be the root node of A(i). Every other cut-subtree of A is a leaf or the empty tree,
and then can be determined from at most n+1 alternatives. Multiplying those possibilities
gives us the bound stipulated in the preceding paragraph.

It remains to estimate the running time for each specified cut-subforest A. This task
requires us to bound the number of bipartites of each cut-subforest. If the root v of A(i) is
an internal node of T (i) then A(i) contributes 4 or fewer ways of partitioning the set of the
subtrees attached to v. Otherwise, we have at most 2 ways of partitioning this set. Hence
A owns at most 4r2k−r bipartites, and this completes the proof.

4. Algorithm for MCSP of unrooted trees

Let T be a set of k unrooted phylogenetic trees. This section extends the algorithm
in Section 3 to find the size of a maximum compatible supertree of T . The maximum
compatible supertree can be obtained by backtracking. Surprisingly, the extended algorithm
for unrooted trees runs within the same asymptotic time bound as the original algorithm
for rooted trees.
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We will follow the same approach as Section 3, i.e., for each cut-subforest A of T , we
find an embedded supertree of A of maximum size. Definitions 3.1, 3.2, and 3.4 for cut-
subforest and embedded supertree in the previous section are still valid for unrooted trees.
Notice that although T is the set of unrooted trees, each cut-subforest A of T consists of
rooted trees. (See Figure 6 for an example of cut-subforest for unrooted trees.) Hence we
can use the algorithm in Section 3 to find the maximum embedded supertree of A. We then
select the biggest tree T among those maximum embedded supertrees for all cut-subforests
of T , and unroot T to obtain the maximum compatible supertree of T .

a b
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f

a b

c

e

d

f ea d
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d
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A 
(2)

T 
(1)
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Figure 6: The set of rooted trees A = {A(1),A(2)} is a cut-subforest of T = {T (1), T (2)}.

Theorem 4.1 shows that the extended algorithm has the same asymptotic time bound
as the algorithm in Section 3.

Theorem 4.1. We can find a maximum compatible supertree of k unrooted phylogenetic
trees in O

(

22kDnk
)

time.

Proof. Using a similar proof as Lemma 3.3, we can prove that there are O
(

2kDnk
)

cut-
subforests of T . As given in the proof of Theorem 3.12, finding the maximum embedded
supertrees of each cut-subforest takes O(2kD) time. Hence the extended algorithm runs
within the specified time bound.

5. Algorithm for MASP of rooted trees

Let T be a set of k rooted phylogenetic trees. This section presents a dynamic pro-
gramming algorithm to compute the size of a maximum agreement supertree of T in
O

(

(kD)kD+3(2n)k
)

time. The maximum agreement supertree can be obtained in the same
asymptotic time bound by backtracking.

The idea here is similar to that of Section 3. However, while we can assume that
compatible supertrees are binary, the maximum degree of agreement supertrees can grow
up to kD. It is the reason why we have the factor O((kD)kD+3) in the complexity.

Definition 5.1 (Sub-forest). Given a set of k rooted trees T , a sub-forest of T is a set

A = {A(1), . . . ,A(k)}, where each A(i) is either an empty tree or a complete subtree rooted

at some node of T (i), and at least one element of A is not an empty tree.

Notice that the definition of sub-forest does not coincide with the concept of cut-
subforest in Definition 3.2 of Section 3. For example, the cut-subforest A in Figure 3
is not a sub-forest of T , because A(2) is not a complete subtree rooted at some node of T (2).
Let O denote the set of all possible sub-forests of T . Then |O| = O

(

(2n)k
)

.
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Definition 5.2 (Enclosed supertree). For any sub-forest A of T , a tree X is called an
enclosed supertree of A if X is an agreement supertree of A, and L(X)∩L(T (i)) ⊆ L(A(i))
for all i ≤ k.

For each sub-forest A of T , let masp(A) denote the maximum size of enclosed supertrees
of A. We use a similar approach as Section 3, i.e., we compute masp(A) for all A ∈ O, and
masp(T ) is the size of a maximum agreement supertree of T . We partition the sub-forests

in O to two classes. A sub-forest A is terminal if each A(i) is either an empty tree or a leaf.
Otherwise, A is called non-terminal.

Notice that for terminal sub-forest, the definition of enclosed supertree coincides with
the concept of embedded supertree in Definition 3.4 of Section 3. Then by Lemma 3.5,
we have masp(A) = |Λ(A)|. (Please refer to the formula (3.1) in the paragraph preceding
Lemma 3.5 for the definition of function Λ.)

Definition 5.3 (Decomposition). Let A be a sub-forest of T . We say that sub-forests

B1, . . . ,Bd (with d ≥ 2) decompose A if for all i ≤ k, either (i) Exactly one of B
(i)
1 , . . . ,B

(i)
d

is isomorphic to A(i) while the others are empty trees; or (ii) There are at least 2 nonempty

trees in B
(i)
1 , . . . ,B

(i)
d , and all those nonempty trees are isomorphic to pairwise distinct

subtrees attached to the root of A(i).

�2�1 �3 �4 �1 �2 �4

A
(1)

B1
(1)

B2
(1)

B3
(1)

A
(2)

B1
(2)

B2
(2)

B3
(2)

Figure 7: A decomposition (B1,B2,B3) of a sub-forest A. The empty trees are represented
by white circles.

Figure 7 illustrates the concept of decomposition. For each sub-forest A of T , we will
prove that

masp(A) = max{masp(B1) + . . . + masp(Bd) | B1, . . . ,Bd decompose A} . (5.1)

The identity (5.1) is then established by Lemmas 5.5 and 5.7.

Lemma 5.4. Suppose (B1, . . . ,Bd) is a decomposition of some sub-forest A of T . Let
τ1, . . . , τd be some enclosed supertrees of B1, . . . ,Bd respectively, and let X be the tree ob-
tained by connecting τ1, . . . , τd to a common root. Then, X is an enclosed supertree of A.

Lemma 5.5. If (B1, . . . ,Bd) is a decomposition of a sub-forest A of T then masp(A) ≥
masp(B1) + . . . + masp(Bd).

Proof. For each Bj, let τj be an enclosed supertree of Bj such that |L(τj)| = masp(Bj). Let
X be the tree obtained by connecting τ1, . . . , τd to a common root. By Lemma 5.4, X is an
enclosed supertree of A. Hence |L(τ1)| + . . . + |L(τd)| = |L(X)| ≤ masp(A).
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Lemma 5.6. Let X be an enclosed supertree of some sub-forest A of T , and let τ1, . . . , τd be
all subtrees attached to the root of X. Then either (i) There is a decomposition (B1,B2) of
A such that X is an enclosed supertree of B1; or (ii) There is a decomposition (B1, . . . ,Bd)
of A such that each τj is an enclosed supertree of Bj.

Lemma 5.7. For each non-terminal sub-forest A of T , there is a decomposition (B1, . . . ,Bd)
of A such that masp(A) ≤ masp(B1) + . . . + masp(Bd)

Proof. Let X be an enclosed supertree of A such that |L(X)| = masp(A) and let τ1, . . . , τd be
all subtrees attached to the root of X. By Lemma 5.6, either (i) There exists a decomposition
(B1,B2) of A such that X is an enclosed supertree of B1; or (ii) There is a decomposition
(B1, . . . ,Bd) of A such that each τj is an enclosed supertree of Bj. In case (i), we have
|L(X)| ≤ masp(B1) ≤ masp(B1) + masp(B2). On the other hand, in case (ii), we have
|L(X)| = |L(τ1)| + . . . + |L(τd)| ≤ masp(B1) + . . . + masp(Bd).

The above discussion then leads to Theorem 5.8.

Theorem 5.8. For every sub-forest A of T , the value masp(A) equals to
{

|Λ(A)| , if A is terminal,
max{masp(B1) + . . . + masp(Bd) | B1, . . . ,Bd decompose A}, otherwise .

We define an ordering of the sub-forests in O as follows. For any sub-forests A1,A2

in O, we say A1 is smaller than A2 if A
(i)
1 is either an empty tree or a subtree of A

(i)
2

for i = 1, 2, . . . , k. Our algorithm enumerates A ∈ O in topologically increasing order and
computes masp(A) based on Theorem 5.8.

In Lemma 5.9, we bound the number of decompositions of each sub-forest of T . Theo-
rem 5.10 states the complexity of the algorithm.

Lemma 5.9. Each sub-forest of T has O
(

(kD)kD+1
)

decompositions, and generating those

decompositions takes O
(

k2D2
)

time per decomposition.

Proof. Let A be a sub-forest of T . Since the maximum degree of any agreement supertree of
A is bounded by kD, we consider only decompositions that consist of at most kD elements.
We claim that for each d ∈ {2, . . . , kD}, the sub-forest A owns O

(

(d + 2)kD
)

decompositions
(B1, . . . ,Bd). Summing up those asymptotic terms gives us the specified bound.

The key of this proof is to prove that for each s ∈ {1, . . . , k}, the tree A(s) contributes

at most (d + 1)D + d < (d + 2)D sequences B
(s)
1 , . . . ,B

(s)
d , and generating those sequences

requires O(d) time per sequence. We have two cases, each corresponds to a type of the
above sequence.

Case 1: One term in the sequence is A(s); therefore the other terms are empty trees.
Then, we can generate this sequence by assigning A(s) to exactly one term and setting the
rest to be empty trees. This case provides exactly d sequences and enumerates them in
O(d) time per sequence.

Case 2: No term in the above sequence is A(s). Consider an integer r ∈ {0, 1, . . . , d}
and assume that the sequence consists of exactly r terms that are nonempty nodes. Then
those r nonempty trees are isomorphic to pairwise distinct subtrees attached to the root of
A(s). Let δ be the degree of the root of A(s). We generate the sequence as follows. First
we draw r pairwise distinct subtrees attached to the root of A(s). Next, we select r terms
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in the sequence and distribute the above subtrees to them. Finally we set the remaining
terms to be empty trees. Hence this case gives at most

∑

r≤min{δ,d}

(

δ

r

)

d!

(d − r)!
<

D
∑

r=0

(

D

r

)

dr = (d + 1)D

sequences, and generates them in O(d) time per sequence.

Theorem 5.10. A maximum agreement supertree of k rooted phylogenetic trees can be
obtained in O

(

(kD)kD+3(2n)k
)

time.

Proof. Testing if a sub-forest is terminal takes O(k) times, and each terminal sub-forest A
then requires O(k2) time for computing Λ(A). By Lemma 5.9, each non-terminal sub-forest
requires O

(

(kD)kD+3
)

running time. Summing up those asymptotic terms for O
(

(2n)k
)

sub-forests of T gives us the specified time bound.

6. Algorithm for MASP of unrooted trees

Let T be a set of k unrooted phylogenetic trees. This section extends the algorithm in
Section 5 to find the size of a maximum agreement supertree of T in O

(

(kD)kD+3(4n)k
)

time. The maximum agreement supertree can be obtained by backtracking.
We say that a set of k rooted trees F = {F (1), . . . ,F (k)} is a rooted variant of T if we

can obtain each F (i) by rooting T (i) at some internal node. One naive approach is to use
the algorithm in the previous section to solve MASP for each rooted variant of T . Each
rooted variant then gives us a solution, and the maximum of those solutions is the size of
a maximum agreement supertree of T . Because there are O

(

nk
)

rooted variants of T , this

approach adds an O
(

nk
)

factor to the complexity of the algorithm for rooted trees.
We now show how to improve the above naive algorithm. As mentioned in the previous

section, the computation of each rooted variant of T consists of O
(

(2n)k
)

sub-problems
which correspond to its sub-forests. (Please refer to Definition 5.1 for the concept of sub-
forest.) Since different rooted variants may have some common sub-forests, the total number
of sub-problems we have to run is much smaller than O(2kn2k). More precisely, we will show
that the total number of sub-problems is only O

(

(4n)k
)

.
A (rooted or unrooted) tree is trivial if it is a leaf or an empty tree. A maximal subtree

of an unrooted tree T is a rooted tree obtained by first rooting T at some internal node v

and then removing at most one nontrivial subtree attached to v. Let O denote the set of
sub-forests of all rooted variants of T .

Lemma 6.1. Let A = {A(1), . . . ,A(k)} be a set of rooted trees. Then A ∈ O if and only if

each A(i) is either a trivial subtree or a maximal subtree of T (i).

Proof. Let F be a rooted variant of T such that A is a sub-forest of F . Fix an index
s ∈ {1, . . . , k} and let v be the root node of A(s). Our claim is straightforward if either A(s)

is trivial or v is the root node of F (s). Otherwise, let u be the parent of v in F (s). Hence
A(s) is the maximal subtree of T (s) obtained by first rooting T (s) at v and then removing
the complete subtree rooted at u.

Conversely, we construct a rooted variant F of T such that A is a sub-forest of F as
follows. For each i ≤ k, if A(i) is trivial or A(i) is a tree obtained by rooting T (i) at some
internal node then constructing F (i) is straightforward. Otherwise A(i) is a maximal subtree
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of T (i) obtained by first rooting T (i) at some internal node v and then removing exactly
one nontrivial subtree τ attached to v. Hence F (i) is the tree obtained by rooting T (i) at
u, where u is the root of τ .

Theorem 6.2. We can find a maximum agreement supertree of k unrooted phylogenetic
trees in O

(

(kD)kD+3(4n)k
)

time.

Proof. The key of this proof is to show that each tree T (i) contributes at most (3n − 1)
maximal subtrees. It follows that |O| ≤ (4n)k. The specified running time of our algorithm
is then straightforward because each subproblem requires O

(

(kD)kD+3
)

time as given in

the proof of Theorem 5.10. Assume that the tree T (i) has exactly L leaves, with L ≤ n.
We now count the number of maximal subtrees T of T (i) in two cases.

Case 1: T is obtained by rooting T (i) at some internal node. Hence this case provides
at most L − 1 < n maximal subtrees.

Case 2: T is obtained by first rooting T (i) at some internal node v and then removing a
nontrivial subtree τ attached to v. Notice that there is a one-to-one correspondence between
the tree T and the directed edge (v, u) of T (i), where u is the root node of τ . There are

2L − 2 or fewer undirected edges in T (i) but exactly L of them are adjacent to the leaves.
Hence this case gives us at most 2(2L − 2 − L) < 2n − 1 maximal subtrees.
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