
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 325-336
www.stacs-conf.org

SUCCINCTNESS OF THE COMPLEMENT AND INTERSECTION OF

REGULAR EXPRESSIONS

WOUTER GELADE AND FRANK NEVEN

Hasselt University and Transnational University of Limburg, School for Information Technology
E-mail address: firstname.lastname@uhasselt.be

Abstract. We study the succinctness of the complement and intersection of regular ex-
pressions. In particular, we show that when constructing a regular expression defining the
complement of a given regular expression, a double exponential size increase cannot be
avoided. Similarly, when constructing a regular expression defining the intersection of a
fixed and an arbitrary number of regular expressions, an exponential and double expo-
nential size increase, respectively, can in worst-case not be avoided. All mentioned lower
bounds improve the existing ones by one exponential and are tight in the sense that the
target expression can be constructed in the corresponding time class, i.e., exponential or
double exponential time. As a by-product, we generalize a theorem by Ehrenfeucht and
Zeiger stating that there is a class of DFAs which are exponentially more succinct than
regular expressions, to a fixed four-letter alphabet. When the given regular expressions
are one-unambiguous, as for instance required by the XML Schema specification, the com-
plement can be computed in polynomial time whereas the bounds concerning intersection
continue to hold. For the subclass of single-occurrence regular expressions, we prove a
tight exponential lower bound for intersection.

1. Introduction

The two central questions addressed in this paper are the following. Given regular
expressions r, r1, . . . , rk over an alphabet Σ,

(1) what is the complexity of constructing a regular expression r¬ defining Σ∗ \ L(r),
that is, the complement of r?

(2) what is the complexity of constructing a regular expression r∩ defining L(r1)∩ · · · ∩
L(rk)?

In both cases, the naive algorithm takes time double exponential in the size of the input.
Indeed, for the complement, transform r to an NFA and determinize it (first exponential
step), complement it and translate back to a regular expression (second exponential step).
For the intersection there is a similar algorithm through a translation to NFAs, taking
the crossproduct and a retranslation to a regular expression. Note that both algorithms
do not only take double exponential time but also result in a regular expression of double
exponential size. In this paper, we exhibit classes of regular expressions for which this double

Wouter Gelade is a Research Assistant of the Fund for Scientific Research - Flanders (Belgium).

c© W. Gelade and F. Neven
CC© Creative Commons Attribution-NoDerivs License

STACS 2008
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 325-336
http://drops.dagstuhl.de/opus/volltexte/2008/1354

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

326 W. GELADE AND F. NEVEN

exponential size increase cannot be avoided. Furthermore, when the number k of regular
expressions is fixed, r∩ can be constructed in exponential time and we prove a matching
lower bound for the size increase. In addition, we consider the fragments of one-unambiguous
and single-occurrence regular expressions relevant to XML schema languages [2, 3, 13, 23].
Our main results are summarized in Table 1.

The main technical part of the paper is centered around the generalization of a result
by Ehrenfeucht and Zeiger [8]. They exhibit a class of languages (Zn)n∈N each of which can
be accepted by a DFA of size O(n2) but cannot be defined by a regular expression of size
smaller than 2n−1. The most direct way to define Zn is by the DFA that accepts it: the
DFA is a graph consisting of n states, labeled 0 to n − 1, which are fully connected and
the edge between state i and j carries the label ai,j. It now accepts all paths in the graph,
that is, all strings of the form ai0,i1ai1,i2 · · · aik,ik+1

. Note that the alphabet over which Zn is
defined grows quadratically with n. We generalize their result to a four-letter alphabet. In
particular, we define Kn as the binary encoding of Zn using a suitable encoding for ai,j and
prove that every regular expression defining Kn should be at least of size 2n. As integers are
encoded in binary the complement and intersection of regular expressions can now be used
to separately encode K2n (and slight variations thereof) leading to the desired results. In [9]
the same generalization as obtained here is attributed to Waizenegger [35]. Unfortunately,
we believe that proof to be incorrect as we discuss in the full version of this paper.

Although the succinctness of various automata models have been investigated in depth [14]
and more recently those of logics over (unary alphabet) strings [15], the succinctness of reg-
ular expressions has hardly been addressed. For the complement of a regular expression an
exponential lower bound is given by Ellul et al [9]. For the intersection of an arbitrary num-
ber of regular expressions Petersen gave an exponential lower bound [28], while Ellul et al [9]
mention a quadratic lower bound for the intersection of two regular expressions. In fact,
in [9], it is explicitly asked what the maximum achievable blow-up is for the complement
of one and the intersection of two regular expressions (Open Problems 4 and 5). Although
we do not answer these questions in the most precise way, our lower bounds improve the
existing ones by one exponential and are tight in the sense that the target expression can
be constructed in the time class matching the space complexity of the lower bounds.

Succinctness of complement and intersection relate to the succinctness of semi-extended
(RE(∩)) and extended regular expressions (RE(∩,¬)). These are regular expressions aug-
mented with intersection and both complement and intersection operators, respectively.
Their membership problem has been extensively studied [18, 20, 26, 28, 30]. Furthermore,
non-emptiness and equivalence of RE(∩,¬) is non-elementary [33]. For RE(∩), inequiva-
lence is expspace-complete [10, 16, 29], and non-emptiness is pspace-complete [10, 16] even
when restricted to the intersection of a (non-constant) number of regular expressions [19].
Several of these papers hint upon the succinctness of the intersection operator and provide
dedicated techniques in dealing with the new operator directly rather than through a trans-
lation to ordinary regular expressions [20, 28]. Our results present a double exponential
lower bound in translating RE(∩) to RE and therefore justify even more the development
for specialized techniques.

A final motivation for this research stems from its application in the emerging area of
XML-theory [21, 27, 31, 34]. From a formal language viewpoint, XML documents can be
seen as labeled unranked trees and collections of these documents are defined by schemas. A
schema can take various forms, but the most common ones are Document Type Definitions
(DTDs) [4] and XML Schema Definitions (XSDs) [32] which are grammar based formalisms

SUCCINCTNESS OF REGULAR EXPRESSIONS 327

complement intersection (fixed) intersection (arbitrary)

regular expression 2-exp exp 2-exp
one-unambiguous poly exp 2-exp
single-occurrence poly exp exp

Table 1: Overview of the size increase for the various operators and subclasses. All non-
polynomial complexities are tight.

with regular expressions at right-hand sides of rules [23, 25]. Many questions concerning
schemas reduce to corresponding questions on the classes of regular expressions used as
right-hand sides of rules as is exemplified for the basic decision problems studied in [11]
and [22]. Furthermore, the lower bounds presented here are utilized in [12] to prove, among
other things, lower bounds on the succinctness of existential and universal pattern-based
schemas on the one hand, and single-type EDTDs (a formalization of XSDs) and DTDs,
on the other hand. As the DTD and XML Schema specification require regular expres-
sions occurring in rules to be deterministic, formalized by Brüggemann-Klein and Wood in
terms of one-unambiguous regular expressions [6], we also investigate the complement and
intersection of those. In particular, we show that a one-unambiguous regular expressions
can be complemented in polynomial time, whereas the lower bounds concerning intersection
carry over from unrestricted regular expressions. A study in [2] reveals that most of the
one-unambiguous regular expression used in practice take a very simple form: every alpha-
bet symbol occurs at most once. We refer to those as single-occurrence regular expressions
(SOREs) and show a tight exponential lower bound for intersection.

Outline. In Section 2, we introduce the necessary notions concerning (one-unambiguous)
regular expressions and automata. In Section 3, we extend the result by Ehrenfeucht and
Zeiger to a fixed alphabet using the family of languages (Kn)n∈N. In Section 4, we consider
the succinctness of complement. In Section 5, we consider the succinctness of intersection
of several classes of regular expressions. We conclude in Section 6. A version of this paper
containing all proofs is available from the authors’ webpages.

2. Preliminaries

2.1. Regular expressions

By N we denote the natural numbers without zero. For the rest of the paper, Σ always
denotes a finite alphabet. A Σ-string (or simply string) is a finite sequence w = a1 · · · an

of Σ-symbols. We define the length of w, denoted by |w|, to be n. We denote the empty
string by ε. The set of positions of w is {1, . . . , n} and the symbol of w at position i is ai.
By w1 ·w2 we denote the concatenation of two strings w1 and w2. As usual, for readability,
we denote the concatenation of w1 and w2 by w1w2. The set of all strings is denoted
by Σ∗ and the set of all non-empty strings by Σ+. A string language is a subset of Σ∗.
For two string languages L,L′ ⊆ Σ∗, we define their concatenation L · L′ to be the set
{w · w′ | w ∈ L,w′ ∈ L′}. We abbreviate L · L · · ·L (i times) by Li.

The set of regular expressions over Σ, denoted by RE, is defined in the usual way: ∅,
ε, and every Σ-symbol is a regular expression; and when r1 and r2 are regular expressions,
then r1 · r2, r1 + r2, and r∗1 are also regular expressions.

328 W. GELADE AND F. NEVEN

By RE(∩,¬) we denote the class of extended regular expressions, that is, RE ex-
tended with intersection and complementation operators. So, when r1 and r2 are RE(∩,¬)-
expressions then so are r1 ∩ r2 and ¬r1. By RE(∩) and RE(¬) we denote RE extended
solely with the intersection and complement operator, respectively.

The language defined by an extended regular expression r, denoted by L(r), is induc-
tively defined as follows: L(∅) = ∅; L(ε) = {ε}; L(a) = {a}; L(r1r2) = L(r1) · L(r2);
L(r1 + r2) = L(r1) ∪ L(r2); L(r∗) = {ε} ∪

⋃∞
i=1 L(r)i; L(r1 ∩ r2) = L(r1) ∩ L(r2); and

L(¬r1) = Σ∗ \ L(r1).

By
⋃k

i=1 ri, and rk, with k ∈ N, we abbreviate the expression r1 + · · · + rk, and rr · · · r
(k-times), respectively. For a set S = {a1, . . . , an} ⊆ Σ, we abbreviate by S the regular
expression a1 + · · · + an.

We define the size of an extended regular expression r over Σ, denoted by |r|, as
the number of Σ-symbols and operators occurring in r disregarding parentheses. This is
equivalent to the length of its (parenthesis-free) reverse Polish form [37]. Formally, |∅| =
|ε| = |a| = 1, for a ∈ Σ, |r1r2| = |r1∩r2| = |r1 +r2| = |r1|+ |r2|+1, and |¬r| = |r∗| = |r|+1.

Other possibilities considered in the literature for defining the size of a regular expres-
sion are: (1) counting all symbols, operators, and parentheses [1, 17]; or, (2) counting only
the Σ-symbols. However, Ellul et al. [9] have shown that for regular expressions (so, with-
out ¬ and ∩), provided they are preprocessed by syntactically eliminating superfluous ∅-
and ε-symbols, and nested stars, the three length measures are identical up to a constant
multiplicative factor. For extended regular expressions, counting only the Σ-symbols is not
sufficient, since for instance the expression (¬ε)(¬ε)(¬ε) does not contain any Σ-symbols.
Therefore, we define the size of an expression as the length of its reverse Polish form.

2.2. One-unambiguous regular expressions and SOREs

As mentioned in the introduction, several XML schema languages restrict regular
expressions occurring in rules to be deterministic, formalized by Brüggemann-Klein and
Wood [6] in terms of one-unambiguity. We introduce this notion next.

To indicate different occurrences of the same symbol in a regular expression, we mark
symbols with subscripts. For instance, the marking of (a + b)∗a + bc is (a1 + b2)

∗a3 + b4c5.

We denote by r[the marking of r and by Sym(r[) the subscripted symbols occurring in r[.
When r is a marked expression, then r\ over Σ is obtained from r by dropping all subscripts.
This notion is extended to words and languages in the usual way.

Definition 2.1. A regular expression r is one-unambiguous iff for all strings w, u, v ∈
Sym(r[)∗, and all symbols x, y ∈ Sym(r[), the conditions uxv, uyw ∈ L(r[) and x 6= y imply
x\ 6= y\.

For instance, the regular expression r = a∗a, with marking r[= a∗1a2, is not one-

unambiguous. Indeed, the marked strings a1a2 and a1a1a2 both in L(r[) do not satisfy
the conditions in the previous definition. The equivalent expression aa∗, however, is one-
unambiguous. The intuition behind the definition is that positions in the input string can
be matched in a deterministic way against a one-unambiguous regular expression without
looking ahead. For instance, for the expression aa∗, the first a of an input string is always
matched against the leading a in the expression, while every subsequent a is matched against
the last a. Unfortunately, one-unambiguous regular languages do not form a very robust
class as they are not even closed under the Boolean operations [6].

SUCCINCTNESS OF REGULAR EXPRESSIONS 329

The following subclass captures the class of regular expressions occurring in XML
schemas on the Web [2]:

Definition 2.2. A single-occurrence regular expression (SORE) is a regular expression
where every alphabet symbol occurs at most once. In addition, we allow the operator r+

which defines rr∗.

For instance, (a + b)+c is a SORE while a∗(a + b)+ is not. Clearly, every SORE is
one-unambiguous. Note that SOREs define local languages and that over a fixed alphabet
there are only finitely many of them.

2.3. Finite automata

A non-deterministic finite automaton (NFA) A is a 4-tuple (Q, q0, δ, F) where Q is the
set of states, q0 is the initial state, F is the set of final states and δ ⊆ Q × Σ × Q is the
transition relation. We write q ⇒A,w q′ when w takes A from state q to q′. So, w is accepted
by A if q0 ⇒A,w q′ for some q′ ∈ F . The set of strings accepted by A is denoted by L(A).
The size of an NFA is |Q|+ |δ|. An NFA is deterministic (or a DFA) if for all a ∈ Σ, q ∈ Q,
|{(q, a, q′) ∈ δ | q′ ∈ Q}| ≤ 1.

We make use of the following known results.

Theorem 2.3. Let A1, . . . , Am be NFAs over Σ with |Ai| = ni for i ≤ m, and |Σ| = k.

(1) A regular expression r, with L(r) = L(A1), can be constructed in time O(m1k4m1),
where m1 is the number of states of A1 [24, 9].

(2) A DFA B with 2n1 states, such that L(B) = L(A1), can be constructed in time
O(2n1) [36].

(3) A DFA B with 2n1 states, such that L(B) = Σ∗ \L(A1), can be constructed in time
O(2n1) [36].

(4) Let r ∈ RE. An NFA B with |r|+1 states, such that L(B) = L(r), can be constructed
in time O(|r| · |Σ|) [5].

(5) Let r ∈ RE(∩). An NFA B with 2|r| states, such that L(B) = L(r), can be con-
structed in time exponential in the size of r [10].

3. A generalization of a Theorem by Ehrenfeucht and Zeiger to a fixed

alphabet

We first introduce the family (Zn)n∈N defined by Ehrenfeucht and Zeiger over an al-
phabet whose size grows quadratically with the parameter n [8]:

Definition 3.1. Let n ∈ N and Σn = {ai,j | 0 ≤ i, j ≤ n − 1}. Then, Zn contains exactly
all strings of the form ai0,i1ai1,i2 · · · aik−1,ik where k ∈ N.

A way to interpret Zn is to consider the DFA with states {0, . . . , n − 1} which is fully
connected and where the edge between state i and j is labeled with ai,j. The language Zn

then consists of all paths in the DFA. 1

Ehrenfeucht and Zeiger obtained the succinctness of DFAs with respect to regular ex-
pressions through the following theorem:

1Actually, in [8], only paths from state 0 to state n − 1 are considered. We use our slightly modified
definition as it will be easier to generalize to a fixed arity alphabet suited for our purpose in the sequel.

330 W. GELADE AND F. NEVEN

Theorem 3.2 ([8]). For n ∈ N, any regular expression defining Zn must be of size at least
2n−1. Furthermore, there is a DFA of size O(n2) accepting Zn.

Our language Kn is then the straightforward binary encoding of Zn that additionally
swaps the pair of indices in every symbol ai,j. Thereto, for ai,j ∈ Σn, define the function
ρn as

ρn(ai,j) = enc(j)$enc(i)#,

where enc(i) and enc(j) denote the dlog(n)e-bit binary encodings of i and j, respectively.
Note that since i, j < n, i and j can be encoded using only dlog(n)e-bits. We extend the
definition of ρn to strings in the usual way: ρn(ai0,i1 · · · aik−1,ik) = ρn(ai0,i1) · · · ρn(aik−1,ik).

We are now ready to define Kn.

Definition 3.3. Let ΣK = {0, 1, $,#}. For n ∈ N, let Kn = {ρn(w) | w ∈ Zn}.

For instance, for n = 5, w = a3,2a2,1a1,4a4,2 ∈ Z5 and thus

ρn(w) = 010$011#001$010#100$001#010$100# ∈ K5.

We generalize the previous theorem as follows:

Theorem 3.4. For any n ∈ N, with n ≥ 2,

(1) any regular expression defining Kn is of size at least 2n; and,
(2) there is a DFA An of size O(n2 log n) defining Kn.

The construction of An is omitted. The rest of this section is devoted to the proof
of Theorem 3.4(1). It follows the structure of the proof of Ehrenfeucht and Zeiger but is
technically more involved as it deals with binary encodings of integers.

We start by introducing some terminology. Let w = ai0,i1ai1,i2 · · · aik−1,ik ∈ Zn. We say
that i0 is the start-point of w and ik is its end-point. Furthermore, we say that w contains
i or i occurs in w if i occurs as an index of some symbol in w. That is, ai,j or aj,i occurs in
w for some j. For instance, a0,2a2,2a2,1 ∈ Z5, has start-point 0, end-point 1, and contains
0, 1 and 2. The notions of contains, occurs, start- and end-point of a string w are also
extended to Kn. So, the start and end-points of ρn(w) are the start and end-points of w,
and w contains the same integers as ρn(w).

For a regular expression r, we say that i is a sidekick of r when it occurs in every non-
empty string defined by r. A regular expression s is a starred subexpression of a regular
expression r when s is a subexpression of r and is of the form t∗.

Now, the following lemma holds:

Lemma 3.5. Any starred subexpression s of a regular expression r defining Kn has a
sidekick.

We now say that a regular expression r is normal if every starred subexpression of r
has a sidekick. In particular, any expression defining Kn is normal. We say that a regular
expression r covers a string w if there exist strings u, u′ ∈ Σ∗ such that uwu′ ∈ L(r). If
there is a greatest integer m for which r covers wm, we call m the index of w in r and denote
it by Iw(r). In this case we say that r is w-finite. Otherwise, we say that r is w-infinite.
The index of a regular expression can be used to give a lowerbound on its size according to
the following lemma.

SUCCINCTNESS OF REGULAR EXPRESSIONS 331

Lemma 3.6 ([8]). For any regular expression r and string w, if r is w-finite, then Iw(r) <
2|r|.2

Now, we can state the most important property of Kn.

Lemma 3.7. Let n ≥ 2. For any C ⊆ {0, . . . , n − 1} of cardinality k and i ∈ C, there
exists a string w ∈ Kn with start- and end-point i only containing integers in C, such that
any normal regular expression r which covers w is of size at least 2k.

Proof. The proof is by induction on the value of k. For k = 1, C = {i}. Then, define
w = enc(i)$enc(i)#, which satisfies all conditions and any expression covering w must
definitely have a size of at least 2.

For the inductive step, let C = {j1, . . . , jk}. Define C` = C \ {j(` mod k)+1} and let w`

be the string given by the induction hypothesis with respect to C` (of size k − 1) and j`.
Note that j` ∈ C`. Further, define m = 2k+1 and set

w = enc(j1)$enc(i)#wm
1 enc(j2)$enc(j1)#wm

2 enc(j3)$enc(j2)# · · ·wm
k enc(i)$enc(jk)#.

Then, w ∈ Kn, has i as start and end-point and only contains integers in C. It only remains
to show that any expression r which is normal and covers w is of size at least 2k.

Fix such a regular expression r. If r is w`-finite for some ` ≤ k. Then, Iw`
(rk) ≥ m =

2k+1 by construction of w. By Lemma 3.6, |r| ≥ 2k and we are done.
Therefore, assume that r is w`-infinite for every ` ≤ k. For every ` ≤ k, consider all

subexpressions of r which are w`-infinite. It is easy to see that all minimal elements in this
set of subexpressions must be starred subexpressions. Here and in the following, we say
that an expression is minimal with respect to a set simply when no other expression in the
set is a subexpression. Indeed, a subexpression of the form a or ε can never be w`-infinite
and a subexpression of the form r1r2 or r1 + r2 can only be w`-infinite if r1 and/or r2

are w`-infinite and is thus not minimal with respect to w`-infinity. Among these minimal
starred subexpressions for w`, choose one and denote it by s`. Let E = {s1, . . . , sk}. Note
that since r is normal, all its subexpressions are also normal. As in addition each s` covers
w`, by the induction hypothesis the size of each s` is at least 2k−1. Now, choose from E
some expression s` such that s` is minimal with respect to the other elements in E.

As r is normal and s` is a starred subexpression of r, there is an integer j such that
every non-empty string in L(s`) contains j. By definition of the strings w1, . . . , wk, there is
some wp, p ≤ k, such that wp does not contain j. Denote by sp the starred subexpression
from E which is wp-infinite. In particular, s` and sp cannot be the same subexpression of r.

Now, there are three possibilities:

• s` and sp are completely disjoint subexpressions of r. That is, they are both not

a subexpression of one another. By induction they must both be of size 2k−1 and
thus |r| ≥ 2k−1 + 2k−1 = 2k.

• sp is a strict subexpression of s`. This is not possible since s` is chosen to be a
minimum element from E.

• s` is a strict subexpression of sp. We show that if we replace s` by ε in sp, then sp

is still wp-infinite. It then follows that sp still covers wp, and thus sp without s` is

of size at least 2k−1. As |s`| ≥ 2k−1 as well it follows that |r| ≥ 2k.

2In fact, in [8] the length of an expression is defined as the number of Σ-symbols occurring in it. However,
since our length measure also contains these Σ-symbols, this lemma still holds in our setting.

332 W. GELADE AND F. NEVEN

To see that sp without s` is still wp-infinite, recall that any non-empty string
defined by s` contains j and j does not occur in wp. Therefore, a full iteration of s`

can never contribute to the matching of any number of repetitions of wp. So, sp can
only lose its wp-infinity by this replacement if s` contains a subexpression which is
itself wp-infinite. However, this then also is a subexpression of sp and sp is chosen
to be minimal with respect to wp-infinity, a contradiction. We can only conclude
that sp without s` is still wp-infinite.

Since by Lemma 3.5 any expression defining Kn is normal, Theorem 3.4(1) directly fol-
lows from Lemma 3.7 by choosing i = 0, k = n. This concludes the proof of Theorem 3.4(1).

4. Complementing regular expressions

It is known that extended regular expressions are non-elementary more succinct than
classical ones [7, 33]. Intuitively, each exponent in the tower requires nesting of an additional
complement. In this section, we show that in defining the complement of a single regular
expression, a double-exponential size increase cannot be avoided in general. In contrast,
when the expression is one-unambiguous its complement can be computed in polynomial
time.

Theorem 4.1. (1) For every regular expression r over Σ, a regular expression s with

L(s) = Σ∗ \ L(r) can be constructed in time O(2|r|+1 · |Σ| · 42|r|+1

).
(2) Let Σ be a four-letter alphabet. For every n ∈ N, there is a regular expressions rn

of size O(n) such that any regular expression r defining Σ∗ \L(rn) is of size at least
22n

.

Proof. (2) Take Σ as ΣK , that is, {0, 1, $,#}. Let n ∈ N. We define an expression rn of size
O(n), such that Σ∗ \ L(rn) = K2n . By Theorem 3.4, any regular expression defining K2n

is of size exponential in 2n, that is, of size 22n

. By r[0,n−1] we abbreviate the expression
(ε+r(ε+r(ε · · · (ε+r)))), with a nesting depth of n−1. We then define rn as the disjunction
of the following expressions:

• all strings that do not start with a prefix in (0 + 1)n$:

Σ[0,n] + (0 + 1)[0,n−1]($ + #)Σ∗ + (0 + 1)n(0 + 1 + #)Σ∗

• all strings where a $ is not followed by a string in (0 + 1)n#:

Σ∗$
(

Σ[0,n−1](# + $) + Σn(0 + 1 + $)
)

Σ∗

• all strings where a non-final # is not followed by a string in (0 + 1)n$:

Σ∗#
(

Σ[0,n−1](# + $) + Σn(0 + 1 + #)
)

Σ∗

• all strings that do not end in #:

Σ∗(0 + 1 + $)

• all strings where the corresponding bits of corresponding blocks are different:

((0 + 1)∗ + Σ∗#(0 + 1)∗)0Σ3n+21Σ∗ + ((0 + 1)∗ + Σ∗#(0 + 1)∗)1Σ3n+20Σ∗.

It should be clear that a string over {0, 1, $,#} is matched by none of the above expressions
if and only if it belongs to K2n . So, the complement of rn defines exactly K2n .

SUCCINCTNESS OF REGULAR EXPRESSIONS 333

The previous theorem essentially shows that in complementing a regular expression,
there is no better algorithm than translating to a DFA, computing the complement and
translating back to a regular expression which includes two exponential steps. However,
when the given regular expression is one-unambiguous, a corresponding DFA can be com-
puted in quadratic time through the Glushkov construction [6] eliminating already one
exponential step. The proof of the next theorem shows that the complement of that DFA
can be directly defined by a regular expression of polynomial size.

Theorem 4.2. For any one-unambiguous regular expression r over an alphabet Σ, a regular
expression s defining Σ∗ \ L(r) can be constructed in time O(n3), where n is the size of r.

Proof. Let r be a one-unambiguous expression over Σ. We introduce some notation.

• The set Not-First(r) contains all Σ-symbols which are not the first symbol in any
word defined by r, that is, Not-First(r) = Σ \ {a | a ∈ Σ ∧ ∃w ∈ Σ∗, aw ∈ L(r)} .

• For any symbol x ∈ Sym(r[), the set Not-Follow(r, x) contains all Σ-symbols of

which no marked version can follow x in any word defined by r[. That is, Not-Follow(r, x) =

Σ \ {y\ | y ∈ Sym(r[) ∧ ∃w,w′ ∈ Sym(r[)∗, wxyw′ ∈ L(r[)}.
• The set Last(r) contains all marked symbols which are the last symbol of some word

defined by r[. Formally, Last(r) = {x | x ∈ Sym(r[) ∧ ∃w ∈ Σ∗, wx ∈ L(r[)}.

We define the following regular expressions:

• init(r) =

{

Not-First(r)Σ∗ if ε ∈ L(r); and
ε + Not-First(r)Σ∗ if ε /∈ L(r).

• For every x ∈ Sym(r[), let r[
x be the expression defining {wx | w ∈ Sym(r[)∗ ∧ ∃u ∈

Sym(r[)∗, wxu ∈ L(r[)}. That is, all prefixes of strings in r[ending in x. Then, let
rx define L(r[

x)\.

We are now ready to define s:

init(r) +
⋃

x/∈Last(r)

rx(ε + Not-Follow(r, x)Σ∗) +
⋃

x∈Last(r)

rxNot-Follow(r, x)Σ∗.

It can be shown that s can be constructed in time cubic in the size of r and that s defines
the complement of r. The latter is proved by exhibiting a direct correspondence between s
and the complement of the Glushkov automaton of r.

We conclude this section by remarking that one-unambiguous regular expressions are
not closed under complement and that the constructed s is therefore not necessarily one-
unambiguous.

5. Intersecting regular expressions

In this section, we study the succinctness of intersection. In particular, we show that
the intersection of two (or any fixed number) and an arbitrary number of regular expres-
sions are exponentially and double exponentially more succinct than regular expressions,
respectively. Actually, the exponential bound for a fixed number of expressions already
holds for single-occurrence regular expressions, whereas the double exponential bound for
an arbitrary number of expressions only carries over to one-unambiguous expressions. For
single-occurrence expressions this can again be done in exponential time.

In this respect, we introduce a slightly altered version of Kn.

334 W. GELADE AND F. NEVEN

Definition 5.1. Let ΣL = {0, 1, $,#,4}. For all n ∈ N, Ln = {ρn(w)4 | w ∈ Zn ∧
|w| is even}.

We also define a variant of Zn which only slightly alters the ai,j symbols in Zn. Thereto,
let Σ◦

n = {ai◦,j, ai,j◦ | 0 ≤ i, j < n} and set ρ̂(ai,jaj,k) = Biai,j◦aj◦,k and ρ̂(ai0,i1ai1,i2

· · · aik−2,ik−1
aik−1,ik) = ρ̂(ai0,i1ai1,i2) · · · ρ̂(aik−2,ik−1

aik−1,ik), where k is even.

Definition 5.2. Let n ∈ N and Σn
M = Σ◦

n ∪ {B0,40, . . . ,Bn−1,4n−2}. Then, Mn =
{ρ̂(w)4i | w ∈ Zn ∧ |w| is even ∧ i is the end-point of w}.

Note that paths in Mn are those in Zn where every odd position is promoted to a circled
one (◦), and triangles labeled with the non-circled positions are added. For instance, the
string a2,4a4,3a3,3a3,0 ∈ Z5 is mapped to the string B2a2,4◦a4◦,3 B3 a3,3◦a3◦,040 ∈ M5.

We make use of the following property:

Lemma 5.3. Let n ∈ N.

(1) Any regular expression defining Ln is of size at least 2n.
(2) Any regular expression defining Mn is of size at least 2n−1.

The next theorem shows the succinctness of the intersection operator.

Theorem 5.4. (1) For any k ∈ N and regular expressions r1, . . . , rk, a regular expres-

sion defining
⋂

i≤k L(rk) can be constructed in time O((m+1)k · |Σ| ·4(m+1)k

), where

m = max {|ri| | 1 ≤ i ≤ k}.
(2) For every n ∈ N, there are SOREs rn and sn of size O(n2) such that any regular

expression defining L(rn) ∩ L(sn) is of size at least 2n−1.
(3) For each r ∈ RE(∩) an equivalent regular expression can be constructed in time

O(2|r| · |Σ| · 42|r|).
(4) For every n ∈ N, there are one-unambiguous regular expressions r1, . . . , rm, with

m = 2n + 1, of size O(n) such that any regular expression defining
⋂

i≤m L(ri) is of

size at least 22n

.
(5) Let r1, . . . , rn be SOREs. A regular expression defining

⋂

i≤n L(rn) can be con-

structed in time O(m · |Σ| · 4m), where m =
∑

i≤n |ri|.

Proof. (2) Let n ∈ N. By Lemma 5.3(2), any regular expression defining Mn is of size at
least 2n−1. We define SOREs rn and sn of size quadratic in n, such that L(rn)∩L(sn) = Mn.
We start by partitioning Σn

M in two different ways. To this end, for every i < n, define
Outi = {ai,j◦ | 0 ≤ j < n}, Ini = {aj◦,i | 0 ≤ j < n}, Outi◦ = {ai◦,j | 0 ≤ j < n}, and,
Ini◦ = {aj,i◦ | 0 ≤ j < n}. Then,

Σn
M =

⋃

i

Ini ∪ Outi ∪ {Bi,4i} =
⋃

i◦

Ini◦ ∪ Outi◦ ∪ {Bi,4i}.

Further, define

rn = ((B0 + · · · + Bn−1)
⋃

i◦

Ini◦Outi◦)
+(40 + · · · + 4n−1)

and

sn =
(

⋃

i

(Ini + ε)(Bi + 4i)(Outi + ε)
)∗

.

Now, rn checks that every string consists of a sequence of blocks of the form Biaj,k◦ak◦,`,
for i, j, k, ` < n, ending with a 4i, for i < n. It thus sets the format of the strings and

SUCCINCTNESS OF REGULAR EXPRESSIONS 335

checks whether the circled indices are equal. Further, sn checks whether the non-circled
indices are equal and whether the triangles have the correct indices. Since the alphabet of
Mn is of size O(n2), also rn and sn are of size O(n2).
(4) Let n ∈ N. We define m = 2n + 1 one-unambiguous regular expressions of size O(n),
such that their intersection defines L2n . By Lemma 5.3(1), any regular expression defining
L2n is of size at least 22n

and the theorem follows. For ease of readability, we denote ΣL

simply by Σ. The expressions are as follows. There should be an even length sequence of
blocks:

(

(0 + 1)n$(0 + 1)n#(0 + 1)n$(0 + 1)n#
)∗
4.

For all i ∈ {0, . . . , n−1}, the (i+1)th bit of the two numbers surrounding an odd # should
be equal:

(

Σi(0Σ3n+20 + 1Σ3n+21)Σn−i−1#
)∗
4.

For all i ∈ {0, . . . , n−1}, the (i+1)th bit of the two numbers surrounding an even # should
be equal:

Σ2n+2
(

Σi(0Σ2n−i+1(4 + Σn+i+10Σn−i−1#) + (1Σ2n−i+1(4 + Σn+i+11Σn−i−1#)))
)∗

.

Clearly, the intersection of the above expressions defines L2n . Furthermore, every expression
is of size O(n) and is one-unambiguous as the Glushkov construction translates them into
a DFA [6].

6. Conclusion

In this paper we showed that the complement and intersection of regular expressions
are double exponentially more succinct than ordinary regular expressions. For comple-
ment, complexity can be reduced to polynomial for the class of one-unambiguous regular
expressions although the obtained expressions could fall outside that class. For intersection,
restriction to SOREs reduces complexity to exponential. It remains open whether there are
natural classes of regular expressions for which both the complement and intersection can
be computed in polynomial time.

Acknowledgment. We thank Juraj Hromkovič for sending us reference [35].

References

[1] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms. AW, 1974.
[2] G.J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of concise DTDs from XML data. In Very

Large Data Bases, pp. 115-126, 2006.
[3] G.J. Bex, F. Neven, and Stijn Vansummeren. Inferring XML Schema Definitions from XML data. In

Very Large Data Bases, pp. 998-1009, 2007.
[4] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup Language

(XML). World Wide Web Consortium, 2004. http://www.w3.org/TR/REC-xml/.
[5] A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical Computer Science,

120(2):197-213, 1993.
[6] A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Information and Computa-

tion, 142(2):182-206, 1998.
[7] Z. R. Dang. On the complexity of a finite automaton corresponding to a generalized regular expression.

Dokl. Akad. Nauk SSSR, 1973.
[8] A. Ehrenfeucht and H. Zeiger. Complexity measures for regular expressions. Journal of Computer and

System Sciences, 12(2):134-146, 1976.

336 W. GELADE AND F. NEVEN

[9] K. Ellul, B. Krawetz, J. Shallit, and M. Wang. Regular expressions: New results and open problems.
Journal of Automata, Languages and Combinatorics, 10(4):407-437, 2005.

[10] M. Fürer. The complexity of the inequivalence problem for regular expressions with intersection. In
International Colloquium on Automata, Languages and Programming, pp. 234-245, 1980.

[11] W. Gelade, W. Martens, and F. Neven. Optimizing schema languages for XML: Numerical constraints
and interleaving. In International Conference on Database Theory, pp. 269-283, 2007.

[12] W. Gelade and F. Neven. Succinctness of pattern-based schema languages for XML. In Database Pro-

gramming Languages 2007, LNCS 4797, pp. 202-216
[13] G. Ghelli, D. Colazzo, and C. Sartiani. Efficient inclusion for a class of XML types with interleaving

and counting. In Database Programming Languages 2007, LNCS 4797, pp. 231-245.
[14] N. Globerman and D. Harel. Complexity results for two-way and multi-pebble automata and their

logics. Theoretical Computer Science, 169(2):161-184, 1996.
[15] M. Grohe and N. Schweikardt. The succinctness of first-order logic on linear orders. Logical Methods in

Computer Science, 1(1), 2005.
[16] H. B. Hunt III. The equivalence problem for regular expressions with intersection is not polynomial in

tape. Technical report, Department of Computer Science, Cornell University, 1973.
[17] L. Ilie and S. Yu. Algorithms for computing small nfas. In Mathematical Foundations of Computer

Science, pp. 328-340, 2002.
[18] T. Jiang and B. Ravikumar. A note on the space complexity of some decision problems for finite

automata. Information Processing Letters, 40(1):25-31, 1991.
[19] D. Kozen. Lower bounds for natural proof systems. In FOCS 1977, pp. 254-266, IEEE.
[20] O. Kupferman and S. Zuhovitzky. An improved algorithm for the membership problem for extended

regular expressions. In Mathematical Foundations of Computer Science, pp. 446-458, 2002.
[21] L. Libkin. Logics for unranked trees: An overview. In International Colloquium on Automata, Languages

and Programming, pp. 35-50, 2005.
[22] W. Martens, F. Neven, and T. Schwentick. Complexity of decision problems for simple regular expres-

sions. In Mathematical Foundations of Computer Science, pp. 889-900, 2004.
[23] W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressiveness and complexity of XML Schema.

ACM Transactions on Database Systems, 31(3):770-813, 2006.
[24] R. McNaughton and H. Yamada. Regular expressions and state graphs for automata. IEEE Transactions

on Electronic Computers, 9(1):39-47, 1960.
[25] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of XML schema languages using formal

language theory. ACM Transactions on Internet Technologies, 5(4):660-704, 2005.
[26] G. Myers. A four Russians algorithm for regular pattern matching. J. of the ACM, 39(2):432-448, 1992.
[27] F. Neven. Automata, logic, and XML. In Conference for Computer Science Logic, pp. 2-26, 2002.
[28] H. Petersen. The membership problem for regular expressions with intersection is complete in LOGCFL.

In Proc. STACS 2002, Lect. Notes in Comp. Science 2285, pp. 513-522, Springer (2002).
[29] J. M. Robson. The emptiness of complement problem for semi extended regular expressions requires c

n

space. Information Processing Letters, 9(5):220-222, 1979.
[30] G. Rosu and M. Viswanathan. Testing extended regular language membership incrementally by rewrit-

ing. In Rewriting Techniques and Applications, pp. 499-514, 2003.
[31] T. Schwentick. Automata for XML - a survey. J. Comp. and System Sciences, 73(3), 289-315, 2007.
[32] C.M. Sperberg-McQueen and H. Thompson. XML Schema. http://www.w3.org/XML/Schema,2005.
[33] L. Stockmeyer and A. Meyer. Word problems requiring exponential time. In Symposium on the Theory

of Computing, pp. 1-9, 1973.
[34] V. Vianu. Logic as a query language: From Frege to XML. In Proc. STACS 2003, pp. 1-12, Lect. Notes

in Comp. Science 2607, Springer (2003).
[35] V. Waizenegger. Uber die Effizienz der Darstellung durch reguläre Ausdrücke und endliche Automaten.

Diplomarbeit, RWTH Aachen, 2000.
[36] S. Yu. Handbook of formal languages. volume 1, chapter 2, pp. 41-110. Springer, 1997.
[37] D. Ziadi. Regular expression for a language without empty word. Theoretical Computer Science,

163(1&2):309-315, 1996.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

