
D. LUNDIN: COMPONENT BASED ELECTRONIC VOTING SYSTEMS 1

Component Based Electronic Voting Systems
David Lundin∗

∗University of Surrey, Guildford, Surrey, GU2 7XH, UK, d.lundin@surrey.ac.uk

Abstract—An electronic voting system may be said to be
composed by a number of components, each of which has a
number of properties. One of the most attractive effects of this
way of thinking is that each component may have an attached
in-depth threat analysis and verification strategy. Furthermore,
the need to include the full system when making changes to a
component is minimised and a model at this level can be turned
into a lower-level implementation model where changes made can
cascade to as few parts of the actual implementation as possible.

I. INTRODUCTION

It appears that each researcher in the field of Electronic
Voting Systems contributes to some particular aspect but re-
builds the whole system when they wish to implement this
rather specific contribution. The idea presented in this paper
is that in order to build an e-voting system we simply add
certain distinct pieces together - and in order to improve on a
particular system we swap one distinct piece for another that
fits into the same slot. In short, we are proposing that we start
thinking about electronic voting systems as being component
based.

A benefit of this thinking is that for each component slot,
i.e. a place in a layer where a component of the system can
be slotted in, it is possible to define the method of assessing
the computational complexity of that component as well as
performing a threat analysis. Similarly, it we agree that all
components of an electronic voting system should be verifiable
and/or auditable then it is possible in this configuration to
define for each component a method of verification or audit.
When an author then makes changes to one or more com-
ponents it is possible to in effect “re-run” checks on those
components or to employ the same verification method on a
different component.

A. Domains captured

As the reader goes through the description of the different
layers, she may realise that the components in those layers
are not strictly components from a computer systems design
perspective. Instead, the components capture the full spectra of
the design and implementation of an electronic voting system
— in other words they capture the following domains:

• Computer system domain
• Human (user/voter) domain
• Legislative domain

We do not make distinctions between components in the
hierarchy that we propose, that is to say that we do not treat
components from different domains differently. To a developer
of electronic voting schemes this will be perfectly natural as

her overview of the system is total. When she considers all the
components then they must all fall into place and completely
make up the (correct) system. In fact, it is the duty of the
developer to ensure that a component that is put forward does
fulfill all the requirements on that component.

Others may look differently on the component based elec-
tronic voting system. A programmer (implementer) may look
only on those components that are implementable in software.
Similarly someone who might be consulted on the legal im-
plications on the configuration of an electronic voting system
may only consider components from the legislative domain.
Both these non-developer persons are examples of people who
must be able to trust that the system as a whole depends on
each of their respective components and that the configuration
of their components are reflections of the requirements and
conform to the restrictions of those same components.

It is encouraged that a developer of electronic voting sys-
tems that conform to the proposed component based method-
ology considers the subset of components that are to be
implemented in code and makes available to programmers
some model that binds these together in some lower-level
modelling scheme — this is out of the scope of this paper
but seems fairly straightforward in any (favourite) modelling
language.

B. Cascading changes

When a system is considered to be component based we
believe that changes can easily cascade down the different
layers, all the way down to the implementation. In a trivial
sense this might simply be that when the developer changes
the structure of a component this automatically becomes a list
of changes for the implementer to change in the actual code.
This is likely to be the scope of other papers in the modelling
domain. However, it is easy to see that changes made to one
component will only result in changes to the implementation
of that same component and not to surrounding or distant
components, restricting the work needed to implement the
changes.

II. COMPONENT HIERARCHY

We suggest that an electronic voting system is made up of
parts from four comparatively separable and distinguishable
layers, each of which builds on the services provided by a
lower level layer. We propose to name these layers in the
following fashion:

1) Human layer
2) Election layer
3) Computational layer

Dagstuhl Seminar Proceedings 07311
Frontiers of Electronic Voting
http://drops.dagstuhl.de/opus/volltexte/2008/1300

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913031?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


D. LUNDIN: COMPONENT BASED ELECTRONIC VOTING SYSTEMS 2

Layer Components
Human layer Voter registration

Ballot form configuration
Polling station layout and management
Verifiability front-end

Election layer Election method
Election management system
Voter-ballot box communication channel

Computational layer Cryptography scheme
Anonymisation strategy
Tallying procedure

Physical layer Hardware authentication method
Publishing strategy
Transfer method

TABLE I
LAYERS AND COMPONENTS

4) Physical layer
The physical layer enables the reading in of voter choices

and the transfer and publishing of the same. The computational
layer contains that which is chiefly encapsulated in software
and which relies on the physical services of the lower level.
The election level encapsulates all those options and configu-
rations relating to the election system being implemented by
the two lower levels. Finally the human layer deals with those
aspects of the electronic voting system which face the voters.

The layers and components are shown in Table I. We will
now go through these layers from the bottom up so as to first
provide a solid foundation and then explain how all the aspects
of electronic voting systems may fit into this model.

A. Physical layer
The physical layer is of course the most basic layer as

it supports all other layers with a physical infrastructure to
facilitate different hardware based aspects of the system. We
divide the physical layer into the following components:

1) Hardware authentication method: The different physical
components of the electronic voting system must be identified
using some authentication strategy, for example an asymmetric
key pair and a public key infrastructure (PKI) with established
trust among voters.

2) Publishing strategy: Voter verifiable electronic voting
systems depend on the information that voters need to perform
the verification being delivered to them in a way that they
can trust. An observation is that a single source may be an
unreliable publishing strategy but a combination of web sites
and newspapers and other independent outlets may be more
reliable.

3) Transfer method: All electronic voting systems capture
some information from the voters and transfer it to some
repository, be it central or distributed, before the information
is interpreted and tallied. In this slot fits methods for trans-
porting such digital information from polling stations to such
repositories, for example Secure Socket Layer (SSL) over the
Internet or storage on flash drives that are manually distributed.

B. Computational layer
In the computational layer are defined all the components

that are performed implicitly by software. These include the
following components:

1) Cryptography scheme: The cryptography scheme em-
ployed probably underpins much of the operation of other
components in this layer so there is an intra-layer dependence.
However, the cryptography scheme is more easily defined in
its own component after which the other components of this
layer (and others that may rely on it, although restricting the
use of the cryptography scheme to the computational layer
only would greatly simplify the definition of a scheme in
this model) may refer to it. One example of this may be
where the cryptography scheme employed is Elgamal and re-
encryption mix networks are used as anonymisation strategy
in that component.

2) Anonymisation strategy: We believe that electronic vot-
ing schemes that are both “receipt free” and voter verifiable
must use some anonymisation strategy to break the link
between an encrypted receipt and the plain text vote. This
strategy is captured in this component although it most likely is
heavily dependent on the cryptography scheme defined in the
previous. However, in some cases the anonymisation scheme
may rely on “any” cryptographic scheme and so changing the
cryptography scheme component does not necessarily interfere
with the anonymisation strategy component. One example of
where this is true is where the anonymisation strategy is a
re-encryption mix network. It is logical that the cryptography
scheme may be Elgamal or Paillier and one scheme may be
removed and the other slotted in without this requiring the
anonymisation strategy to change.

3) Tallying procedure: The tallying procedure component
is simply an encapsulation of the procedure and software that
performs the tallying of the decrypted votes. This may seem
like a trivial component at first glance but when the component
properties that we introduce below are considered it appears
that a verification strategy and computational complexity anal-
ysis for example is done better across this component than
across some external “election administration” software.

C. Election layer

This layer is very much derived from the laws that govern
the election. It seems likely that when this layer is imple-
mented it may result in some components not being turned into
code and others may be external software. As an example of
the latter we can take that the implementation of a component
may actually be a formal specification of a piece of software
that can successfully audit an election. This is then published
and any number of interested parties may write their own piece
of software.

The election layer consists of the following components:
1) Election method: This component contains a specifica-

tion of the election method that is used and into it is placed
simply as much information about the election that is available.
If the model is scrutinised as a whole it may be beneficial to
have in one part of it the specification of the election at such
a high level.

2) Election management system: All schemes require an
election to be set up by some clerks or civil servants —
or politicians or some trusted third party. This component
is, much like the previous, incorporated into the model for



D. LUNDIN: COMPONENT BASED ELECTRONIC VOTING SYSTEMS 3

completeness although it does require to communicate with
other components.

3) Voter-ballot box communication channel: This may
seem like a much more low-level component but in fact it is
included in this layer to enable the high-level definition of the
secrecy of the election. In other words it is possible to describe
here the full procedure that the voter goes through to cast a
vote in a way that is understood not only by the developers
of the system but also the general public. This definition may
then be used as reference when other components at lower
levels in the model are composed.

D. Human layer

Although some components in the previous layer have
become human readable and in fact only serve to further the
understanding of the lower layers (or, arguably, define the
lower layers in a human readable way which then cascades
down) this layer deals with all those aspects of the electronic
voting system that are facing the voter. Therefore the compo-
nents we expect to find in this layer are:

1) Voter registration: The procedure for and timing of voter
registration along with the criteria that makes a voter eligible
to register are all enshrined in the law relevant to the use of the
implementation of the modelled system. They are included in
the model in this component so as to provide completeness.
As mentioned in Section I the completeness of the system
is entrusted to the electronic voting system developer and
so a change in this component must trigger any necessary
changes to other components — and these may of course be
components that are eventually implemented in code.

2) Ballot form configuration: The ballot form configuration
is very important in any electronic voting system and it seems
likely that this component has links to other components, for
example the cryptography component in the computational
layer.

3) Polling station layout and management: This is another
component that is directly derived from the applicable national
and regional legislation. If the component is precise, by which
we mean it is directly derived from legislation which sets out
exactly the layout and management, then this may dictate the
configuration of other components in the model. If it on the
other hand is permissive then this would imply that only a
few guidelines are given and that if necessary the layout and
management of polling stations may be adapted to suit the
electronic voting system.

4) Verifiability front-end: To present a unified verifiability
front-end to voters and concerned groups, this components acts
to capture the requirements of such a front-end at a high level
and thus restrict other components that must comply therewith.

E. Component interaction

As has now become abundantly clear it is impossible to
make all components of an electronic voting system fully
autonomous — and we simply are not striving to do that. In-
stead, by making each component as distinct and autonomous
as possible and then providing links between components we
can reach some compromise between all the good properties

Fig. 1. Component restriction and permission

brought by a component based model and the necessity of
component interaction.

The links we propose are not communication links as
such, in fact we regard the communication between different
implemented components to be modelled at a lower level.
This is supported by the fact that only some components
at this level of abstraction are implemented and only some
of those communicate — in fact some of these components
become entangled in an implementation, for example the
cryptography component which is used in an implementation
of the anonymisation strategy component in the computational
layer.

The component links that we propose are of only two kinds
and each link is a mono directional vector. The link carries
some fact attached to it and it either defines a restriction
by one component on another or a permission given by one
component to another.

The links are fairly simplistic and can easily be illustrated
in a graph, and example of which is shown in Figure 1. If the
underlying fact or facts are coded in some way (perhaps just
a unique numerical reference) within the imposing component
then the link can easily be shown in a graph simply using an
arrow with a name corresponding to that code (reference).

III. COMPONENT PROPERTIES

The components in this model of electronic voting schemes
have a number of properties that can be defined much easier
than similar properties for the system as a whole. The prop-
erties that distinguish one component from another include:

A. Layer and slot into which it fits

The hierarchy of components is determined before the
model is set up for a particular electronic voting system, and
logically declaring the different parts of “a” system before
filling in those slots with a particular implementation does
seem to restrict the developer in some sense but on the other
hand it does result in a system that can be more easily
explained and developed. From a verifiability perspective such
a system could also have associated with each component slot
methods for checking that those components are correct.



D. LUNDIN: COMPONENT BASED ELECTRONIC VOTING SYSTEMS 4

B. Origin, requirements and constraints posed by the slot

This set of properties describe the requirements on the
component which fits into the slot. As the requirements come
from the model, rather than being made up on the fly by the
developer of the component, it is possible to change between
two components.

C. Verification strategy

In our opinion the electronic voting system research com-
munity can no longer concern itself with systems that are not
fully verifiable. In fact, we should reserve the term “electronic
voting system” for something that is transparent and verifiable.
Thus the requirement on every single component of the com-
ponent based electronic voting system is that there exists some
verification strategy — again, in our opinion, a combination
of voter verifiability and public verifiability should be able to
cover all components.

This may be one of the most attractive aspects of the
component based methodology. By providing some overview
of the verifiability of each component the developer can show
that the full system is verifiable. By slotting one component
out and another in, the same verification strategy can still be in
place, reducing the work needed to compose a new component
for a particular slot.

As an example of this we can mention the anonymisation
strategy component in the computational layer. Let us say that
a decryption mix network makes up this strategy (using the
cryptography defined in the cryptography scheme component).
The verification strategy on this component is a variant of
zero knowledge proof. If a developer slots this anonymisation
strategy component out and replaces it with a re-encryption
mix network instead, the verification strategy remains the
same.

D. Location in the system (authority-close or voter-close)

A component has a particular position in the system as a
whole and this may be described by whether it is close to
the voter and controlled by her or if it is close to an election
authority and controlled by them.

One example of this might be the ballot form component
in different versions of Prêt à Voter. In Prêt à Voter 2005
[1] the ballot form is quite authority-close in that it is set up
by an election authority before the election and this authority
holds all information needed to decrypt the receipt. To combat
the chain voting attach [6] Prêt à Voter 2006 [7] introduces
re-encryption mixes whereby the creation of the decryption
information is distributed among a number of trusted parties.
The form is printed on demand by the voter in the booth and
can thus be regarded to be voter-close.

E. Threat analysis

Each component, just as it has a verification strategy, can
have a threat analysis attached to it. This analysis holds for
any component that is slotted into the same place. The output
of such a threat analysis is a number of requirements on the
component.

F. Computational complexity analysis

Seemingly more dependent on the particular component,
this property is part of the computational complexity analysis
of the complete system. By decomposing the system into
smaller parts this analysis also becomes much easier, aiding
the implementation onto hardware.

IV. EXAMPLES

In this section we apply this model to two already existing
schemes, in the first instance Punchscan [4], [2], [3] and in
the second Prêt à Voter [1], [5], [6], [7]. These simplistic
decompositions are included to illustrate that the model would
be applicable to schemes that already exist and that the further
development of those schemes could be done in a component
based methodology.

A. Punchscan decomposed

Punchscan relies heavily on a central election authority to
set up, manage and guarantee the safety, security and reliability
of the voting system. The anonymisation strategy can be
audited using a zero knowledge proof method.

A simple decomposition of Punchscan is shown in Table II.
A Punchscan developer can of course make the decomposition
much, much more detailed — at which point it becomes useful.
Perhaps such a decomposition of one of the current electronic
voting schemes is a suitable Master of Science project. When
the decomposition has been made of course the continued
development of the system is performed in the component
oriented methodology.

B. Changes to cryptography component in Prêt à Voter

In the original Prêt à Voter [1] the cryptography scheme
component is RSA, providing services to the anonymisation
strategy component, which consisted of a decryption mix
network. This system suffered from the authority knowledge
(or chain voting) problem [6] and thus the next version [7]
slotted in the RSA cryptography component and slotted in
an Elgamal cryptography component. This new component
was able to support a re-encryption mix network in the
anonymisation strategy component and this in turn meant the
the ballot form could be printed on demand in the booth,
affecting the ballot form component.

C. Using Punchscan style ballot form in Prêt à Voter

Quite interestingly we can show in this section that the
“traditional” Prêt à Voter [1] ballot form is completely inter-
changeable with the “traditional” Punchscan [3] ballot form.
The ballot form is thus a prime candidate for a component in
the electronic voting system decomposition.

The ballot form in Prêt à Voter, shown in Figure 2, has a
randomly ordered candidate list in the left of two columns.
The right column consists of a grid where the voter marks
her choice(s). Below this grid is printed the onion which
encapsulates the order of the candidate list under a number of
cryptographic layers. When the form is torn along a vertical
perforation between the two columns and the left column



D. LUNDIN: COMPONENT BASED ELECTRONIC VOTING SYSTEMS 5

Layer Component Punchscan
Human layer Voter registration The voter returns a form delivered to her house by local government. When

she is registered a polling card is delivered by post.
Ballot form configuration The ballot form is made up of two pages, the first has holes through which the

second can be seen. On the first page is printed the races and the candidates
in those races. Next to each candidate can be found a symbol which matches
a symbol on the second page, visible through one of the holes. To vote the
voter marks both pages using a bingo marker (“dauber”) over the second page
symbol which corresponds to the candidate she wishes to vote for.

Polling station layout and management When the voter enters the polling station her name is checked against the
register. She identifies herself using the polling card.

Verifiability front-end Voters can check their receipts on a web site as well as in the local media.
The audit of the full election can be viewed online or through media reports.

Election layer Election method The local representative is elected by first past the post and thus each voter
gives her vote to a single candidate.

Election management system Before election day the election authority which oversees the election calls
a meeting of election officials and representatives of the different political
parties. In this meeting the election is set up on a diskless workstation running
trusted, audited software. The output of this process is a database which is
kept secret by the election authority for the purpose of decrypting votes after
the election together with instructions to a print company which will print the
ballot forms.

Voter-ballot box communication channel The voter is allowed to fill out the ballot form in the privacy of a voting booth.
Before leaving the booth she is able to create the encrypted receipt, making
it hard for anyone to capture information from both layers of the ballot form.
The encrypted receipt is scanned (with the aid of poll station workers) and
transmitted electronically.

Computational layer Cryptography scheme Although no cryptography as such is used in Punchscan, the vote is hidden
behind a number of random translations that are in turn captured in a number
of interlinked decryption tables. There exists one translation for each of the
two pages in each decryption table (the translation may be “no translation”)
and a number of decryption tables may be linked together.

Anonymisation strategy The decryption tables are set up in advance such that when a ballot form
is made into an encrypted receipt, the application of all the translations for
that form in all decryption tables reveals the voter’s intention. In order to
anonymise a plaintext vote the full batch of encrypted receipts are secretly
mixed after the application of each decryption table. The decryption is audited
by making the authority commit to the decryption of a batch and then
challenge it to reveal a number (but not all) links between the input and
output batches. By not auditing all links the full link from an encrypted receipt
through to a plaintext vote is broken at some stage.

Tallying procedure The encrypted receipts are published to the web, the election authority applies
its decryption tables and anonymisation strategy and publishes the result of
each step. When the plaintext votes appear at the end the authority, and anyone
wishing to check the result, can perform the tally.

Physical layer Hardware authentication method Each polling station machine is issued a cryptographic key pair and an identity.
Publishing strategy All encrypted receipts received by the central repository are published, in

some predetermined batch mode, to a publicly accessible read-only online
resource.

Transfer method Communication between the polling station and the central repository is
encrypted using SSL.

TABLE II
LAYERS AND COMPONENTS IN PUNCHSCAN

shredded, the encrypted receipt remains. The onion value
uniquely identifies the ballot form.

The Punchscan ballot form consists of two pages, shown
in Figure 3, on the first of which is printed the candidate
list in the canonical order. Next to each candidate on this
page is also printed a symbol which corresponds to the same
symbol shown, through holes in the first page, on the second
page. The voter marks her choice using a bingo marker/dauber.
This makes a mark on both pages at the same time and when
one page is randomly selected and the other shredded, what
remains is an encrypted receipt. The ballot form serial number
printed in the top-right corner uniquely identifies the ballot
form.

In both schemes the encrypted receipt is scanned and
transmitted digitally. We can now describe both these forms

Fig. 2. The Prêt à Voter ballot form

with a component with the following configuration:

1) Layer and slot into which it fits: Human layer, Ballot
form configuration slot.



D. LUNDIN: COMPONENT BASED ELECTRONIC VOTING SYSTEMS 6

Fig. 3. The Punchscan ballot form

2) Origin, requirements and constraints posed by the slot:
The ballot form must list the candidates in the race for which it
is valid on one half of the form. The other half must accept the
voter’s intention. If the two halves are separated one remaining
half must not reveal the candidate(s) for which the vote was
cast but must be decryptable to reveal this information.

The form must be printed on paper, security paper is
permitted. It must be scannable and shreddable.

3) Verification strategy: A reference printed on the form
must uniquely identify it so that the voter may search for it in
an online resource after the close of the election. During the
election the voter may also use this reference to audit a form
which will not be used for voting.

4) Location in the system (authority-close or voter-close):
The ballot form is created in advance by an election authority,
distributed under guard to safeguard the secret of the form and
picked out at random by the voter.

5) Threat analysis: The ballot form must never be seen
by anyone other than the voter before one half is removed to
form the encrypted receipt as this may remove the system’s
coercion resistance [6]. The ballot form is therefore to be
distributed within an envelope that some physical procedure
must guarantee that only the voter may open within the booth.

6) Computational complexity analysis: Creating the ballot
form involves creating some decryption information, applying
it a number of times over and then printing the form.

V. DISCUSSION

This section provides a quick overview of some of the
caveats with the component based model that we have fore-
seen.

A. Impossible to have strict boundaries between components

Defining electronic voting schemes as component based
systems provides researchers with the opportunity to focus
development on a particular component or to compare two
different components that fit the same slot to determine which
is best. However, when the component based model is turned
into an implementation there may be complications. If an
implementation is made of one particular component based
model and one or more components are changed in the
model then cascading these changes to the implementation
may not be trivial. For example, the implementation of the
mixing strategy may be heavily dependent on the cryptography
scheme used and a change of the latter most likely results in
the change of code in the earlier.

B. Restrictions on the developer

Some may wish to make the developer of electronic voting
systems completely without bounds — but this also implies
that the developer will have no framework and the structure of
the system developed will not be easily decomposed by others
who wish to further the development. This in turn may seem
like an academic-only exercise — but we are academics.

C. Requirements must come from the model

A developer of a component may look at the technical con-
tribution of that component and make up the requirements of
the component from that. This is easy to do but then suddenly
the resulting system does not contain components that may be
re-used or changed easily. Therefore it is important that the
electronic voting system developer looks at the system as a
whole and fully defines the requirements on each component
before proceeding to create those components.

VI. SUMMARY

We have presented a first overview of a component based
methodology for developing electronic voting systems. By not
changing the complete system we hope that developers may be
encouraged to look in depth on a particular component or set
of components, providing a complete threat analysis as well
as verification strategy for each.

A. Acknowledgements

Many thanks to the WOTE reviewers for their comments
and to Zhe Xia for interesting conversations.

REFERENCES

[1] D. Chaum, P. Ryan, and S. Schneider. A practical voter-verifiable election
scheme. Proceedings of the tenth European Symposium on Research in
Computer Science (ESORICS’05), pages 118–139, 2005. LNCS 3679.

[2] K. Fisher, R. Carback, and T. Sherman. Punchscan: Introduction
and system definition of a high-integrity election system. In PRE-
PROCEEDINGS, pages 19 – 29. IAVoSS Workshop On Trustworthy
Elections, 2006.

[3] S. Popoveniuc and B. Hosp. An introduction to punchscan. In PRE-
PROCEEDINGS, pages 27 – 34. IAVoSS Workshop On Trustworthy
Elections, 2006.

[4] Punchscan. Punchscan website. http://www.punchscan.org.
[5] P. Ryan. A variant of the chaum voter-verifiable scheme. Proceedings

of the 2005 Workshop on Issues in the Theory of Security, pages 81–88,
2005.

[6] P. Ryan and T. Peacock. Prêt à voter: a system perspective. Technical
Report of University of Newcastle, CS-TR:929, 2005.

[7] P. Ryan and S. Schneider. Prêt à voter with re-encryption mixes.
Proceedings of ESORICS, 2006. LNCS.


