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Abstract. We consider the two-variable interlace polynomial introduced by Arratia,
Bollobás and Sorkin (2004). We develop two graph transformations which allow us to
derive point-to-point reductions for the interlace polynomial. Exploiting these reduc-
tions we obtain new results concerning the computational complexity of evaluating the
interlace polynomial at a fixed point. Regarding exact evaluation, we prove that the
interlace polynomial is #P-hard to evaluate at every point of the plane, except at one
line, where it is trivially polynomial time computable, and four lines and two points,
where the complexity mostly is still open. This solves a problem posed by Arratia,
Bollobás and Sorkin (2004). In particular, we observe that three specializations of the
two-variable interlace polynomial, the vertex-nullity interlace polynomial, the vertex-
rank interlace polynomial and the independent set polynomial, are almost everywhere
#P-hard to evaluate, too. For the independent set polynomial, our reductions allow
us to prove that it is even hard to approximate at every point except at −1 and 0.

1. Introduction

The number of Euler circuits in specific graphs and their interlacings turned out to be
a central issue in the solution of a problem related to DNA sequencing by hybridization
[ABCS00]. This led to the definition of a new graph polynomial, the one-variable inter-
lace polynomial [ABS04a]. Further research on this polynomial inspired the definition
of a two-variable interlace polynomial q(G;x, y) containing as special cases the following
graph polynomials: qN (G; y) = q(G; 2, y) is the original one-variable interlace polynomial
which was renamed to “vertex-nullity interlace polynomial”, qR(G;x) = q(G;x, 2) is the
new “vertex-rank interlace polynomial” and I(G;x) = q(G; 1, 1 + x) is the independent
set polynomial1 [ABS04b].

Although the interlace polynomial q(G;x, y) is a different object from the celebrated
Tutte polynomial (also known as dichromatic polynomial, see, for instance, [Tut84]), they
are also similar to each other. While the Tutte polynomial can be defined recursively

Key words and phrases: computational complexity, approximation, interlace polynomial, independent
set polynomial, graph transformation.

1The independent set polynomial of a graph G is defined as I(G; x) =
P

j≥0
i(G; j)xj , where i(G; j)

denotes the number of independent sets of cardinality j of G.
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by a deletion-contraction identity on edges, the interlace polynomial satisfies recurrence
relations involving several operations on vertices (deletion, pivotization, complementa-
tion).

Besides the deletion-contraction identity, the so called state expansion is a well-
known way to define the Tutte polynomial. Here the similarity to the two-variable
interlace polynomial is especially striking: while the interlace polynomial is defined as a
sum over all vertex subsets of the graph using the rank of adjacency matrices (see (2.1)),
the state expansion of the Tutte polynomial can be interpreted as a sum over all edge
subsets of the graph using the rank of incidence matrices (see (4.1)) [ABS04b, Section 1].

References to further work on the interlace polynomial can be found in [ABS04b]
and [EMS06].

1.1. Previous work

The aim of this paper is to explore the computational complexity of evaluating2 the
two-variable interlace polynomial q(G;x, y). For the Tutte polynomial this problem was
solved in [JVW90]: Evaluating the Tutte polynomial is #P-hard at any algebraical point
of the plane, except on the hyperbola (x − 1)(y − 1) = 1 and at a few special points,
where the Tutte polynomial can be evaluated in polynomial time. For the two-variable
interlace polynomial q(G;x, y), only on a one-dimensional subset of the plane (on the
lines x = 2 and x = 1) some results about the evaluation complexity are known.

A connection between the vertex-nullity interlace polynomial and the Tutte poly-
nomial of planar graphs [ABS04a, End of Section 7], [EMS06, Theorem 3.1] shows that
evaluating q is #P-hard almost everywhere on the line x = 2 (Corollary 4.4).

It has also been noticed that q(G; 1, 2) evaluates to the number of independent sets
of G [ABS04b, Section 5], which is #P-hard to compute [Val79]. Recent work on the
matching generating polynomial [AM07] implies that evaluating q is #P-hard almost
everywhere on the line x = 1 (Corollary 4.10).

A key ingredient of [JVW90] is to apply graph transformations known as stretching
and thickening of edges. For the Tutte polynomial, these graph transformations allow
us to reduce the evaluation at one point to the evaluation at another point. For the
interlace polynomial no such graph transformations have been given so far.

1.2. Our results

We develop two graph transformations which are useful for the interlace polynomial:
cloning and combing of vertices. Applying cloning or combing allows us to reduce the
evaluation of the interlace polynomial at some point to the evaluation of it at another
point, see Theorem 3.3 and Theorem 3.5. We exploit this to obtain the following new
results about the computational complexity of q(G;x, y).

We prove that the two-variable interlace polynomial q(G;x, y) is #P-hard to evaluate
at almost every point of the plane, Theorem 4.12, see also Figure 1. Even though there
are some unknown (gray, in Figure 1) lines left on the complexity map for q, this solves
a challenge posed in [ABS04b, Section 5]. In particular we obtain the new result that

2See Section 2.2 for a precise definition.
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evaluating the vertex-rank interlace polynomial qR(G;x) is #P-hard at almost every
point (Corollary 4.13). Our techniques also give a new proof that the independent set
polynomial is #P-hard to evaluate almost everywhere (Remark 4.11).

Apart from these results on the computational complexity of evaluating the interlace
polynomial exactly, we also show that the values of the independent set polynomial
(which is the interlace polynomial q(G;x, y) on the line x = 1) are hard to approximate
almost everywhere (Theorem 5.4).

2. Preliminaries

2.1. Interlace Polynomials

We consider undirected graphs without multiple edges but with self loops allowed.
Let G = (V,E) be such a graph and A ⊆ V . By G[A] we denote (A, {e|e ∈ E, e ⊆ A}),
the subgraph of G induced by A. The adjacency matrix of G is the symmetric n × n-
matrix M = (mij) over F2 = {0, 1} with mi,j = 1 iff {i, j} ∈ E. The rank of this matrix
is its rank over F2. Slightly abusing notation we write rk(G) for this rank. This allows
us to define the two-variable interlace polynomial.

Definition 2.1 ([ABS04b]). Let G = (V,E) be an undirected graph. The interlace
polynomial q(G;x, y) of G is defined as

q(G;x, y) =
∑

A⊆V

(x − 1)rk(G[A])(y − 1)|A|−rk(G[A]). (2.1)

In Section 3 we will introduce graph transformations (graph cloning and graph
combing) which perform one and the same operation (cloning one single vertex, adding
a comb to one single vertex, resp.) on every vertex of a graph. Instead of relating
the interlace polynomial of the original graph directly to the interlace polynomial of
the transformed graph, we will analyze how, say, cloning one single vertex changes
the interlace polynomial. To express this, we must be able to treat the vertex being
cloned in a particular way, differently from the other vertices. This becomes possible
using a multivariate version of the interlace polynomial, in which each vertex has its
own variable. Once we can express the effect of cloning one vertex by an appropriate
substitution of the vertex variable in the multivariate interlace polynomial, cloning all
the vertices amounts to a simple substitution of all vertex variables and brings us back
to a bivariate interlace polynomial. This procedure has been applied successfully to the
Tutte polynomial [Sok05, BM06].

We choose the following multivariate interlace polynomial, which is similar to the
multivariate Tutte polynomial of Sokal [Sok05] and a specialization of the multivariate
interlace polynomial defined by Courcelle [Cou07].

Definition 2.2. Let G = (V,E) be an undirected graph. For each v ∈ V let xv be an
indeterminate. Writing xA for

∏

v∈A xv, we define the following multivariate interlace
polynomial:

P (G;u,x) =
∑

A⊆V

xAurk(G[A]).



100 M. BLÄSER AND C. HOFFMANN

Substituting each xv in P (G;u,x) by x, we obtain another bivariate interlace polynomial:

P (G;u, x) =
∑

A⊆V

x|A|urk(G[A]).

An easy calculation proves that q and P are closely related:

Lemma 2.3. Let G be a graph. Then we have the polynomial identities q(G;x, y) =
P (G; x−1

y−1 , y − 1) and P (G;u, x) = q(G;ux + 1, x + 1).

2.2. Evaluating Graph Polynomials

Given ξ, υ ∈ Q we want to analyze the following computational problem:

Input: Graph G
Output: q(G; ξ, υ)

This is what we mean by “evaluating the interlace polynomial q at the point (ξ, υ)”. As
an abbreviation for this computational problem we write

q(ξ, υ),

which should not be confused with the expression q(G; ξ, υ) denoting just a value in Q.
Evaluating other graph polynomials such as P , qN , qR and I is defined accordingly.

If P1 and P2 are computational problems we use P1 �T P2 (P1 �m P2) to denote a
polynomial time Turing reduction (polynomial time many-one reduction, resp.) from P1

to P2. For instance, Lemma 2.3 gives

Corollary 2.4. For ξ, υ ∈ Q̃, υ 6= 1, we have q(ξ, υ) �m P ( ξ−1
υ−1 , υ − 1). For µ, ξ ∈ Q̃ we

have P (µ, ξ) �m q(µξ + 1, ξ + 1).

Here Q̃ denotes some finite dimensional field extension Q ⊆ Q̃ ⊆ R, which has a
discrete representation. As

√
2 will play an important role but we are not able to use

arbitrary real numbers as the input for a Turing machine, we use Q̃ instead of Q or R.
We fix some Q̃ for the rest of this paper. This construction is done in the spirit of Jaeger,
Vertigan, and Welsh [JVW90] who also propose to adjoin a finite number of points to Q

in order to talk about the complexity at irrational points. To some extent, this is an ad
hoc construction, but it is sufficient for this work.

3. Graph Transformations for the Interlace Polynomial

Now we describe our graph transformations, the cloning and combing of vertices.
The main results of this section are Theorem 3.3 and Theorem 3.5 which describe the
effect of cloning and combing on the interlace polynomial.

3.1. Cloning

Cloning vertices in the graph yields our first graph transformation.
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Cloning one vertex. Let G = (V,E) be a graph. Let a ∈ V be some vertex (the one
which will be cloned) and N the set of neighbors of a, V ′ = V \ {a} and M = V ′ \ N .
The graph G with a cloned, Gaa, is obtained out of G in the following way: Insert a new
isolated vertex a′. Connect a′ to all vertices in N . If a does not have a self loop, we are
done. Otherwise connect a and a′ and insert a self loop at a′. Thus, adjacency matrices
of the original (cloned, resp.) graph are

B =

a N M
a b 1 0

N 1 A11 A12

M 0 A21 A22

and Baa =

a′ a N M
a′ b b 1 0

a b b 1 0

N 1 1 A11 A12

M 0 0 A21 A22

, resp, (3.1)

where b = 1 if a has a self loop and b = 0 otherwise. As the first column of Baa equals
its second column, as well as the first row equals the second row, we can remove the
first row and the first column of Baa without changing the rank. This also holds when
we consider the adjacency matrices of G[A] (Gaa[A], resp.) instead of G (Gaa resp.) for
A ⊆ V ′. Thus we have for any A ⊆ V ′

rk(Gaa[A]) = rk(G[A]), (3.2)

rk(Gaa[A ∪ {a, a′}]) = rk(Gaa[A ∪ {a}]) = rk(Gaa[A ∪ {a′}]) = rk(G[A ∪ {a}]). (3.3)

Let x = (xv)v∈V (Gaa) be a labeling of the vertices of Gaa by indeterminates. Define
X to denote the following labeling of the vertices of G: Xv := xv for all v ∈ V ′,
Xa := (1 + xa)(1 + xa′) − 1 = xa + xa′ + xaxa′ . Then we have

Lemma 3.1. P (Gaa;u,x) = P (G;u,X).

Proof. On the one hand we have

P (Gaa;u,x)

=
∑

A⊆V ′

xA(urk(Gaa[A]) + xau
rk(Gaa[A∪{a}]) + xa′urk(Gaa[A∪{a′}]) + xaxa′urk(Gaa[A∪{a,a′}]))

=
∑

A⊆V ′

xA(urk(G[A]) + (xa + xa′ + xaxa′)urk(G[A∪{a}])) by (3.2), (3.3).

On the other hand we have

P (G;u,X) =
∑

A⊆V ′

XA(urk(G[A]) + Xau
rk(G[A∪{a}]))

=
∑

A⊆V ′

xA(urk(G[A]) + (xa + xa′ + xaxa′)urk(G[A∪{a}])).



102 M. BLÄSER AND C. HOFFMANN

Cloning all vertices. Fix some k. Given a graph G, the graph Gk is obtained by cloning
each vertex of G exactly k − 1 times. Note that the result of the cloning is independent
of the order in which the different vertices are cloned. For a ∈ V (G) let a1, . . . , ak be the
corresponding vertices in Gk. For a vertex labeling x of Gk we define the vertex labeling
X of G by Xa = (1 + xa1

)(1 + xa2
) · · · (1 + xak

) − 1 for a ∈ V (G). Applying Lemma 3.1
repeatedly we obtain

Lemma 3.2. P (Gk;u,x) = P (G;u,X).

Substitution of xv by x for all vertices v gives

Theorem 3.3. Let G be a graph and Gk be obtained out of G by cloning each vertex of
G exactly k − 1 times. Then

P (Gk;u, x) = P (G;u, (1 + x)k − 1). (3.4)

As we will use it in the proof of Theorem 4.12, we note the following identity for q,
which can be derived from Theorem 3.3 using Lemma 2.3:

q(Gk;x, y) = q(G; (x − 1)
yk − 1

y − 1
+ 1, yk). (3.5)

Theorem 3.3 also implies the following reduction for the interlace polynomial, which
is the foundation for our results in Section 4.

Proposition 3.4. Let B2 = {0,−1,−2} and x be an indeterminate. For µ ∈ Q̃, ξ ∈
Q̃ \ B2 we have P (µ, x) �T P (µ, ξ). (For any µ ∈ Q̃, we write P (µ, x) to denote
the following computational problem: given a graph G compute P (G;µ, x), which is a

polynomial in x with coefficients in Q̃.)

Proof. Let µ and ξ be given such that they fulfill the precondition of the proposition.
Given a graph G =: G1 with n vertices, we build G2, G3, . . . , Gn+1, where Gi is obtained
out of G by cloning each vertex i−1 times. This is possible in time polynomial in n. By
Theorem 3.3, a call to an oracle for P (µ, ξ) with input Gi gives us P (G;µ, (1 + ξ)i − 1)
for i = 1, . . . , n+1. The restriction on ξ guarantees that for i = 1, 2, 3, . . . the expression
(1 + ξ)i − 1 evaluates to pairwise different values. Thus, for P (G;µ, x), which is a
polynomial in x of degree ≤ n, we have obtained the values at n + 1 distinct points.
Using Lagrange interpolation we determine the coefficients of P (G;µ, x).

3.2. Combs

The comb transformation sometimes helps, when cloning has not the desired effect.
Let G = (V,E) be a graph and a ∈ V some vertex. Then we define the k-comb of G
at a as Ga,k = (V ∪ {a1, . . . , ak}, E ∪ {{a, a1}, . . . , {a, ak}}), with a1, . . . , ak being new
vertices.

Using similar arguments as with vertex cloning, combing of vertices yields a point-
to-point reduction for the interlace polynomial, too. The proof of the following theorem
can be found in [BH07].
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Figure 1: Complexity of the interlace polynomials P and q. α =
√

2, β = 1/
√

2

Theorem 3.5. Let G be a graph and Gk be obtained out of G by performing a k-comb
operation at every vertex. Then

P (Gk;u, x) = p(k, u, x)|V (G)|P (G;u, x/p(k, u, x)), (3.6)

where p(k, u, x) = (1 + x)k(xu2 + 1) − xu2.

4. Complexity of evaluating the Interlace Polynomial exactly

The goal of this section is to uncover the complexity maps for P and q as indicated
in Figure 1. While the left hand side (complexity map for P ) is intended to follow the
arguments which prove the hardness, the right hand side (complexity map for q) focuses
on presenting the results.

Remark 4.1. P (µ, 0) and P (1, ξ) are trivially solvable in polynomial time for any µ, ξ ∈
Q̃, as P (G;µ, 0) = 1 and P (G; 1, ξ) = (1 + ξ)|V |.

Thus, on the thick black lines x = 0 and u = 1 in the left half of Figure 1, P can
be evaluated in polynomial time. By Lemma 2.3, these lines in the complexity map for
P correspond to the point (1, 1) and the line x = y, resp., in the complexity map for q,
see the right half of Figure 1.

4.1. Identifying hard points

We want to establish Corollary 4.4 and Remark 4.5 which tell us, that P is #P-hard
to evaluate almost everywhere on the dashed hyperbola in Figure 1 and at (0, 1). To
this end we collect known hardness results about the interlace polynomial.
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Let t(G;x, y) denote the Tutte polynomial of an undirected graph G = (V,E). It
may be defined by its state expansion as

t(G;x, y) =
∑

B⊆E(G)

(x − 1)r(E)−r(B)(y − 1)|B|−r(B), (4.1)

where r(B) is the F2-rank of the incidence matrix of G[B] = (V,B), the subgraph of
G induced by B. (Note that r(B) equals the number of vertices of G[B] minus the
number of components of G[B], which is the rank of B in the cycle matriod of G.) For
details about the Tutte polynomial we refer to standard literature [Tut84, BO92, Wel93].
The complexity of the Tutte polynomial has been studied extensively. In particular, the
following result is known.

Theorem 4.2 ([Ver05]). Evaluating the Tutte polynomial of planar graphs at (ξ, ξ) is

#P-hard for all ξ ∈ Q̃ except for ξ ∈ {0, 1, 2, 1 ±
√

2}.
We will profit from this by a connection between the interlace polynomial and the

Tutte polynomial of planar graphs. This connection is established via medial graphs. For

any planar graph G one can build the oriented medial graph ~Gm, find an Euler circuit

C in ~Gm and obtain the circle graph H of C. The whole procedure can be performed in
polynomial time. For details we refer to [EMS06]. We will use

Theorem 4.3 ([ABS04a, End of Section 7]; [EMS06, Theorem 3.1]). Let G be a planar

graph, ~Gm be the oriented medial graph of G and H be the circle graph of some Euler

circuit C of ~Gm. Then q(H; 2, y) = t(G; y, y). Thus we have t(υ, υ) �m P ( 1
υ−1 , υ − 1),

where t(υ, υ) denotes the problem of evaluating the Tutte polynomial of a planar graph
at (υ, υ).

Proof. See the references for q(H; 2, y) = t(G; y, y) and use Lemma 2.3.

We set α =
√

2 and β = 1/
√

2. Let B1 = {±1,±β, 0}. Theorem 4.2 and Theo-
rem 4.3 yield

Corollary 4.4. Evaluating the vertex-nullity interlace polynomial qN is #P-hard almost
everywhere. In particular, we have:

• The problem qN (2) is trivially solvable in polynomial time.

• For any υ ∈ Q̃ \ {0, 1, 2, 1 ± α} the problem qN (υ) = q(2, υ) is #P-hard. Or, in

other words, for any µ ∈ Q̃ \ B1 the problem P (µ, 1/µ) is #P-hard.

Remark 4.5. P (0, 1) is #P-hard, as P (G; 0, 1) equals the number of independent sets
of G, which is #P-hard to compute [Val79].

4.2. Reducing to hard points

The cloning reduction allows us to spread the collected hardness over almost the
whole plane: Combining Corollary 4.4 and Remark 4.5 with Proposition 3.4 we obtain

Proposition 4.6. Let B1 = {±1,±β, 0} and B2 = {0,−1,−2} (as defined on Pages 104

and 102, resp.). Let (µ, ξ) ∈ ((Q̃ \ B1) ∪ {0}) × (Q̃ \ B2). Then P (µ, ξ) is #P-hard.
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This tells us that P is #P-hard to evaluate at every point in left half of Figure 1 not
lying on one of the seven thick lines (three of which are solid gray ones, two of which
are solid black ones, and two of which are dashed ones). Using the comb reduction we
are able to reveal the hardness of the interlace polynomial P on the lines x = −1 and
x = −2:

Proposition 4.7. For µ ∈ Q̃ \ B1 the problem P (µ,−1) is #P-hard.

Proposition 4.8. For µ ∈ ((Q̃ \ B1) \ {1
2}) ∪ {0} the problem P (µ,−2) is #P-hard.

The proofs of the preceding propositions can be found in [BH07].

4.3. Summing up

First we summarize our knowledge about P .

Theorem 4.9. Let β = 1/
√

2.

(1) P (µ, ξ) is computable in polynomial time on the lines µ = 1 and ξ = 0.

(2) For (µ, ξ) ∈
(

(Q̃ \ {−1,−β, β, 1}) × (Q̃ \ {0})
)

\ {(1/2,−2)} the problem P (µ, ξ)
is #P-hard.

Proof. Summary of Remark 4.1, Proposition 4.6, Proposition 4.7, Proposition 4.8. The
hardness of P (0,−1) follows from Corollary 4.10.

We have not given any argument why P (0,−1) is #P-hard. This follows from
[AM07].

Corollary 4.10. Evaluating the independent set polynomial I(λ) = P (0, λ) = q(1, 1+λ)

is #P-hard at all λ ∈ Q̃ except at λ = 0, where it is computable in polynomial time.

Proof. The matching generating polynomial of a graph G is defined as
∑

k≥0 m(G; k)xk,

where m(G; k) denotes the number of matching of size k in G. [AM07] proves that g(ξ)
is #P-hard for all ξ ∈ R \ {0}. As the matchings of a graph are the independent sets of
its line graph, the result follows.

Remark 4.11. Note that, except for the point (0,−1), the statement of Corollary 4.10 is
also a direct consequence of Proposition 4.6 and Proposition 4.8, without using [AM07].

Now we turn to the complexity of q, see also the right half of Figure 1.

Theorem 4.12. The two-variable interlace polynomial q is #P-hard to evaluate almost
everywhere. In particular, we have:

(1) q(ξ, υ) is computable in polynomial time on the line ξ = υ.

(2) Let ξ ∈ Q̃ \ {1} and x be an indeterminate. Then q(ξ, 1) is as hard as computing
the whole polynomial q(x, 1).

(3) q(ξ, υ) is #P-hard for all

(ξ, υ) ∈ {(ξ, υ) ∈ Q̃2 | υ 6= ±(ξ − 1) + 1 and υ 6= ±
√

2(ξ − 1) + 1 and

υ 6= 1 and (ξ, υ) 6= (0,−1)}.
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Proof of Theorem 4.12 (Sketch). (1) and (3) follow from Remark 4.1 and Theorem 4.9
using Lemma 2.3. For ξ 6= 1, (3.5) gives q(Gk; ξ, 1) = q(G; k(ξ − 1) + 1, 1), which yields
enough points for interpolation in the same way as in Proposition 3.4 using k = 1, 2, 3, . . .
This proves (2).

Theorem 4.12 implies

Corollary 4.13. Let β = 1/
√

2. Evaluating the vertex-rank interlace polynomial qR(G;x)

is #P-hard at all ξ ∈ Q̃ except at ξ = 0, 1 − β, 1 + β (complexity open) and ξ = 2 (com-
putable in polynomial time).

5. Inapproximability of the Independent Set Polynomial

Provided we can evaluate the independent set polynomial at some fixed point,
cloning (combing, resp.) of vertices allows us to evaluate it at very large points. In
this section we exploit this to prove that the independent set polynomial is hard to
approximate. Similar results are shown in [GJ07] for the Tutte polynomial.

Definition 5.1. Let λ ∈ Q̃. By a randomized 2nk

-approximation algorithm for I(λ)
we mean a randomized algorithm, that, given a graph G with n nodes, runs in time
polynomial in n and returns Ĩ(G;λ) ∈ Q̃ such that

Pr[2−nk

I(G;λ) ≤ Ĩ(G;λ) ≤ 2nk

I(G;λ)] ≥ 3

4
.

In [GJ07], (non)approximability in the weaker sense of (not) admitting an FPRAS
is considered.

Definition 5.2. Let λ ∈ Q̃. A fully polynomial randomized approximation scheme
(FPRAS) for I(λ) is a randomized algorithm, that given a graph G with n nodes and
an error tolerance ε, 0 < ε < 1, runs in time polynomial in n and 1/ε and returns

Ĩ(G;λ) ∈ Q̃ such that

Pr[2−εI(G;λ) ≤ Ĩ(G;λ) ≤ 2εI(G;λ)] ≥ 3

4
.

Lemma 5.3. For every λ ∈ Q̃, 0 6= |1+λ| 6= 1, and every k ∈ N there is no randomized

polynomial time 2nk

-approximation algorithm for I(λ) unless RP = NP.

Theorem 5.4. For every λ ∈ Q̃ \ {−1, 0} and every k ∈ N there is no randomized

polynomial time 2nk

-approximation algorithm (and thus also no FPRAS) for I(λ) unless
RP = NP.

Proof. Lemma 5.3 gives the inapproximability at λ ∈ Q̃\{−2,−1, 0}. By (3.6) we could
turn an approximation algorithm for I(−2) into an approximation algorithm for I(2)
which would imply RP = NP by Lemma 5.3.
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Proof of Lemma 5.3. Assume we have λ, 0 6= |1 + λ| 6= 1, k ∈ N and a randomized 2nk

-
approximation algorithm A for I(λ). Given a graph G, Theorem 3.3 and Theorem 3.5,
resp., will allow us to evaluate the independent set polynomial at a point ξ with |ξ| that
large, that an approximation of I(G; ξ) can be used to recover the degree of I(G;x), which
is the size of a maximal independent set of G. As computing this number is NP-hard,

a randomized 2nk

-approximation algorithm for I(G;λ) would yield an RP-algorithm for
an NP-hard problem, which implies RP = NP.

Let G = (V,E) be a graph with |V | = n. We distinguish two cases. If |1 + λ| > 1,
we choose a positive integer l such that with ξ := (1 + λ)l − 1 we have

|ξ| ≥ 2nk+1

. (5.1)

This can be achieved by choosing l = poly(n). (Let m be an integer such that |λ + 1| ≥
21/(nm). Then we can choose l = (nk+1 + 1)nm.) If 0 < |1 + λ| < 1, we choose a positive
integer l such that with ξ := λ

(1+λ)l we have (5.1). By Theorem 3.3 (Theorem 3.5, resp.)

we have I(G; ξ) = I(Gl;λ) (I(G; ξ) = (1 + λ)−l|V |I(Gl;λ), resp.). Algorithm A returns

on input Gl within time poly(nl) = poly(n) an approximation Ĩ(Gl;λ), such that with

Ĩ(G; ξ) := Ĩ(Gl;λ) (Ĩ(G; ξ) := Ĩ(Gl;λ)

(1+λ)l|V | , resp.) we have

2−nk

I(G; ξ) ≤ Ĩ(G; ξ) ≤ 2nk

I(G; ξ) (5.2)

with high probability.
Let c be the size of a maximal independent set of G, and let N be the number of

independent sets of maximal size. We have

I(G;x) = Nxc +
∑

0≤j≤c−1

i(G; j)xj

and thus
∣

∣

∣

I(G; ξ)

ξc
− N

∣

∣

∣
≤

∑

0≤j≤c−1

i(G; j)|ξ|j−c

≤ c2n|ξ|−1 ≤ 2log n+n−nk+1

<
1

2

(5.3)

for large n. If we could evaluate I(G; ξ) exactly, we could try all c ∈ {1, . . . , n} to find

the one for which I(G;ξ)
ξc is a good estimation for N , 1 ≤ N ≤ 2n. This c is unique by

(5.1). The following calculation shows that this is also possible using the approximation
algorithm A.

Using A we compute Ñ(c̃) := Ĩ(G;ξ)
ξc̃ for all c̃ ∈ {1, . . . , n}. We claim that c is the

unique c̃ with

2−nk−1 ≤ Ñ(c̃) ≤ 2nk+n+1. (5.4)

Let us prove this claim. As 1 ≤ N ≤ 2n and by (5.3), we know that

1

2
≤ I(G, ξ)

ξc
≤ 2n+1. (5.5)

Thus, by (5.2), c̃ = c fulfills (5.4).
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On the other hand, when c̃ ≤ c − 1 we have

|Ñ(c̃)|
(5.2),(5.5)

≥ 2−nk−1|ξ|
(5.1)

≥ 2nk+1−nk−1 > 2nk+n+1

for large n. When c̃ ≥ c + 1 we have |Ñ(c̃)| < 2−nk−1 by similar arguments. This shows
that any integer c̃, c̃ 6= c, does not fulfill (5.4). Thus, c can be found in randomized
polynomial time using A.
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[ABCS00] Richard Arratia, Béla Bollobás, Don Coppersmith, and Gregory B. Sorkin. Euler circuits and
DNA sequencing by hybridization. Discrete Applied Mathematics, 104(1-3):63–96, 2000.
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