
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 157-168
www.stacs-conf.org

FINDING IRREFUTABLE CERTIFICATES FOR Sp
2 VIA

ARTHUR AND MERLIN

VENKATESAN T. CHAKARAVARTHY AND SAMBUDDHA ROY

IBM India Research Lab, New Delhi.
E-mail address: {vechakra,sambuddha}@in.ibm.com

Abstract. We show that Sp

2 ⊆ PprAM, where Sp

2 is the symmetric alternation class and
prAM refers to the promise version of the Arthur-Merlin class AM. This is derived as a
consequence of our main result that presents an FPprAM algorithm for finding a small set
of “collectively irrefutable certificates” of a given S2-type matrix. The main result also
yields some new consequences of the hypothesis that NP has polynomial size circuits. It
is known that the above hypothesis implies a collapse of the polynomial time hierarchy
(PH) to Sp

2 ⊆ ZPPNP [5, 14]. Under the same hypothesis, we show that PH collapses to
PprMA. We also describe an FPprMA algorithm for learning polynomial size circuits for
SAT, assuming such circuits exist. For the same problem, the previously best known result
was a ZPPNP algorithm [4].

1. Introduction

We consider the problem of finding irrefutable certificates for the symmetric alternation
class Sp

2. The class Sp
2 was introduced by Russell and Sundaram [17] and independently, by

Canetti [6]. A language L in the class Sp
2 is characterized by an interactive proof system of

the following type. The proof system consists of two computationally all-powerful provers
called the Yes-prover and the No-prover, and a polynomial time verifier. The verifier
interacts with the two provers to ascertain whether or not an input string x belongs to the
language L. The Yes-prover and the No-prover make contradictory claims: x ∈ L and
x 6∈ L, respectively. Of course, only one of them is honest. To substantiate their claims,
the provers provide strings y and z as certificates. The verifier analyzes the input x and
the two certificates and votes in favor of one of the provers. If the Yes-prover wins the
vote, we say that y beats z and we say that z beats y, otherwise. The requirement is that,
if x ∈ L, then the Yes-prover must have a certificate y that beats any certificate z given
by the No-prover. Similarly, if x 6∈ L, the No-prover must have a certificate z that
beats any certificate y given by the Yes-prover. We call certificates satisfying the above
requirements as irrefutable certificates (written IC). Clearly, for any input string, only the
honest prover has an IC.

Cai [5] showed that Sp
2 ⊆ ZPPNP. Let us rephrase this result: for any language L ∈ Sp

2,

we have a ZPPNP algorithm that takes an input string and decides whether the Yes-prover

Key words and phrases: Symmetric alternation, promise-AM, Karp–Lipton theorem, learning circuits.

c© V. Chakaravarthy and S. Roy
CC© Creative Commons Attribution-NoDerivs License

STACS 2008
Symposium on Theoretical Aspects of Computer Science 2008 (Bordeaux), pp. 157-168
http://drops.dagstuhl.de/opus/volltexte/2008/1342

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913111?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

158 V. CHAKARAVARTHY AND S. ROY

has an IC or the No-prover has an IC. The main purpose of this paper is to study the
problem of finding IC’s for an input string.

The above problem and the related issues regarding Sp
2 can conveniently be described in

terms of Boolean matrices. Let L be a language in Sp
2 and x be an input string. Let n and m,

denote the length of the certificates of the Yes-prover and No-prover, respectively. We
model the behaviour of the verifier on the input x in the form of a 2n × 2m Boolean matrix
M . In the matrix M , the rows correspond to the certificates of the Yes-prover and the
columns correspond to the certificates of the No-prover. For certificates y ∈ {0, 1}n and
z ∈ {0, 1}m, if y beats z, then we set M [y, z] = 1 and if z beats y, then we set M [y, z] = 0.
Notice that the matrix M has either a row full of 1’s or a column full of 0’s. The first
scenario happens, when x ∈ L (here, the row full of 1’s corresponds to an IC of the Yes-

prover). Similarly, the second scenario happens, when x 6∈ L (here, the column full of 0’s
corresponds to an IC of the No-prover). We call any Boolean matrix satisfying the above
condition as an S2-type matrix. A row full of 1’s is called a row-side IC and a column full of
0’s is called a column-side IC. (Notice that a Boolean matrix cannot have both.) Though
the matrix M is exponentially large in the size of the input |x|, it can be succinctly encoded
in the form of a Boolean circuit C having size polynomial in |x|. The circuit C takes as
input y ∈ {0, 1}n and z ∈ {0, 1}m and outputs C(y, z) = M [y, z]. The circuit achieves this
by simulating the verifier’s algorithm on the input x. Using standard techniques, we can
construct the desired circuit C in time polynomial in |x|.

Problems regarding Sp
2 can now be expressed as problems on S2-type matrices, presented

succinctly in the form of circuits. First, let us consider the basic problem of membership
testing for a language L ∈ Sp

2: given a string x, determine whether x ∈ L or not. This is
equivalent to following problem on S2-type matrices.

Membership Testing. Given an S2-type matrix M , presented succinctly in the form
of a circuit, distinguish between the two cases: (i) there exists a row-side IC; (ii) there exists
a column-side IC.

Cai [5] showed that Sp
2 ⊆ ZPPNP. Equivalently, this result presents a ZPPNP algorithm

for the Membership Testing problem. We consider the more general problem of finding
an IC for a given S2-type matrix.

Problem FindIC: Given an S2-type matrix M , presented succinctly in the form of a
circuit, output an IC either on the row side or on the column side.

Via a simple observation, we show that if there exists a ZPPNP algorithm for the
FindIC problem, then the polynomial time hierarchy (PH) collapses. In summary, we can
determine in ZPPNP whether an IC is found among the rows or among the columns; but,
we cannot find an IC in ZPPNP, unless PH collapses. So, we study the easier problem of
finding a set of collectively irrefutable certificates (written CIC).

We say that a set of rows Y collectively beats a column z, if some row y ∈ Y beats
z. The set Y is said to be a row-side CIC, if Y collectively beats every z. The notion
of column-side CIC is defined analogously. Notice that an arbitrary Boolean matrix may
have both a row-side CIC and a column-side CIC. However, the existence of a row-side CIC

precludes there being a column-side IC. Thus, in the case of S2-type matrices, a row-side CIC
shows that there exists a row-side IC (which in turn, means that the input string x ∈ L).
Therefore, a row-side CIC is as useful as a row-side IC, in certifying that x ∈ L. Our main
result provides an algorithm for finding a CIC of small size (logarithmic in the size of the
input matrix).

FINDING IRREFUTABLE CERTIFICATES FOR S
p

2 159

Problem FindCIC. Given an S2-type matrix M of size 2n ×2m, presented succinctly in
the form of a circuit, output either a row-side CIC or a column-side CIC of size max{n,m}.

Our main result presents an FPprAM algorithm for the FindCICproblem, i.e., the al-
gorithm runs in (deterministic) polynomial time making queries to an prAM oracle; prAM
refers to the promise version of the Arthur-Merlin class AM.

Main Result. We present an FPprAM algorithm for the FindCIC problem.
We note that the problem FindCIC can also be solved by a ZPPNP algorithm; such

an algorithm is implicit in the work of Cai [5] and Fortnow et al. [9]. The containment
relationships between FPprAM and ZPPNP are not known. This issue is discussed in more
detail below.

An immediate corollary of the main result is that Sp
2 ⊆ PprAM. This gives a nice

counterpart to Cai’s result [5] that Sp
2 ⊆ ZPPNP. The containment relationships between

PprAM and ZPPNP are unknown. (In fact, it has been a long standing open problem to put
AM in Σp

2). However, we can show that PprAM ⊆ BPPNP. Moreover, Cai’s result can also
be derived from the main result.

It is known that PNP ⊆ Sp
2 [17] and one of the most challenging open problems regarding

Sp
2 asks whether Sp

2 is contained in PNP. Working under a larger framework, Shaltiel and
Umans [19] also studied this issue and derived the result Sp

2 = PNP, under a suitable
hardness hypothesis. This was achieved by derandomizing Cai’s construction for Sp

2 ⊆
ZPPNP. The above-mentioned hardness hypothesis was the one used by Miltersen and
Vinodchandran [15] to derandomize AM to get AM = NP: there exists a language L in
NE ∩ coNE so that for all but finitely many n, L ∩ {0, 1}n has SV-nondeterministic circuit
complexity at least 2εn. Thus, under the above hypothesis, Shaltiel and Umans showed that
Sp

2 = PNP. Our claim that Sp
2 ⊆ PprAM yields an alternative proof of the above result. This

is obtained by appealing to the hitting set generator of Miltersen and Vinodchandran [15].
The details will be included in the full version of the paper.

The main result yields two new consequences of the assumption that NP has polynomial
size circuits. Under the above assumption, Karp and Lipton [13] showed that the polynomial
time hierarchy (PH) collapses to Σp

2. Subsequently, their result has been strengthened:

Köbler and Watanabe [14] derived the collapse PH = ZPPNP; Sengupta observed that
PH = Sp

2 ⊆ ZPPNP (see [5]); recently, the collapse was improved to PH = Op
2 ⊆ Sp

2 [7]. It
has been a challenging open problem to get the collapse down to PNP. We derive a weaker
result: if NP has polynomial size circuits, then PH = PprMA. It is worthwhile to compare
this new collapse result with the earlier ones. Though it is known that PMA ⊆ Sp

2 [17], it is

not clear whether PprMA is contained in Sp
2. However, we can show that PprMA ⊆ ZPPNP

(by extending the known result that MA ⊆ ZPPNP [1, 11]).
One implication of the new collapse result is that PprMA cannot have SIZE(nk) cir-

cuits, for any fixed k. However, a stronger result is known: in a recent breakthrough,
Santhanam [18] proved the above circuit lowerbound for the class prMA.

In the above context, our next result deals with the problem of learning polynomial size
circuits for SAT. Under the assumption that NP has polynomial size circuits, Bshouty et
al. [4] designed a ZPPNP algorithm that finds a correct circuit for SAT at a given length.
We improve their result by presenting a FPprMA algorithm for the same task.

Finally, we show how to generalize our main result to the case of arbitrary Boolean
matrices (that may not necessarily be of S2-type). For this, we make use of a nice and
interesting lemma by Goldreich and Wigderson [10]: they showed that any 2n×2m Boolean

160 V. CHAKARAVARTHY AND S. ROY

matrix M contains a row-side CIC of size m or a column-side CIC of size n (or both). We
consider the scenario where the matrix M is presented succinctly in the form of a circuit
and describe an FPprAM algorithm for finding such a CIC; but, our algorithm suffers a small
blow-up in the size of the output CIC. The algorithm finds a row-side CIC of size m2 or a
column-side CIC of size n2.

For lack of space, the details of the above generalization and proofs for some of the
results are omitted in this paper. These will be included in the full version of the paper.

Proof Techniques. The proof of our main result has a flavor similar to that of
Cai’s result [5]. The proof involves a variant of self-reduction and the tools of approximate
counting and testing whether a set is “large” or ”small”. For the latter two tasks, we borrow
ideas from the work of Jerrum et al. [12], Stockmeyer [21] and Sipser [20]. We put together
all these ideas and show how to solve our problem using a prAM oracle. Our exposition is
largely self-contained.

2. Preliminaries

In this section, we develop definitions and notations used throughout the paper.
Symmetric Alternation. A language L is said to be in the class Sp

2, if there exists a
polynomial time computable Boolean predicate V (·, ·, ·) and polynomials p(·) and q(·) such
that for any x, we have

x ∈ L =⇒ (∃y ∈ {0, 1}n)(∀z ∈ {0, 1}m)[V (x, y, z) = 1], and

x 6∈ L =⇒ (∃z ∈ {0, 1}m)(∀y ∈ {0, 1}n)[V (x, y, z) = 0],

where n = p(|x|) and m = q(|x|). We refer to the y’s and z’s above as certificates. The
predicate V is called the verifier.

Matrix representation of the verifier’s computation. Let L be a language in Sp
2

via a verifier predicate V . Fix an input string x. It is convenient to represent the behaviour
of the verifier on various certificates in the form of a matrix. Define a Boolean 2n × 2m

matrix M , such that for y ∈ {0, 1}n and z ∈ {0, 1}m, M [y, z] = V (x, y, z). Thus, any row
or column in M corresponds to a certificate. We call M as the matrix corresponding to the
input x. Matrices constructed in the above fashion have some special properties that are
derived the from the definition of Sp

2.
S2-type matrices and irrefutable certificates. Let M be a 2n × 2m Boolean

matrix. For a row y ∈ {0, 1}n and a column z ∈ {0, 1}m, if M [y, z] = 1, then y is said to
beat z; similarly, z is said to beat y, if M [y, z] = 0. A row y is called a row-side IC, if y
beats every column z ∈ {0, 1}m; a column z is called a column-side IC if z beats every row
y ∈ {0, 1}m. Notice that a matrix cannot have both a row-side IC and a column-side IC.
The matrix M is said to be an S2-type matrix, if it has either a row-side IC or a column-side
IC. A set of rows Y is called a row-side CIC, if for every column z, there exists a row y ∈ Y
such that y beats z. Similarly, a set of columns Z is called a column-side CIC, if for every
row y, there exists a column z ∈ Z such that z beats y.

Remark. Let us put the above discussion in the context of a language L ∈ Sp
2 and make

some simple observations. For any input string x, the matrix M corresponding to x is an
S2-type matrix. The matrix M will have a row-side IC, if and only if x ∈ L; similarly, M
will have a column-side IC, if and only if x 6∈ L.

Succinct encoding of matrices and sets. A Boolean circuit C : {0, 1}n×{0, 1}m →
{0, 1} is said to succinctly encode a Boolean 2n × 2m matrix M , if for all y ∈ {0, 1}n and

FINDING IRREFUTABLE CERTIFICATES FOR S
p

2 161

z ∈ {0, 1}m, we have C(y, z) = M [y, z]. A Boolean circuit C : {0, 1}m → {0, 1} is said to
succinctly encode a set X ⊆ {0, 1}m, if for all x ∈ {0, 1}m, x ∈ X ⇐⇒ C(x) = 1.

Remark. Let L be a language in Sp
2 via a verifier V . Let x be an input string with

the corresponding matrix M . Using standard techniques, we can obtain a Boolean circuit
C : {0, 1}n × {0, 1}m → {0, 1} such that C(y, z) = V (x, y, z). Given the input x, the above
task can be performed in time polynomial in |x|. The size of the circuit is also polynomial
in |x|. Notice that the above circuit C succinctly encodes the matrix M .

Complexity classes. We use standard definitions for complexity classes such as P,
NP, P/poly, MA, AM, ZPPNP and BPPNP [8, 16]. Below, we present definitions for promise
and function classes, that are central to our paper.

Promise languages. A promise language Π is a pair (Π1,Π2), where Π1,Π2 ⊆ Σ∗,
such that Π1 ∩ Π2 = ∅. The elements of Π1 are called the positive instances and those of
Π2 are called the negative instances.

Promise MA (prMA). A promise language Π = (Π1,Π2) is said to be in the promise
class prMA, if there exists a polynomial time computable Boolean predicate A(·, ·, ·) and
polynomials p(·) and q(·) such that, for all x, we have

x ∈ Π1 =⇒ (∃y ∈ {0, 1}n)(∀z ∈ {0, 1}m)[A(x, y, z) = 1], and

x ∈ Π2 =⇒ (∀y ∈ {0, 1}n) Pr
z∈{0,1}m

[A(x, y, z) = 1] ≤
1

2
,

where n = p(|x|) and m = q(|x|). The predicate A is called Arthur’s predicate.
Promise AM (prAM). A promise language Π = (Π1,Π2) is said to be in the promise

class prAM, if there exists a polynomial time computable Boolean predicate A(·, ·, ·) and
polynomials p(·) and q(·) such that, for all x, we have

x ∈ Π1 =⇒ (∀y ∈ {0, 1}n)(∃z ∈ {0, 1}m)[A(x, y, z) = 1], and

x ∈ Π2 =⇒ Pr
y∈{0,1}n

[(∃z ∈ {0, 1}m)A(x, y, z) = 1] ≤
1

2
,

where n = p(|x|) and m = q(|x|). The predicate A is called Arthur’s predicate.
Oracle access to promise languages. Let A be an algorithm and Π = (Π1,Π2) be

a promise language. When the algorithm A asks a query q, the oracle behaves as follows:
if q ∈ Π1, the oracle replies “yes”; if q ∈ Π2, the oracle replies “no”; if q is neither in Π1

nor in Π2, the oracle may reply “yes” or “no”. We allow the algorithm to ask queries of the
third type. The requirement is that the algorithm should be able to produce the correct
answer, regardless of the answers given by the oracle to the queries of the third type.

Function classes. For a promise language Π, the notation FPΠ refers to the class
of functions that are computable by a polynomial time machine, given oracle access to Π.
For a promise class C, we denote by FPC , the union of FPΠ, for all Π ∈ C. Regarding
ZPPNP, we slightly abuse the notation and use this to mean both the standard complexity
class and the function class. The function class ZPPNP contains functions computable by a
zero-error probabilistic polynomial time algorithm given oracle access to NP; the algorithm
either outputs a correct value of the function or “?”, the latter with a small probability.

162 V. CHAKARAVARTHY AND S. ROY

3. Main Result: Finding Collectively Irrefutable Certificates

In this section, we study the problem of finding irrefutable certificates for S2-type
matrices. As discussed in the introduction, finding a single IC in ZPPNP would collapse
polynomial time hierarchy (PH).

Theorem 3.1. If there exists a ZPPNP algorithm for the FindIC problem then PH =
BPPNP.

Here, we focus on finding “small” CIC’s. We present an FPprAM algorithm for the
FindCIC problem.

Theorem 3.2. There exists a polynomial time algorithm which solves the following problem,
given oracle access to prAM. The algorithm takes as input a circuit C succinctly encoding
a S2-type matrix M of size 2n × 2m and produces either a row-side CIC of size m or a
column-side CIC of size n.

For ease of exposition, we have divided the proof into multiple small steps; in each
step, the given problem is reduced (in the Turing sense) to a simpler problem. The final
algorithm is obtained by composing these reductions. The various steps are grouped into
two phases. The first phase reduces the given problem to a problem that we call Prefix
Ratio Goodness Testing (PRGT). The second phase describes an algorithm for PRGT.

3.1. Reduction to Prefix Ratio Goodness Testing

We are given an S2-type matrix M . By definition, M is guaranteed to have either a
row-side IC or a column-side IC. Our goal is to find a small CIC. This problem reduces to the
problem addressed in Lemma 3.3, given below. The lemma presents an FPprAM algorithm
for finding a small row-side CIC for matrices that are guaranteed to have a row-side IC. Via
an easy transformation, we can obtain an analogous algorithm for finding a small column
side CIC for matrices guaranteed to have a column-side IC. We run both these algorithms
on the given S2-type matrix M . Notice that one of these runs must output a CIC. The
other run would output some arbitrary result, because the input matrix does not satisfy
the requirements of the concerned algorithm. We check which of the two outputs is indeed
a CIC and output the same. This check can be performed by making a single NP query.
Thus, we get the FPprAM algorithm claimed in Theorem 3.2.

Lemma 3.3. There exists an FPprAM algorithm that takes as input a circuit C succinctly
encoding a 2n×2m matrix M that is guaranteed to have a row-side IC and outputs a row-side
CIC of size m.

The algorithm computes the required CIC using a standard iterative approach: in each
iteration, we find a row y that beats at least half of the columns that are as yet un-
beaten by the rows found in the previous iterations. Formally, we start with an empty
set Y and proceed iteratively, adding a row to Y in each iteration. Consider the k th it-
eration. Let Uk be the set of columns as yet unbeaten by any row in Y (i.e., Uk = {z ∈
{0, 1}m| no y ∈ Y beats z}). We find a row y∗ such that y∗ beats at least half the columns
in Uk and add y∗ to Y . Notice that such a y∗ exists, since we are guaranteed that M has
a row-side IC. Clearly, the algorithm terminates in m steps and produces a row-side CIC of
size m. Of course, the main step lies in finding the required y∗ in each iteration. This task
is accomplished by the algorithm described in Lemma 3.4, given below. The algorithm, in
fact, solves a more general problem: given any set of columns X ⊆ {0, 1}m, it produces a

FINDING IRREFUTABLE CERTIFICATES FOR S
p

2 163

row beating at least half of the columns in X. In each iteration, we invoke the algorithm
by setting X = Uk. There is one minor issue that needs to be addressed: the set Uk could
be exponentially large. So, we represent the set Uk in the form of a circuit C ′ succinctly
encoding it. For this, given any column z ∈ {0, 1}m, C ′ has to test whether z is beaten by
any of the rows in Y . This test involves a simulation of C(y, z), for all y ∈ Y . Since Y
contains at most m rows, we can succinctly encode Uk by a circuit of size polynomial in the
size of C. We have proved Lemma 3.3, modulo Lemma 3.4.

Lemma 3.4. There exists an FPprAM algorithm that takes two inputs: (i) a 2n×2m Boolean
matrix M that is guaranteed to have a row-side IC; (ii) a set of columns X ⊆ {0, 1}m. It
outputs a row y∗ that beats at least half the columns in X. The matrix M and the set X
are presented succinctly in the form of circuits.

We build the required string y∗ (of length n) in n iterations using an approach similar
to self-reduction. We maintain a prefix of y∗ and add one suitable bit in each iteration.
However, we cannot directly employ self-reduction, since a query of the form “does there
exist a row that beats at least half the columns in X” is a PP query and we cannot hope
to find the answer using a prAM oracle. Nevertheless, we show how to converge on a y∗ by
performing self-reduction that incurs a small amount of “loss” in the “goodness” of the final
y∗, in each iteration. We formalize the notion of goodness and then describe the algorithm.

Consider a 2p × 2q Boolean matrix A and let Q ⊆ {0, 1}q be a subset of the columns of
A. For a row y ∈ {0, 1}p, define µ(y,Q) to be the fraction of columns in Q that y beats:
µ(y,Q) = |{z ∈ Q : y beats z}|/|Q|. Let α be a string of length at most p. We say that a
row y ∈ {0, 1}p extends α, if α is a prefix of y. For ρ ≤ 1, we say that α is ρ–good for Q, if
there exists a row y extending α such that µ(y,Q) ≥ ρ.

The algorithm claimed in Lemma 3.4 constructs the string y∗ in n iterations. Starting
with the empty string, we keep building a prefix of y∗. At the end of the (k− 1)st iteration,
we have a prefix αk−1 of length k − 1. In the kth iteration, we extend αk−1 by one more bit
b to get a prefix αk of length k. To start with, we are guaranteed the existence of a row-side
IC in M , meaning a row with goodness=1. Consider the kth iteration. Suppose the prefix
αk−1 is ρ–good with respect to X, for some ρ. Below, we describe a mechanism for finding
a bit b such that the string αk−1b is (ρ − ε)–good. The value ε is a parameter to be fixed
suitably later. Thus, in each iteration, we suffer a loss of ε and so, the accumulated loss at
the end of n iterations is nε. Choosing ε suitably small, we get a string y∗ having goodness
at least 1/2.

The main step lies in choosing a suitable bit b in each iteration. Consider the k th

iteration. At the end of (k − 1)st iteration, we have prefix α of length k − 1. Write
ρ = 1 − (k − 1)ε. By induction, assume that α is ρ-good. Our task is to find a bit b such
that αb is (ρ−ε)-good. This is accomplished by invoking the algorithm given in Lemma 3.5,
which solves the Prefix Ratio Goodness Testing problem (PRGT), defined below. The main
observation is that at least one of α0 or α1 is ρ-good, because α is ρ-good. We run the
algorithm given in Lemma 3.5 twice with β = α0 and β = α1 as inputs, respectively. By
the above observation, at least one these two runs must output “yes”. Let b be a bit such
that the algorithm outputs “yes” on input αb. We choose b as the required bit. It is easy
to see that αb is (ρ − ε)-good; otherwise, the algorithm should have output “no” on αb.

Proceeding this way for n iterations, we end up with a string y∗ which is (1−nε)-good.
Setting ε = 1/n2, we see that y∗ beats at least a fraction of (1 − 1/n) ≥ 1/2 columns in X.
We have proved Lemma 3.4, modulo Lemma 3.5.

164 V. CHAKARAVARTHY AND S. ROY

Prefix Ratio Goodness Testing (PRGT): The instances of this promise language have
four components: (i) a 2n × 2m Boolean matrix M ; (ii) a set of columns X ⊆ {0, 1}m; (iii)
a prefix β of length at most n. (iv) parameters ρ > 0 and ε > 0. The matrix M and the
set X are represented succinctly in the form of circuits.
Positive Instances: There exists a row y extending β such that µ(y,X) ≥ ρ.
Negative Instances: For all rows y extending β, it is the case that µ(y,X) ≤ ρ − ε.

Lemma 3.5. There exists an FPprAM that solves the PRGT problem. Namely, for positive
instances, the output is “yes”; for negative instances, the output is “no”; for other instances,
the output can be arbitrary. The running time of the algorithm has a polynomial dependence
on 1/ε.

3.2. Prefix Ratio Goodness Testing: Proof of Lemma 3.5

In this section, we prove Lemma 3.5. One of the hurdles in trying to construct the
desired algorithm is that the gap between the two cases we need to distinguish is small. So,
as a first step, we amplify the gap using standard techniques.

The amplification process involves a parameter t, which we will fix suitably. Construct a
matrix M from M as follows. Each row in M corresponds to a row in M and each column z
in M corresponds to a sequence 〈z1, z2, . . . , zt〉 of t columns from M . Thus, the matrix M is
of size 2n×2m, where m = mt. Consider a row y ∈ {0, 1}n and a column z = 〈z1, z2, . . . , zt〉,
where each zi is a column in M . Set the entry M [y, z] = 1, if y beats at least (ρ− ε

2
) fraction

of the zi’s (with respect to M); otherwise, set it to 0. Analogously, denote by X the t-wise
cartesian product of X with itself, i.e., X = {〈z1, z2, . . . , zt〉 : zi ∈ X}. We fix t = 16m/ε2.
An application of Chernoff bounds yields the following claim.

Lemma 3.6. For any y ∈ {0, 1}n, we have the following.

• If µ(y,X) ≥ ρ in M then µ(y,X) ≥ 1/2 in M .
• If µ(y,X) ≤ ρ − ε in M then µ(y,X) ≤ 1/m4 in M .

Given the above amplification, the problem considered in Lemma 3.5 reduces to the
problem addressed in Lemma 3.7. Formally, the algorithm claimed in Lemma 3.5 works
as follows. Given a circuit C succinctly encoding the matrix M , a circuit CX succintly
encoding a set of columns X, prefix β and parameters ρ and ε, we consider the matrix
M and the set X, as described above. Notice that we can construct in polynomial time
a circuit C succinctly encoding M such that |C| is polynomial in |C| and 1/ε. Similarly,
we can construct a polynomial size circuit CX succinctly encoding the set X. Then, we
invoke the algorithm given in Lemma 3.7 with C, CX and β as inputs. We output “yes”,
if the algorithm outputs “yes” and output “no”, otherwise. This completes the proof of
Lemma 3.5, modulo Lemma 3.7.

Lemma 3.7. There exists an FPprAM algorithm that takes three inputs: (i) a 2n × 2m

Boolean matrix M ; (ii) a set of columns X ⊆ {0, 1}m. (iii) a prefix β of length at most n.
The matrix M and the set X are presented succinctly in the form of circuits. The algorithm
has the following property:

• Case (a) : If there exists a row y extending β such that µ(y,X) ≥ 1/2, then it
outputs “yes”.

• Case (b) : If all rows y extending β are such that µ(y,X) ≤ 1/m4, then it outputs
“no”.

FINDING IRREFUTABLE CERTIFICATES FOR S
p

2 165

If neither of the above conditions is true, then the output of the algorithm is arbitrary.

There are two main stages in the algorithm. In the first stage we get an estimate on the
size of X. And in the second stage, we use the above estimate to distinguish between the
cases (a) and (b) in the lemma. Both the stages make queries to a prAM language given as
oracle. A lemma, due to Sipser [20], is useful in establishing that the concerned language
indeed lies in the class prAM. The following notation is needed for describing the lemma.

Let H be a family of functions mapping {0, 1}m to {0, 1}k . Recall that H is said to
be 2-universal, if for any z, z ′ ∈ {0, 1}m, with z 6= z′, and x, x′ ∈ {0, 1}k , Prh∈H[h(z) =
x and h(z′) = x′] = 1/22k. It is well known that such a family can easily be constructed.
For instance, the set of all m×k Boolean matrices yield such a family; a matrix B represents
the function h given by h(z) = zB (modulo 2).

For a function h ∈ H and a string z ∈ {0, 1}m, we say that z has a collision under h, if
there exists a z′ ∈ {0, 1}m such that z 6= z′ and h(z) = h(z′). For a set of hash functions
H ⊆ H, we say that z has a collision under H, if for all h ∈ H, z has a collision under h. A
set S ⊆ {0, 1}m is said to have a collision under H, if there exists a z ∈ S such that z has
a collision under H.

Lemma 3.8 ([20]). Let S ⊆ {0, 1}m and k ≤ m. Let H be a 2-universal family of hash
functions from {0, 1}m to {0, 1}k. Uniformly and independently pick a set of hash functions
h1, h2, . . . , hk from H and let H = {h1, h2, . . . , hk}. Then,

• If |S| > k2k, then PrH [S has a collision under H] = 1.
• If |S| ≤ 2k−1, then PrH [S has a collision under H] ≤ 1/2.

We define a promise language called set largeness testing (SLT) and then use Lemma 3.8
to show that it lies in the class prAM.
Set Largeness Testing (SLT): The instances in this language consist of a set X ⊆ {0, 1}m,
presented succinctly in the form of a circuit, and an integer k ≤ m.
Positive instances: |X| > k2k.
Negative instances: |X| ≤ 2k−1.

Lemma 3.9. The promise language SLT belongs to the class prAM.

Proof. Let H be a 2-universal family of hash functions from {0, 1}m to {0, 1}k . The proof
is based on the observation that for a given set H ⊆ H, testing whether X has a collision
under H is an NP predicate.

The AM protocol proceeds as follows. Arthur picks a set of hash functions H =
{h1, h2, . . . , hk} uniformly and independently at random from H. Merlin must exhibit an
element z ∈ X and prove that z has a collision under H. Arthur accepts, if Merlin proves
that such a collision exists; otherwise, Arthur rejects. 2

The following lemma provides an algorithm for estimating the size of a set, given SLT

as oracle.

Lemma 3.10. There exists an FPprAM that takes a set X ⊆ {0, 1}m, presented succinctly

in the form of a circuit, and outputs an estimate U such that |U |
4m

≤ |X| ≤ |U |.

Proof. The algorithm takes the promise language SLT as the oracle. We iteratively consider
every integer k in the range 1 through m and ask the query (X, k) to the oracle. Let ke be
the first time, we get a “no” answer from the oracle. Compute |U | = m2ke . We shall argue
that U satisfies the stated bounds.

166 V. CHAKARAVARTHY AND S. ROY

Let k0 be the largest integer such that |X| > k02
k0 and let k1 be the smallest integer

such that |X| ≤ 2k1−1. Notice that k0 + 1 ≤ ke ≤ k1. By the property of k0, ke satisfies
|X| ≤ ke2

ke ≤ m2ke . By the property of k1, we have that 2k1−2 < |X| ≤ 2k1−1. It follows
that 2ke ≤ 2k1 < 4|X|. The claimed bounds on |U | follow from the above inequalities. 2

Returning to Lemma 3.7, the first stage of the algorithm (finding an estimate on |X|)
can now be performed using Lemma 3.10. We turn to the second stage that involves
distinguishing between the two cases in Lemma 3.7. For this, we will make use of the
following promise language as an oracle.
Prefix Cardinality Goodness Testing (PCGT): The instances of this language consist
of four components: (i) a 2n × 2m Boolean matrix M ; (ii) a set X ⊆ {0, 1}m; (iii) a prefix β
of length at most n; (iv) a number k. The matrix M and the set X are presented succinctly
in the form of circuits.
Positive instances: There exists a row y extending β such that y beats at least k2k columns
in X.
Negative instances: For all rows y extending β, y beats at most 2k−1 columns in X.

Lemma 3.11. The promise language PCGT belongs to the class prAM.

Proof. The proof is similar to that of Lemma 3.9 and makes use of Lemma 3.8. We present
an MAM protocol. It is well known that such a protocol can be converted to an AM
protocol [3].

Merlin claims that a given instance is of the positive type. To prove this, he provides
a row y extending β. Let Z ⊆ X be the set of columns from X that are beaten by y.
Arthur needs to distinguish between the cases of |Z| > k2k and |Z| ≤ 2k−1. This situation
is the same as that of Lemma 3.9. By repeating the argument from there, we get an MAM
protocol. 2

Proof of Lemma 3.7: Our algorithm will make use of both SLT and PCGT as oracles. Let
us rephrase the two cases that we wish to distinguish:

• Case (a): There exists a row y extending β such that y beats at least |X|/2 columns
from X.

• Case (b) : For any row y extending β, y beats at most |X|/m4 columns from X.

We first run the algorithm claimed in Lemma 3.10 to get an estimate U such that |U |/4m ≤
|X| ≤ |U |. Our next goal is to reduce the task of distinguishing the above two cases to a
PCGT query. Consider any row y. Let Z be the number of columns from X that y beats.
We wish to choose a number k satisfying two conditions: (i) if Z ≥ |X|/2 then Z > k2k; (ii)
if Z ≤ |X|/m4 then Z ≤ 2k−1. A simple calculation reveals that it suffices for k to satisfy
the following inequalities in terms of U :

2U

m4
≤ 2k ≤

U

8m2
.

Clearly, we can choose k = blog U
8m2 c. Then, we call the PCGT oracle with the parameters

M , X, β and k. We output “yes”, if the oracle says “yes”; and output “no”, if the oracle
says “no”. 2

4. Applications of the Main Result

In this section, we apply Theorem 3.2 in two different settings and derive some corol-
laries. The first deals with upperbounds on the power of Sp

2. The second is about the
consequences of NP having polynomial size circuits.

FINDING IRREFUTABLE CERTIFICATES FOR S
p

2 167

4.1. Upperbounds for Sp
2

Theorem 4.1. Sp
2 ⊆ PprAM.

Proof. The claim follows directly from Theorem 3.2. Let L be a language in Sp
2. Let x

be the input string. Consider the S2-type matrix M corresponding to x. As discussed in
Section 2, we can obtain a circuit C succinctly encoding the matrix M in time polynomial
in |x|. Invoking the algorithm given in Theorem 3.2 on C, we get either a row-side CIC or
a column-side CIC. Notice that in the former case x ∈ L and in the latter case x 6∈ L. 2

Having proven the above theorem, it is natural to ask how large the class PprAM is. By
definition, AM is contained in BPPNP and so, PAM is also contained in the same class. We
observe the above claim extends to the case where the oracle is a prAM oracle, instead of
an AM oracle.

Theorem 4.2. PprAM ⊆ BPPNP.

Cai [5] showed that Sp
2 is contained in ZPPNP, whereas our result puts Sp

2 in the class

PprAM. The containment relationships between ZPPNP and PprAM are unknown. In this
context, we observe that an alternative proof of Cai’s result can be derived using our tech-
niques. This cannot be achieved by simply combining Theorem 4.1 and 4.2; this would only
yield Sp

2 ⊆ BPPNP. We obtain the alternative proof by directly appealing to Theorem 3.2.

Theorem 4.3 ([5]). Sp
2 ⊆ ZPPNP.

4.2. Consequences of NP having small circuits

A body of prior work has dealt with the implication of the assumption that NP has
polynomial size circuits. Our main theorem yields some new results in this context, which
are described in this section.

Suppose NP is contained in P/poly. Karp and Lipton [13] showed that, under this
assumption, the polynomial time hierarchy (PH) collapses to Σp

2 ∩ Πp
2, i.e., PH = Σp

2 ∩ Πp
2.

Köbler and Watanabe [14] improved the collapse to ZPPNP. Sengupta (see [5]) observed
that the collapse can be brought down to Sp

2. This has been further improved via a collapse
to Op

2, the oblivious version of Sp
2 [7]. It has been an interesting open problem to obtain a

collapse to the class PNP. Here, we show a collapse to PprMA.

Theorem 4.4. If NP ⊆ P/poly, then PH = PprMA.

Proof. By Sengupta’s observation [5], the assumption implies that PH = Sp
2. Combining

this with Theorem 4.1, we get PH = PprAM. Arvind et al. [2] showed that if NP ⊆ P/poly
then AM = MA. We observe that this result carries over to the promise versions, namely
the same assumption implies prAM = prMA. The claim follows. 2

Though the above theorem yields a new consequence, we note that it is not clear
whether this is an improvement over the previously best known collapse. It is known that
MA ⊆ ZPPNP [11, 1] and MA ⊆ Sp

2 [17]. Extending the former claim, we can show that

PprMA ⊆ ZPPNP. However, we do not know how to accomplish the same for the second
claim. Namely, it remains open whether PprMA is contained in Sp

2.
Under the assumption NP has polynomial size circuits, Bshouty et al. [4] studied the

problem of learning a correct circuit for SAT and designed a ZPPNP algorithm. Using
Theorem 3.2, we derive the following claim which improves the above result, as we can
show that FPprMA ⊆ ZPPNP.

168 V. CHAKARAVARTHY AND S. ROY

Theorem 4.5. If NP ⊆ P/poly, then there exists an FPprMA algorithm that outputs a
correct polynomial size circuit for SAT at a given input length.

Acknowledgments: We thank the anonymous referees for their useful comments.

References

[1] V. Arvind and J. Köbler. On pseudorandomness and resource-bounded measure. In Proceedings of the

17th Conference on Foundations of Software Technology and Theoretical Computer Science, 1997.
[2] V. Arvind, J. Köbler, U. Schöning, and R. Schuler. If NP has polynomial-size circuits, then MA=AM.

Theoretical Computer Science, 137(2):279–282, 1995.
[3] L. Babai and S. Moran. Arthur-merlin games: A randomized proof system, and a hierarchy of complexity

classes. Journal of Computer and System Sciences, 36(2):254–276, 1988.
[4] N. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries that are sufficient

for exact learning. Journal of Computer and System Sciences, 52(3):421–433, 1996.
[5] J. Cai. Sp

2 ⊆ ZPPNP. Journal of Computer and System Sciences, 73(1), 2007.
[6] R. Canetti. More on BPP and the polynomial-time hierarchy. Information Processing Letters, 57(5):237–

241, 1996.
[7] V. Chakaravarthy and S. Roy. Oblivious symmetric alternation. In Proceedings of the 23rd Annual

Symposium on Theoretical Aspects of Computer Science, 2006.
[8] D. Du and K. Ko. Computational Complexity. John Wiley and sons, 2000.
[9] L. Fortnow, R. Impagliazzo, V. Kabanets, and C. Umans. On the complexity of succinct zero-sum

games. In Proceedings of the 20th Annual IEEE Conference on Computational Complexity, 2005.
[10] O. Goldreich and A. Wigderson. Improved derandomization of BPP using a hitting set generator. In

RANDOM-APPROX, 1999.
[11] O. Goldreich and D. Zuckerman. Another proof that BPP ⊆ PH (and more). Technical Report TR97–

045, ECCC, 1997.
[12] M. Jerrum, L. Valiant, and V. Vazirani. Random generation of combinatorial structures from a uniform

distribution. Theoretical Computer Science, 43, 1986.
[13] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity classes. In

Proceedings of the 12th ACM Symposium on Theory of Computing, 1980.
[14] J. Köbler and O. Watanabe. New collapse consequences of NP having small circuits. SIAM Journal on

Computing, 28(1):311–324, 1998.
[15] P. Miltersen and N. Vinodchandran. Derandomizing Arthur-Merlin games using hitting sets. In Pro-

ceedings of the 40th IEEE Symposium on Foundations of Computer Science, 1999.
[16] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[17] A. Russell and R. Sundaram. Symmetric alternation captures BPP. Computational Complexity,

7(2):152–162, 1998.
[18] R. Santhanam. Circuit lower bounds for Merlin-Arthur classes. In Proceedings of the 39th ACM Sym-

posium on Theory of Computing, 2007.
[19] R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. Computational

Complexity, 15(4), 2007.
[20] M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th ACM Symposium

on Theory of Computing, 1983.
[21] L. Stockmeyer. The complexity of approximate counting. In Proceedings of the 15th ACM Symposium

on Theory of Computing, 1983.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

