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Abstract

Stochastic optimization problems provide a means to model uncertainty in the input data where the
uncertainty is modeled by a probability distribution over the possible realizations of the actual data. We
consider a broad class of these problems in which the realized input is revealed through a series of stages,
and hence are calledmulti-stage stochastic programming problems. Multi-stage stochastic programming
and in particular, multi-stage stochastic linear programs with full recourse, is a domain that has received
a great deal of attention within the Operations Research community, but mostly from the perspective of
computational results in application settings.

Our main result is to give the first fully polynomial approximation scheme for a broad class of multi-
stage stochastic linear programming problems with any constant number of stages. The algorithm ana-
lyzed, known as the Sample Average Approximation (SAA) method, is quite simple, and is the one most
commonly used in practice. The algorithm accesses the input by means of a “black box” that can gener-
ate, given a series of outcomes for the initial stages, a sample of the input according to the conditional
probability distribution (given those outcomes). We use this to obtain the first approximation algorithms
for a variety ofk-stage generalizations of basic combinatorial optimization problems including the set
cover, vertex cover, multicut on trees, facility location, and multicommodity flow problems.

1 Introduction

Stochastic optimization problems provide a means to model uncertainty in the input data where the uncer-
tainty is modeled by a probability distribution over the possible realizations of the actual data. We shall
consider a broad class of these problems in which the realized input is revealed through a series of stages,
and hence are calledmulti-stage stochastic programming problems. Multi-stage stochastic linear program-
ming is an area that has received a great deal of attention within the Operations Research community, both in
terms of the asymptotic convergence results, as well as computational work in a wide variety of application
domains. For example, a classic example of such a model seeks to minimize the expected cost of operating
a water reservoir where one can decide, in each time period, the amount of irrigation water to be sold while
maintaining the level of the reservoir within a specified range (where penalties are incurred for violating this
constraint). The source of uncertainty is, of course, the variability in rainfall, and there is a simulation model
that provides a means to sample from the distribution of inputs (of rainfall amounts per time period within
the planning horizon) [3]. Observe that it is important to model this as a multi-stage process, rather than as a
2-stage one, since it allows us to capture essential conditional information, such as given a drought over the
previous period, the next period is more likely to continue these conditions. Furthermore, within multi-stage
stochastic linear programming, most work has focused on applications in which there are a small number
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of stages, including forest planning models electricity investment planning, bond investment planning, and
currency options selection, as discussed in the recent survey of Ariyawansa and Felt [1].

Our main result is to give the first fully polynomial randomized approximation scheme (FPRAS) for
a broad class of multi-stage stochastic linear programming problems with any constant number of stages.
Although our results are much more general, we shall focus on a canonical example of the class of problems,
a 3-stage stochastic variant of the fractional set covering problem. We are given a family of sets over a
ground set and a probability distribution over the subsets that specifies a target set of ground elements that
must be covered. We can view the three stages as specified by a scenario tree with 3 levels of nodes: the
root, internal nodes, and leaves; the root corresponds to the initial state, each leaf is labeled with a target
subset of elements that must be covered, and for each node in the tree there is a conditional distribution of
the target sets at leaves within this subtree (where we condition on the fact that we have reached that node).
One can buy (fractionally) sets at any node paying a cost that depends both on the set and the node at which
it is bought. We want to be able to compute, given a node in the tree, the desired action, so as to minimize
the expected total cost of fractionally covering the realized target set. This problem can be modeled as an
exponentially large linear program (LP) in which there is, for each setS and each node in the tree, a variable
that indicates the fraction ofS that is bought at that node. It is easy to imagine the constraints: for each leaf,
for each ground elemente in its corresponding target set, the total fraction bought of setsS that containe
along this root-leaf path must be at least 1. If we view the probability of reaching a node as specified, it
is straightforward to express the expected total cost as a linear function of these decision variables. As a
corollary of this result, we also give the first approximation algorithms for the analogous class of multi-stage
stochastic integer programming problems, such as the integer version of this set covering problem.

For a rich class ofk-stage stochastic linear programming problems, wherek is assumed to be constant
and not part of the input, we show that, for anyε > 0, we can compute, with high probability, a solution
with expected cost guaranteed, for any probability distribution over inputs, to be within a(1 + ε) factor of
the optimal expected cost, in time bounded by a polynomial in the input size,1

ε , and a parameterλ that is an
upper bound on the ratio between the cost of the same action (e.g., buying the setS) over successive stages.
The algorithm accesses the input by means of a “black-box” (simulation) procedure that can generate, for
any node in the scenario tree, a sample of the input according to the conditional distribution for this node.
This is an extremely general model of the distribution, since it allows all types of correlated effects within
different parts of the input. We improve upon our earlier work [14], which handles the very special case in
whichk = 2, not only by being able to handleany fixed number of stages, but whereas the earlier algorithm
is based on the ellipsoid method, we can now show that the algorithm most commonly used in practice, the
sample average approximationmethod (SAA), also yields the claimed approximation scheme.

The algorithm of Shmoys & Swamy[14] for 2-stage problems is based on computing an approximate
subgradient with respect to a compact convex programming formulation, and this is done by estimating
each component of the subgradient sufficiently accurately, and then applying the ellipsoid method using
these approximate subgradients. In the sample average approximation method, we merely sample scenarios
a given (polynomial) number of timesN , and by computing the frequencies of occurrence in these samples,
we derive a new LP that is a polynomial-sized approximation to the original exponential-sized LP, and the
solve this compact LP explicitly. We first argue that using (approximate) subgradients one can establish a
notion of closeness between two functions (e.g., the objective functions of the “true” LP and the SAA LP), so
that if two functions are “close” in terms of their subgradients, then minimizing one function is equivalent
to approximately minimizing the other. Next, we show that with a polynomially bounded sample size,
the objective functions of the “true” problem and the sample-average problem satisfy this “closeness-in-
subgradients” property with high probability, and therefore minimizing the sample-average problem yields
a near-optimal solution to the true problem; thus we prove the polynomial-time convergence of the SAA
method. Our proof does not rely on anything specific to discrete probability distributions, and therefore
extends to the case of continuous distributions.
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Compare now the 3-stage and 2-stage problems. In the 2-stage fractional set-covering problem, the
compact convex program has variables corresponding only to the decisions made at the root to (fractionally)
buy sets. Each component of the subgradient at the current point can be estimated by sampling a leaf from
the scenario tree and using the optimal dual solution for the linear program that minimizes the cost to cover
each element in this leaf’s target set to the extent it is not already covered by the root variables. In the
3-stage version, a2-stage stochastic LPplays the analogous role of the linear program and we need to
obtain a near-optimal dual solution for this exponentially large mathematical program to show the closeness
property. Moreover, one difficulty that is not encountered in the 2-stage case, is that now this2-stage
recourse LP is different in the sample average and the “true” problems, since the conditional distribution
of scenarios given a second-stage outcome is onlyapproximatedin the sample average problem. Thus to
show the closeness property one has to argue that solving the dual of the sample average 2-stage recourse
LP yields a near-optimal solution to the “true” 2-stage recourse LP. We introduce a novelcompact non-
linear formulation of this dual, for which we can prove such a statement for the duals, and thereby obtain
the “closeness-in-subgradients” property for the 3-stage problem. In fact, this formulation yields a new
means to provide lower bounds on 2-stage stochastic LPs, which might be of interest in its own right. The
analogous idea can be applied inductively to obtain the FPRAS for any fixed number of stages. We believe
that our proof is of independent interest and that our approach of using subgradients will find applications
in proving convergence results in other stochastic models as well.

Due to its simplicity and its use in practice, the SAA method has been studied extensively in the stochas-
tic programming literature. Although it has been shown that the SAA method produces solutions that con-
verge to the optimal solution as the number of samplesN gets sufficiently large (see, e.g., [12] and its
references), no results were known that bound the number of samples needed to obtain a(1 + ε)-optimal
solution by a polynomial in the input size,1

ε andλ. Prior to our work, for 2-stage stochastic optimization,
convergence rate results that bound the sample size required by the SAA method were proved in [10]. But
the bound proved in [10] depends on the variance of a certain quantity that need not depend polynomially on
the input size orλ. Recently, Nemirovskii and Shapiro (personal communication) showed that for 2-stage
set-cover with non-scenario-dependent second-stage costs, the bound of [10] is a polynomial bound, pro-
vided that one applies the SAA method after some preprocessing to eliminate certain first-stage decisions.

For multi-stage problems with arbitrary distributions, to the best of our knowledge, there are no results
known about the rate of convergence of the sample average approximation to the true optimal solution (with
high probability). In fact, we are not aware of any work (even outside of the sample average approach) that
provesanyworst-case bounds on the sample size required for solving multi-stage stochastic linear programs
with arbitrary distributions in the black-box model. Very recently, Shapiro [13] proved bounds on the sample
size required in the SAA method for multi-stage problems, under the strong assumption thatthe distributions
in the different stages are independent. In particular, this implies that the distribution of the outcomes in any
stagei, and hence of the scenarios in stagek, does not depend on the outcomes in the previous stages, which
fails to capture the notion of learning new information about the uncertainty as one proceeds through the
stages. Moreover, as in the 2-stage case, the bounds in [13] are not polynomial in the input size orλ, even
when the number of stages is fixed. It is important to note that we prove that an optimal solution to the SAA
LP is a near-optimal solution to true LP, not that the optimal value of the SAA LP is a good approximation
to the true optimal value. Indeed, one interesting question is to show, for any class of stochastic integer and
linear programming problems, if one could obtain an approximation algorithm to the case in which there are
only a polynomial number of scenarios, then one can also obtain an approximation algorithm for the general
case. Subsequent to the dissemination of an early version of our work [16], Charikar, Chekuri and Pál [4]
have obtained such a result for 2-stage problems.

There has been a series of recent papers on approximation algorithms for 2-stage stochastic integer
programming problems. Most of this work has focused on more restricted mechanisms for specifying the
distribution of inputs [5, 11, 9]; Gupta, Pál, Ravi, and Sinha [6] were the first to consider the “black-box”
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model, and gave approximation algorithms for various 2-stage problems, but with the restriction that the
second-stage costs be proportional to the first-stage costs. Shmoys and Swamy [14] showed that one could
derive approximation algorithms for most of the stochastic integer programming problems considered in
[5, 11, 9, 6] by adopting a natural LP rounding approach that, in effect, converted an LP-based approxi-
mation guarantee for the deterministic analogue to a guarantee for the stochastic generalization (where the
performance guarantee degraded by a factor of 2 in the process).

An immediate consequence of our approximation scheme for multi-stage stochastic linear programs
is that we obtain approximation algorithms for several natural multi-stage stochastic integer programming
problems, by extending the rounding approach of [14]. The only other work on multi-stage problems in the
black-box model is due to Hayrapetyan, Swamy, and Tardos [8], and Gupta et al. [7] (done concurrently
with this work). Both presentO(k)-approximation algorithms for ak-stage version of the Steiner tree
problem under some restrictions on the costs; the latter also gives algorithms for thek-stage versions of the
vertex cover and facility location problems under the same cost restrictions, but their approximation ratio is
exponentialin k. In contrast, in the black-box model without any cost restrictions, we obtain performance
guarantees ofk log n for k-stage set cover,2k for k-stage vertex cover andk-stage multicut on trees, and
1.71(k − 1) + 1.52 for thek-stage version of the facility location problem. (It is interesting to note that the
textbook [3] gives an example of an application that is formulated as a 3-stage facility location problem.)
Finally, we obtain a FPRAS for ak-stage multicommodity flow problem as a direct consequence of our
stochastic linear programming result.

2 Preliminaries

We first state some basic definitions and facts that we will frequently use. Let‖u‖ denote thè2 norm ofu.
We say that a functiong : Rm 7→ R, hasLipschitz constant(at most)K if |g(v) − g(u)| ≤ K‖v − u‖ for
all u, v ∈ Rm.

Definition 2.1 Let g : Rm 7→ R be a function. We say thatd is a subgradient ofg at the pointu if the
inequalityg(v)− g(u) ≥ d · (v − u) holds for everyv ∈ Rm. We say that̂d is an(ω, ∆,D)-subgradient of
g at the pointu ∈ D if for everyv ∈ D, we haveg(v)− g(u) ≥ d̂ · (v − u)− ωg(u)− ωg(v)−∆.

The above definition of an(ω, ∆,D)-subgradient is slightly weaker than the notion of an(ω,D)-
subgradient as defined in [14] where one requiresg(v) − g(u) ≥ d̂ · (v − u) − ωg(u). This distinction
is however superficial; one could also implement the algorithm in [14] using the notion of an approximate
subgradient given by Definition 2.1.

We will consider convex minimization problemsminx∈P g(x) whereP ⊆ Rm
≥0 is a polytope andg(.)

is convex. It is well known (see [2]) that a convex function has a subgradient at every point. The following
claim will be useful in bounding the Lipschitz constant of the functions encountered.

Claim 2.2 Let d(x) denote a subgradient of a functiong : Rm 7→ R at pointx. Suppose‖d(x)‖ ≤ K for
everyx. Theng(.) has Lipschitz constant (at most)K.

Proof : Consider any two pointsu, v ∈ Rm and letd, d′ denote the subgradients atu, v respectively, with
‖d‖, ‖d′‖ ≤ K, then we haveg(v) − g(u) ≥ d · (v − u) ≥ −‖d‖ ‖v − u‖ ≥ −K‖v − u‖, and similarly
g(u)− g(v) ≥ −‖d′‖ ‖u− v‖ ≥ −K‖u− v‖.

We will also encounter concave maximization problemsmaxx∈P g(x), whereg(.) is concave. Anal-
ogous to the definition of a subgradient, we define amax-subgradient and an approximate version of a
max-subgradient.
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Definition 2.3 We say thatd is amax-subgradient of a functiong : Rm 7→ R at u ∈ Rm if for every point
v ∈ Rm, we haveg(v) − g(u) ≤ d · (v − u). We say that̂d is an (ω, ∆,D)- max-subgradient ofg(.) at
u ∈ D if for everyv ∈ D we haveg(v)− g(u) ≤ d̂ · (v − u) + ωg(u) + ∆.

WhenD is clear from the context, we abbreviate(ω, ∆,D)-subgradient and(ω, ∆,D)- max-subgradient
to (ω, ∆)-subgradient and(ω, ∆)- max-subgradient respectively. If∆ = 0, we will use(ω,D)-subgradient
and (ω,D)- max-subgradient, instead of(ω, ∆,D)-subgradient and(ω, ∆,D)- max-subgradient respec-
tively. We will frequently use(ω, ∆,P)-subgradients which we abbreviate and denote as(ω, ∆)-subgradients
from now on. We will need the following sampling lemma which is proved using simple Chernoff bounds.

Lemma 2.4 Let Xi, i = 1, . . . ,N = 4(1+α)2

c2
ln

(
2
δ

)
be iid random variables where eachXi ∈ [−a, b],

a, b > 0, α = max(1, a/b), andc is an arbitrary positive number. LetX =
(∑

i Xi

)
/N andµ = E

[
X

]
=

E
[
Xi

]
. ThenPr

[
X ∈ [µ− cb, µ + cb]

]
≥ 1− δ.

Proof : Let Yi = Xi +a ∈ [0, a+b] andY =
∑

i Yi. Letµ′ = E
[
Yi

]
= µ+a. We havePr[X > µ+cb] =

Pr[Y > E
[
Y

]
(1 + cb/µ′)], andPr[X < µ − cb] = Pr[Y < E

[
Y

]
(1 − cb/µ′)]. Let ν = cb/µ′. Note that

µ′ ≤ a + b. Since the variablesYi are independent we can use Chernoff bounds here. The latter probability,

Pr[Y < E
[
Y

]
(1 − ν)], is at moste−

ν2sµ′
2(a+b) = e

− (cb)2s

2µ′(a+b) ≤ δ
2 . To boundPr[Y > E

[
Y

]
(1 + ν)] we

consider two cases. Ifν > 2e− 1, then this quantity is at most2−
(1+ν)sµ′

a+b which is bounded by2−
νsµ′
a+b ≤ δ

2 .

If ν ≤ 2e − 1, then the probability is at moste−
ν2sµ′
4(a+b) = e

− (cb)2s

4µ′(a+b) ≤ δ
2 . So using the union bound,

Pr
[
X /∈ [µ− cb, µ + cb]

]
≤ δ.

3 The Sample Average Approximation method

Suppose that we have a black box that can generate, for any sequence of outcomes for the initial stages,
independent samples from the conditional distribution of scenarios given those initial outcomes. A natural
approach to computing near-optimal solutions for these problems given such sampling access is the sample
average approximation (SAA) approach: sample someN times from the distribution on scenarios, estimate
the actual distribution by the distribution induced by the samples, and solve the multi-stage problem specified
by the approximate distribution. For 2-stage programs, we just estimate the probability of scenarioA by
its frequency in the sampled set; fork-stage programs we construct an approximatek-level distribution tree
by sampling repeatedly for each level: we sampleT2 times to obtain some stage 2 outcomes, for each such
outcome we sampleT3 times from the conditional distribution given that outcome to generate some stage
3 outcomes and so on, and for each sampled outcome we estimate its conditional probability of occurrence
given the previous-stage outcome by its frequency in the sampled set. The multi-stage problem specified by
the approximate distribution is called thesample average problem, and its objective function is called the
sample average function.

If the total number of samplesN is polynomially bounded, then since the approximate distribution has
support of size at mostN , the sample average problem can be solved efficiently by solving a polynomial
size linear program. The issue here is the sample sizeN required to guarantee thatevery optimal solution
to the sample-average problem is a near-optimal solution to the original problemwith high probability.
We show that for any givenk (which is not part of the input), for a large class ofk-stage stochastic linear
programs we can boundN by a polynomial in the input size, the inverse of the desired accuracy, and the
maximumratio λ between the cost of an action in successive stages.

Intuitively, to prove such a theorem, we need to show that the sample-average function is a close ap-
proximation to the true function in some sense. One obvious approach would be to argue that, with high
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probability, the values of the sample average function and the true function are close to each other, at a suffi-
ciently dense set of points. This however immediately runs into problems since the variance in the scenario
costs could be quite (exponentially) large, so that one cannot hope to estimate the true function value, which
gives the expected scenario cost, to within a reasonable accuracy with a small (polynomial) number of sam-
ples. Essentially, the problem is that there could be extremely low-probability outcomes which contribute
significantly towards the cost in the true problem, but will almost never be sampled with only a polynomial
number of samples, and so they contribute nothing in the sample average function. Hence one cannot hope
to estimate the true expected cost within a reasonable accuracy using polynomially many samples. The key
insight is that suchrare outcomes do not much influence the optimal first-stage decisions, since one would
defer decisions for such outcomes till later. The minimizer of a convex function is determined by its “slope”
(i.e., its gradient or subgradient), which suggests that perhaps we should compare the slopes of the sample-
average and the true objective functions and show that they are close to each other, and argue that this is
sufficient to prove the near-equivalence of the corresponding minimization problems.

Our proof builds upon this intuition. For a non-differentiable function, asubgradientprovides the ana-
logue of a gradient, and is a measure of the “slope” of the function. We identify a notion of closeness
between any two functions based on their subgradients so that if two functions are close under this criterion,
then minimizing one is approximately equivalent to minimizing the other. Next, we show that the objective
functions of the original multi-stage problem, and the sample average problem with polynomially bounded
sample size, satisfy this “closeness-in-subgradients” property, and thus we obtain the desired result.

Proof details The proof is organized as follows. First, in Section 4 we show that closeness of subgradients
is sufficient to prove the near-equivalence of the corresponding minimization (or maximization) problems.
In Lemma 4.1 we show that given two functionsg, ĝ : Rm 7→ R that agree in terms of their (approximate)
subgradients at points in a polytopeP (we make this precise later),everyoptimal solution tominx∈P ĝ(x)
is a near-optimal solutionminx∈P g(x). Some intuition about why this closeness-in-subgradient property
is sufficient can be obtained by considering the ellipsoid-based algorithm for convex minimization given
in [14]. This algorithm makes use of only (approximate) subgradient information about the convex function
to be minimized, using at each feasible point, a subgradient or anω-subgradient of the function to derive
a cut passing through the center of the current ellipsoid and make progress. Suppose at every pointx ∈
P, there is a vector̂dx that is both a subgradient of̂g(.) and anω-subgradient ofg(.). One can then
use d̂x to generate the cut atx, and thus cause the ellipsoid-based algorithm to runidentically on both
minx∈P g(x) andminx∈P ĝ(x) and return a point that issimultaneouslynear-optimal for both objective
functions. Lemma 4.1 makes this intuition precise while weakening the assumption and strengthening the
conclusion: we only require that at every pointx in a sufficiently dense finite setG ⊆ P there be a vector
d̂x that is both both a subgradient ofĝ(.) and anω-subgradient ofg(.), and we prove thateveryoptimal
solution tominx∈P ĝ(x) is a near-optimal solution tominx∈P g(x). Lemma 4.3 proves an analogous result
for concave maximization problems using the concept ofmax-subgradients.

The second part of the proof, where we show that the objective functions of the true multi-stage problem
and the sample average problem (with polynomially many samples) satisfy this closeness-in-subgradient
property, is divided into three parts. For the class of 2-stage linear programs considered in [14], this is easy
to show because in both the sample average problem and the true problem, a subgradient at any point is
computed by taking the expectation, according to the respective scenario distribution, of a quantity derived
from the optimal solutions to the dual of the recourse LP (i.e., the LP that determines the recourse cost for a
scenario), and this recourse LP is the same in both the sample average and the true problems. Thus, since the
components of the subgradient vector have bounded variance [14], and the samples in the sample average
problem are drawn from the original distribution, it is easy to show the closeness-in-subgradients property.

For thek-stage problem however, one needs to develop several substantial new ideas to show this close-
ness property, even whenk = 3. We introduce these ideas in Section 6 by focusing on 3-stage problems, and
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in particular, on the LP relaxation of 3-stage set cover as an illustrative example. We then generalize these
ideas to prove an SAA theorem for a large class of 3-stage linear programs, and in Section 7 inductively
apply the arguments to a broad class ofk-stage problems. The main difficulty, and the essential difference
from the 2-stage case, is that now the recourse problem for each second-stage outcome is a 2-stage stochas-
tic LP whose underlying distribution is only approximated in the sample average problem. Sothe sample
average problem and the true problem solve different recourse problems for each stage 2 outcome. Like
in the 2-stage case, a (approximate) subgradient is obtained form the (approximately) optimal solutions to
the dual of the 2-stage recourse LP for each scenario, therefore to show closeness in subgradients we need
to argue that maximizing the sample average dual yields a near-optimal solution to the true dual, that is,
prove an SAA theorem for thedual of a 2-stage stochastic primal program! Mimicking the approach for
the primal problem, we could try to prove this by showing that the two dual objective functions are close
in terms of theirmax-subgradients. However, simply considering the (standard) LP dual of the 2-stage
primal recourse LP does not work; amax-subgradient of the linear dual objective function is just the con-
stant vector specifying the conditional probabilities of the stage 3 scenarios given the outcome in stage 2,
and as we argued earlier one cannot hope to estimate the true conditional distribution using only a polyno-
mial number of samples (because of rare scenarios that will almost never be sampled). To circumvent this
problem, we introduce a novelcompact, non-linearformulation of the dual, which turns the dual problem
into a concave maximization problem with a 2-stage primal LP embedded inside it. Amax-subgradient of
this new dual objective function can be computed by solving this 2-stage primal stochastic LP. We now use
the earlier SAA theorem for 2-stage programs to show that, any optimal solution to the 2-stage LP in the
sample-average dual, is a near-optimal solution to the 2-stage LP in the true dual. This shows that the two
dual objective functions (in this new representation) are close in terms of theirmax-subgradients, thereby
proving that an optimal solution to the sample average dual optimal solution is a near-optimal solution to
the true dual. This in turn establishes the closeness in subgradients of the objective functions of the 3-stage
sample average problem and the true 3-stage problem and yields the SAA theorem.

It is useful to view the entire argument from a broader perspective. The ellipsoid-based algorithm
of Shmoys and Swamy shows that one can minimize convex functions by only using only approximate
subgradient information about the function. For a given class of convex functions, if one can compute these
approximate subgradients by some uniform procedure, then one might be able to interpret these vectors as
exactsubgradients of another “nice” function, that is, in some sense, “fit” a nice function to these vectors, and
thereby argue that minimizing this nice function is sufficient to yield a near-optimal solution to the original
problem. For our class of multi-stage problems, we essentially argue thatω-subgradients can be computed
efficiently by sampling and averaging, and therefore it turns out that this “nice” function is precisely the
sample average objective function.

4 Sufficiency of closeness in subgradients

Let g : Rm 7→ R andĝ : Rm 7→ R be two functions with Lipschitz constant (at most)K. LetP ⊆ Rm
≥0 be

the bounded feasible region andR be a radius such thatP is contained in the ballB(000, R) = {x : ‖x‖ ≤ R}.
Let ε, γ > 0 be two parameters withγ ≤ 1. SetN = log

(
2KR

ε

)
andω = γ

8N . Let G′ = {x ∈ P : xi =
ni ·

(
ε

KN
√

m

)
, ni ∈ Z for all i = 1, . . . ,m} SetG = G′ ∪

{
x + t(y − x), y + t(x − y) : x, y ∈ G′, t =

2−i, i = 1, . . . , N
}

. We callG′ andG respectively, the ε
KN

√
m

-grid, and theextended ε
KN

√
m

-grid of the

polytopeP. Note that for everyx ∈ P, there existsx′ ∈ G′ such that‖x− x′‖ ≤ ε
KN . Fix ∆ > 0. We first

consider minimization problems. We say that functionsg andĝ satisfy property (A) if

∀x ∈ G, ∃d̂x ∈ Rm : d̂x is a subgradient of̂g(.), and, an(ω, ∆)-subgradient ofg(.) atx. (A)

7



Lemma 4.1 Supposeg andĝ are functions satisfying property(A). Letx∗, x̂ ∈ P be points that respectively
minimizeg(.) and ĝ(.) overP, and supposeg(x∗) ≥ 0. Then,g(x̂) ≤ (1 + γ)g(x∗) + 6ε + 2N∆.

Proof : For ease of understanding, consider first the case whenx̂ ∈ G′. We will argue that there is a point
x nearx̂ such thatg(x) is close tog(x∗), and from this it will follow thatg(x̂) is close tog(x∗). Let x̃ be the
point inG′ closest tox∗, so‖x̃−x∗‖ ≤ ε

KN and thereforeg(x̃) ≤ g(x∗)+ε. Lety = x̂
(
1− 1

2N

)
+

(
1

2N

)
x̃ ∈

G and consider the vector̂dy given by property (A). It must be that̂dy ·(x̂−y) = −d̂y ·(x̃−y) ≤ 0, otherwise
we would havêg(x̂) > ĝ(y) contradicting the optimality of̂x. So, by the definition of an(ω, ∆)-subgradient,
we haveg(y) ≤ (1+ω)g(x̃)+∆

1−ω ≤ (1 + 4ω)(g(x̃) + ∆) ≤ (1 + γ)g(x∗) + 2ε + 2∆ sinceω = γ
8N ≤ 1

4 . Also

‖x̂− y‖ = ‖x̂−x̃‖
2N ≤ ε

K since‖x̂− x̃‖ ≤ 2R. So,g(x̂) ≤ g(y) + ε ≤ (1 + γ)g(x∗) + 3ε + 2∆.
Now supposêx /∈ G′. Let x̄ be the point inG′ closest tôx, so‖x̄ − x̂‖ ≤ ε

KN andĝ(x̄) ≤ ĝ(x̂) + ε
N .

For anyy ∈ G, if we considerd̂y given by property (A), it need not be that̂dy · (x̄ − y) ≤ 0, so we
have to argue a little differently. Note that howeverd̂y · (x̄ − y) ≤ ε

N , otherwise we would havêg(x̂) ≥
ĝ(x̄) − ε

N > ĝ(y). Let y0 = x̃, andyi = (x̄ + yi−1)/2 for i = 1, . . . , N . Since eachyi ∈ G, we

have d̂yi · (yi−1 − yi) = −d̂yi · (x̄ − yi) ≥ − ε
N , and becausêdyi is an (ω, ∆)-subgradient ofg(.) at

yi, g(yi) ≤ (1 + 4ω)(g(yi−1) + ε
N + ∆). This implies thatg(yN ) ≤ (1 + 4ω)N (g(x̃) + ε + N∆) ≤

(1 + γ)g(x∗) + 4ε + 2N∆. Sog(x̂) ≤ g(yN ) + 2ε ≤ (1 + γ)g(x∗) + 6ε + 2N∆.

Corollary 4.2 Let functionsg, ĝ and pointsx∗, x̂ ∈ P be as in Lemma 4.1. Letx′ ∈ P be such that
ĝ(x′) ≤ ĝ(x̂) + ρ. Then,g(x̂) ≤ (1 + γ)g(x∗) + 6ε + 2N∆ + 2Nρ.

Proof : Let x̄ andx̃ be the points inG′ that are closest tôx andx∗ respectively. So‖x̄− x̂‖ ≤ ε
KN which

implies that̂g(x̄) ≤ ĝ(x̂) + ε
N and similarlyg(x̃) ≤ g(x∗) + ε. For anyy ∈ G, if we consider the vector̂dy

given by property (A) then̂dy · (x̄− y) ≤ ε
N + ρ, otherwise we get a contradiction. The rest of the proof is

as in Lemma 4.1.

We prove an analogous statement for maximization problems. Recall the definition of an exact and
approximatemax-subgradient (Definition 2.3). We say thatg andĝ satisfy property (B) if

∀x ∈ G, ∃d̂x ∈ Rm : d̂x is amax-subgradient of̂g(.), and, an(ω, ∆)- max-subgradient ofg(.) atx. (B)

Lemma 4.3 Suppose functionsg and ĝ satisfy property(B). Letx∗ and x̂ be points inP that respectively
maximize functionsg(.) and ĝ(.), and supposeg(x∗) ≥ 0. Then,g(x̂) ≥ (1− γ)g(x∗)− 4ε−N∆.

Proof : The proof closely follows the proof of Lemma 4.1. Again first suppose thatx̂ ∈ G′. Let x̃ be the
point inG′ closest tox∗, sog(x̃) ≥ g(x∗)− ε. Lety = x̂

(
1− 1

2N

)
+

(
1

2N

)
x̃ ∈ G and consider the vector̂dy

given by property (B). It must be that̂dy ·(x̂−y) = −d̂y ·(x̃−y) ≥ 0, otherwise we would havêg(x̂) < ĝ(y).
Sinced̂y is an(ω, ∆)- max-subgradient ofg(.) aty, we haveg(y) ≥ g(x̃)−∆

1+ω ≥ (1− γ)g(x∗)− ε−∆ and
since‖x̂− y‖ ≤ ε

K , we get thatg(x̂) ≥ (1− γ)g(x∗)− 2ε−∆.
Supposêx /∈ G′. Let x̄ be the point inG′ closest tôx, so ĝ(x̄) ≥ ĝ(x̂) − ε

N . At anyy ∈ G, the vector

d̂y given by property (B), must satisfŷdy · (x̄ − y) ≥ − ε
N , otherwise we contradict the optimality of̂x.

Let y0 = x̃, andyi = (x̄ + yi−1)/2 for i = 1, . . . , N . Since eachyi ∈ G, we haved̂yi · (yi−1 − yi) =
−d̂yi · (x̄ − yi) ≤ ε

N , and becausêdyi is an(ω, ∆)- max-subgradient ofg(.) at yi, g(yi) ≥ g(yi−1)/(1 +
ω)−

(
ε
N +∆

)
/(1+ω). This implies thatg(yN ) ≥ g(x̃)/(1+ω)N − (ε+N∆) ≥ (1−γ)g(x∗)−2ε−N∆

Sog(x̂) ≥ g(yN )− 2ε ≥ (1− γ)g(x∗)− 4ε−N∆.

As in Corollary 4.2, we can show that an approximate maximizer ofĝ is also an approximate maximizer
of g, but we will not need this in the sequel.
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Lemma 4.4 LetG′ be theε-grid ofP andG be the corresponding extended grid. Then|G′| ≤
(

2R
ε

)m
and

|G| ≤ N |G′|2.

Proof : It is clear that|G| ≤ |G′| + 2N
(|G′|

2

)
≤ N |G′|2. Each grid cell ofG′ contains a ball of radius

r = ε
2 and therefore has volume at leastrmVm whereVm is the volume of the unit ball inm dimensions.

The grid cells are pairwise disjoint (volume-wise), and have total volume at mostvol
(
B(000, R)

)
≤ RmVm

sinceP ⊆ B(000, R). So|G′| ≤
(

2R
ε

)m
.

5 The SAA bound for 2-stage stochastic programs

We now prove a polynomial bound on the number of samples required by the SAA method to solve to
near-optimality the class of 2-stage stochastic programs considered in [14]1.

min h(x) = wI · x +
∑
A∈A

pAfA(x) subject to x ∈ P ⊆ Rm
≥0, (2Gen-P)

where fA(x) = min
{

wA · rA + qA · sA : rA ∈ Rm
≥0, sA ∈ Rn

≥0 DAsA + TArA ≥ jA − TAx
}

.

Here we assume that (a)TA ≥ 000 for every scenarioA, and (b) for everyx ∈ P,
∑

A∈A pAfA(x) ≥ 0
and the primal and dual problems corresponding tofA(x) are feasible for every scenarioA. It is assumed
thatP ⊆ B(000, R) wherelnR is polynomially bounded. To prevent an exponential blowup in the input,
we consider an oracle model where an oracle supplied with scenarioA reveals the scenario-dependent data

(wA, qA, jA, DA, TA). Defineλ = max
(
1,maxA∈A,S

wA
S

wI
S

)
; we assume thatλ is known. LetOPT be the

optimum value,I denote the input size.
The sample average function isĥ(x) = wI · x +

∑
A∈A p̂AfA(x) wherep̂A = NA/N , with N being

the total number of samples andNA being the number of times scenarioA is sampled. The sample average
problem isminx∈P ĥ(x). We show that with a polynomially boundedN , h(.) andĥ(.) satisfy property (A)
(closeness in subgradients) with high probability.

Lemma 5.1 ([14]) Let d be a subgradient ofh(.) at the pointx ∈ P, and suppose that̂d is a vector such
that d̂S ∈ [dS − ωwI

S , dS + ωwI
S ] for all S. Thend̂ is anω-subgradient (i.e., an(ω, 0)-subgradient) ofh(.)

at x.

It is shown in [14] that at any pointx ∈ P, if (z∗A) is an optimal solution to the dual offA(x), then
(i) dx = wI −

∑
A pA(TA)Tz∗A is a subgradient ofh(.); (ii) for any componentS and any scenarioA,

componentS of the vectorwI − (TA)Tz∗A lies in [−λwI
S , wI

S ]; and therefore (iii)‖dx‖ ≤ λ‖wI‖. The
sample average function̂h(.) is of the same form ash(.), only with a different distribution, sôdx = wI −∑

A p̂A(TA)Tz∗A is a subgradient of̂h(.) atx, and‖d̂x‖ ≤ λ‖wI‖. So (by Claim 2.2) the Lipschitz constant
of h, ĥ is at mostK = λ‖wI‖. Observe that̂dx is justwI − (TA)Tz∗A averaged over the random scenarios
sampled to construct̂h(.), andE

[
d̂x

]
= dx where the expectation is over these random samples.

Theorem 5.2 For anyε, γ > 0 (γ ≤ 1), with probability at least1−δ, any optimal solution̂x to the sample
average problem constructed withpoly

(
I, λ, 1

γ , ln(1
ε ), ln(1

δ )
)

samples satisfiesh(x̂) ≤ (1+γ) ·OPT +6ε.

Proof : We only need show that property (A) holds with probability1 − δ with the stated sample size;
the rest follows from Lemma 4.1. DefineN = log

(
2KR

ε

)
, ω = γ

8N and the extended ε
KN

√
m

-grid G of

1This was stated in [14] with extra constraintsBAsA ≥ hA, but this is equivalent to
(

BA

DA

)
sA +

(
000

T A

)
rA ≥

(
hA

jA

)
−

(
000

T A

)
x.
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P. Note thatlog(KR) is polynomially bounded in the input size. Letn = |G|. Using Lemma 2.4, if we

sampleN = 4(1+λ)2

3ω2 ln
(

2mn
δ

)
times to construct the sample average functionĥ(.) then at any given point

x, subgradient̂dx of ĥ(.) is component-wise close to its expectation with probability at least1 − dt/n,
so by Lemma 5.1,̂dx is anω-subgradient ofh(.) at x with high probability. So with probability at least
1 − δ, d̂x is anω-subgradient ofh(.) at everypoint x ∈ G. Using Lemma 4.4 to boundn, we get that
N = O

(
mλ2 log2(2KR

ε ) ln(2KRm
εδ )

)
.

One can convert the above guarantee into a purely multiplicative(1 + κ)-approximation guarantee by
settingγ andε appropriately, provided that we have a lower bound onOPT (that is at least inverse ex-
ponential in the input size). It was shown in [14] that under some mild assumptions, one can perform an
initial sampling step to obtain such a lower bound (with high probability). We detail this lower-bounding
step, which is common to 2-stage, 3-stage, andk-stage problems (differing only in the number of samples
required), in Section 7.1. Using this we obtain that (under some mild assumptions) the SAA method returns
a (1 + κ)-optimal solution to (2Gen-P) with high probability.

6 3-stage stochastic programs

Our techniques yield a polynomial-sample bound for a broad class of 3-stage programs, but before consider-
ing a generic 3-stage program, we introduce and explain the main ideas involved by focusing on a stochastic
version of the set cover problem, namely the 3-stage stochastic set cover problem.

6.1 An illustrative example: 3-stage stochastic set cover

In the stochastic set cover problem, we are given a universeU of n elements and a familyS of m subsets
of U , and the set of elements to cover is determined by a probability distribution. In the 3-stage problem
this distribution is specified by a 3-level tree. We useA to denote an outcome in stage 2, and(A,B) to
denote a stage 3 scenario whereA was the stage 2 outcome. LetA be the set of all stage 2 outcomes, and for
eachA ∈ A let BA = {B : (A,B) is a scenario}. Let pA andpA,B be the probabilities of outcomeA and
scenario(A,B) respectively, and letqA,B = pA,B/pA. Note that

∑
A∈A pA = 1 =

∑
B∈BA

qA,B for every
A ∈ A. We have to cover the (random) set of elementsE(A,B) in scenario(A,B), and we can buy a setS
in stage 1, or in stage 2 outcomeA, or in scenario(A,B) incurring a cost ofwI

S , wA
S andwA,B

S respectively.
We usex, yA andzA,B respectively to denote the decisions in stage 1, outcomeA and scenario(A,B)

respectively and consider the following fractional relaxation:

min h(x) =
∑
S

wI
SxS +

∑
A∈A

pAfA(x) subject to 0 ≤ xS ≤ 1 for all S, (3SSC-P)

where fA(x) = min
{∑

S

wA
S yA,S +

∑
B∈BA

qA,BfA,B(x, yA) : yA,S ≥ 0 for all S
}

, (3SSCR-P)

and fA,B(x, yA) = min
zA,B∈Rm

≥0

{∑
S

wA,B
S zA,B,S :

∑
S:e∈S

zA,B,S ≥ 1−
∑

S:ε∈S

(xS + yA,S) ∀e ∈ E(A,B)
}

.

Let P = {x ∈ Rm : 0 ≤ xS ≤ 1 for all S} andOPT = minx∈P h(x). The sample average problem
is parametrized by (i) the sample sizeT2 used to estimate probabilitypA by the frequencŷpA = T2;A/T2,
and (ii) the number of samplesT3 generated from the conditional distribution of scenarios inBA for eachA
with p̂A > 0 to estimateqA,B by q̂A,B = T3;A,B/T3. So the total sample size isT2 · T3. The sample average
problem is similar to (3SSC-P) witĥpA replacingpA, and q̂A,B replacingqA,B in the recourse problem
fA(x). We usef̂A(x) = minyA≥000

(
wA ·yA+

∑
B∈BA

q̂A,BfA(x, yA)
)

to denote the sample average recourse

problem for outcomeA, andĥ(x) = wI · x +
∑

A∈A p̂Af̂A(x) to denote the sample average function.
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As mentioned earlier, the main difficulty in showing that the sample average and the true functions satisfy
the closeness-in-subgradients property, is that these two problems now solve different recourse problems,
f̂A(x) andfA(x) respectively, for an outcomeA. Since the subgradient is obtained from a dual solution,
this entails first proving an SAA theorem for the dual which suggests that solving the dual off̂A(x) yields a
near-optimal solution to the dual offA(x). To achieve this, we first formulate the dual as a compact concave
maximization problem, then show that by slightly modifying the two dual programs, the dual objective
functions become close in terms of theirmax-subgradients, and then use Lemma 4.3 to obtain the required
SAA theorem (for the duals). Amax-subgradient of the dual objective function is obtained from the optimal
solution of a 2-stage primal problem and we use Theorem 5.2 to prove the closeness inmax-subgradients
of the sample average dual and the true dual. In Section 7 we show that this argument can be applied
inductively to prove an SAA bound for a large class ofk-stage stochastic LPs.

Let fA(000;W ) (respectivelyf̂A(000;W )) denote the recourse problemfA(x) (respectivelyf̂A(x)) with
x = 000 and costswA = W , that is,fA(000;W ) = minyA≥000

(
W · yA +

∑
B∈BA

qA,BfA,B(000, yA)
)
. We

formulate the following dual of the true and sample average recourse problems:

LDA(x) = max
000≤αA≤wA

lA(x;αA) and L̂DA(x) = max
000≤αA≤wA

l̂A(x;αA)

wherelA(x;αA) = −αA · x + fA(000;αA) andl̂A(x;αA) = −αA · x + f̂A(000;αA). 2

Lemma 6.1 At any pointx ∈ P and outcomeA ∈ A, fA(x) = LDA(x) and f̂A(x) = L̂DA(x).

Proof : We prove thatfA(x) = LDA(x); an identical argument shows thatf̂A(x) = L̂DA(x). fA(x) can
be written as the following linear program:

min
∑
S

wA
S yA,S +

∑
B∈BA

qA,BwA,B
S zA,B,S (SR-P)

s.t.
∑

S:e∈S

yA,S +
∑

S:e∈S

zA,B,S ≥ 1−
∑

S:e∈S

xS for all B ∈ BA, e ∈ E(A,B). (1)

yA,S , zA,B,S ≥ 0 ∀B ∈ BA, S.

Let
(
y∗A, {z∗A,B}

)
be an optimal solution to (SR-P) and

(
{β∗A,B}

)
be an optimal solution to the (stan-

dard) LP dual of (SR-P) whereβ∗A,B,e is the dual multiplier corresponding to the inequality (1) for ele-
mente ∈ E(A,B) whereB ∈ BA. Let α∗A be an optimal solution toLDA(x). SettingyA = x + y∗A
yields afeasible solutionto the minimization problemfA(000;α∗A). SoLDA(x) is at most(yA − x) · α∗A +∑

B∈BA
qA,BfA,B(000, yA) = α∗A · y∗A +

∑
B∈BA

qA,BfA,B(x, y∗A) which is at mostfA(x) sinceα∗A ≤ wA.
For the other direction, consider the vectorαA with αA,S =

∑
B∈BA

∑
e∈S∩E(A,B) β∗A,B,e. αA is a feasible

solution toLDA(x) since the dual of (SR-P) has
∑

B∈BA

∑
e∈S∩E(A,B) βA,B,e ≤ wA

S as a constraint for each

setS. If we consider the LP dual offA(000;αA), then observe that
(
{β∗A,B}

)
yields a feasible solution to the

dual and has value
∑

B∈BA

∑
e∈E(A,B) β∗A,B,e, which is therefore a lower bound onfA(000;αA). Therefore

we can lower boundLDA(x) by lA(x;αA) = −
∑

S αA,SxS +
∑

B∈BA

∑
e∈E(A,B) β∗A,B,e which is equal

to
∑

B∈BA

∑
e∈E(A,B)(1−

∑
S:e∈S xS)β∗A,B,e = fA(x) by LP duality.

Lemma 6.1 proves strong duality (in this new dual representation). Using this strong duality, we show
that a (approximate) subgradient toh(.) atx can be computed from the (near-) optimal solutions to the dual
problemsLDA(x) for each outcomeA.

2This dual representation can be obtained by adding the (redundant) constraintsxS +yA,S ≥ rS to fA(x), writing the objective
function offA(x) as

∑
S wA,SyA,S +

∑
B∈BA

qA,BfA,B(000, r), and then taking the Lagrangian dual of the resulting program by
dualizing only thexS + yA,S ≥ rA,S constraint usingαA,S as the Lagrangian multiplier.
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Lemma 6.2 Fix x ∈ P. LetαA be a solution toLDA(x) of valuelA(x;αA) ≥ (1−ε)LDA(x)−εwI ·x−ε
for everyA ∈ A. Then, (i)d = wI −

∑
A pAαA is an(ε, ε)-subgradient ofh(.) at x with ‖d‖ ≤ λ‖wI‖; (ii)

if d̂ is a vector such thatd− ωwI ≤ d̂ ≤ d + ωwI, thend̂ is an(ε + ω, ε)-subgradient ofh(.) at x.

Proof : Consider anyx′ ∈ P. SincelA(x;αA) ≥ (1− ε)LDA(x)− εwI · x− ε for everyA ∈ A, we have

h(x) = wI · x +
∑
A

pALDA(x) ≤ (1 + ε)wI · x +
∑
A

pA

(
−αA · x + fA(000;αA) + εLDA(x)

)
+ ε.

At x′, αA is a feasible solution toLDA(x′) for every outcomeA. Soh(x′) ≥ wI · x +
∑

A pA(−αA · x′ +
fA(000;αA)). Subtracting we get thath(x′)−h(x) is at leastd · (x′−x)− ε(wI ·x+

∑
A pALDA(x))− ε =

d · (x′ − x)− εh(x)− ε. SinceαA ≤ wA ≤ λwI, ‖d‖ ≤ λ‖wI‖.
We know thath(x′)−h(x) ≥ d ·(x′−x)−εh(x)−ε = (d− d̂) ·(x′−x)+ d̂ ·(x′−x)−εh(x)−ε. Since

xS , x′S ≥ 0 for all S, we have(d− d̂) · x′ ≥ −ωwI · x′ ≥ −ωh(x′) and(d̂− d) · x ≥ −ωwI · x ≥ ωh(x).
This proves (ii).

Sinceĥ(.) is of the same form ash(.), Lemma 6.2 also shows thatd̂x = wI−
∑

A p̂Aα̂A is a subgradient
of ĥ(.) at x whereα̂A is an optimal solution tôLDA(x). Thus, to prove the closeness in subgradients ofh

andĥ it suffices to argue that any optimal solution tôLDA(x) is a near-optimal solution toLDA(x). (Note
that bothh and ĥ have Lipschitz constant at mostK = λ‖wI‖.) We could try to argue this by showing
thatlA(x; .) andl̂A(x; .) are close in terms of theirmax-subgradients (that is, satisfy property (B)), however
some technical difficulties arise here. Amax-subgradient oflA(x; .) at αA is obtained from a solution to
the 2-stage problem given byfA(000;αA) (see Lemma 6.7), and to show closeness inmax-subgradients at
αA we need to argue that an optimal solutionŷA to f̂A(000;αA) is a near-optimal solution tofA(000;αA). We
would like to use Theorem 5.2 here, but this statement need not be true (with a polynomial sample size)

since the ratiomaxS

(wA,B
S

αA,S

)
of the second- and first-stage costs in the 2-stage problemfA(000;αA), could be

unbounded. To tackle this, we consider instead the modified dual problems

LDA;ρ(x) = max
ρwI≤αA≤wA

lA(x;αA) and L̂DA;ρ(x) = max
ρwI≤αA≤wA

l̂A(x;αA)

for a suitableρ > 0. Observe that the cost ratio in the 2-stage problemfA(000;αA) is bounded byλ
2

ρ for any
A ∈ A. In Section 6.1.1, we prove the following SAA bound for the duals of the true and sample average
recourse problems.

Lemma 6.3 For any parametersε, ρ, ε > 0, anyx ∈ P, and any outcomeA ∈ A, if we useT (ε, ρ, ε, δ) =
poly

(
I, λ

ρε , ln(1
ε ), ln(1

δ )
)

samples to construct the recourse problemf̂A(x), then any optimal solution̂αA to

L̂DA;ρ(x) satisfieslA(x; α̂A) ≥ (1− ε)LDA;ρ(x)− εwI · x− ε with probability at least1− δ.

Definehρ(x) = wI ·x+
∑

A pALDA;ρ(x) andĥρ(x) = wI ·x+
∑

A p̂AL̂DA;ρ(x). As in Lemma 6.2, one
can show that near-optimal solutionsαA to LDA;ρ(x) for everyA ∈ A yield an approximate subgradient
of hρ(.) at x. So using Lemma 6.3 we can show the closeness in subgradients ofhρ(.) andĥρ(.), and this
will suffice to show that if̂x minimizesĥ(.) then it is a near-optimal solution toh(.). Thus we get an SAA
bound for our class of 3-stage programs.

First, in Lemma 6.4, we bound the number of samples required to ensure that at a single pointx ∈ P ′,
a subgradient of̂hρ(.) is an (ω, ε)-subgradient ofhρ(.). The proof is somewhat involved because if we
consider the random variable taking the valuewI

S − α̂A,S when outcomeA is sampled, wherêαA is an
optimal solution tôLDA;ρ(x), then the random variables corresponding to the different samples from stage
2 are not independent since we always use the same solutionα̂A. We defer the proof till after Theorem 6.6.
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Lemma 6.4 Consider the sample average function generated usingN2 = T2(ω, δ) = 16(1+λ)2

ω2 ln
(

4m
δ

)
samples from stage 2, andT

(
ε, ρ, ω

2 , δ
2N2

)
samples from stage 3 for each outcomeA with p̂A > 0. At any

pointx ∈ P, subgradient̂dx of ĥρ(.) is an(ω, ε)-subgradient ofhρ(.) with probability at least1− δ.

Claim 6.5 For anyx ∈ P, hρ(x) ≤ h(x) ≤ hρ(x) + ρwI · x. Similarly ĥρ(x) ≤ ĥ(x) ≤ ĥρ(x) + ρwI · x.

Proof : We prove this forh(.) andhρ(.); the second statement is proved identically. The first inequality
holds since we are maximizing over a larger feasible region inLDA(x). The second inequality follows
because ifα∗A is such thatLDA(x) = lA(x;α∗A), then takingα′A = min(α∗A + ρwI, wA) givesLDA;ρ(x) ≥
lA(x;α′A) ≥ lA(x;α∗A)− ρwI · x sincefA(000;αA) is increasing inαA. Sohρ(x) ≥ h(x)− ρwI · x.

Theorem 6.6 For anyε, γ > 0 (γ ≤ 1), one can construct̂h with poly
(
I, λ, 1

γ , ln(1
ε ), ln(1

δ )
)

samples, and

with probability at least1−δ, any optimal solution̂x to minx∈P ĥ(x) satisfiesh(x̂) ≤ (1+7γ)·OPT +18ε.

Proof : Let N = log
(

2KR
ε

)
andω = γ

8N . Note thatlog(KR) is polynomially bounded in the input size.

Setε′ = ε
N andρ = γ

4N . We show that (i) a near-optimal solution tominx∈P ĥρ(x) yields a near-optimal

solution tominx∈P hρ(x), and (ii) minimizingh(.) andĥ(.) overP is roughly the same as approximately
minimizinghρ(.) andĥρ(.) respectively overP.

Let x̃ be an optimal solution tominx∈P ĥρ(x). By Claim 6.5,̂hρ(x̂) ≤ ĥ(x̂) ≤ ĥ(x̃) ≤ ĥρ(x̃)+ ρwI · x̃,
and0 ≤ OPTρ = minx∈P hρ(x) ≤ minx∈P h(x) = OPT .

Let G be the extended ε
KN

√
m

-grid of P and n = |G|. Let N ′ = 16(1+λ)2

ω2 ln
(

4mn
δ

)
which is a

polynomial in I, λ
γ , ln

(
1
ε

)
and ln

(
1
δ

)
, where we use Lemma 4.4 to boundn. We construct̂h(.) using

N = N ′ · T
(
ε′, ρ, ω

2 , δ
2nN ′

)
samples. SinceN ′ is polynomially bounded, Lemma 6.3 shows that so

is N . Using Lemma 6.4 and the union bound over all points inG, probability at least1 − δ, at every
point x ∈ G, subgradient̂dx of ĥρ(.) is an(ω, ε′)-subgradient ofhρ(.). So by Lemma 4.1, we have that
hρ(x̃) ≤ (1 + γ)OPT ρ + 6ε + 2Nε′ with high probability. Sincêhρ(x̂) ≤ ĥρ(x̃) + ρwI · x̃, we also obtain
by Corollary 4.2 that

hρ(x̂) ≤ (1 + γ)OPT ρ + 6ε + 2N(ρwI · x̃ + ε′). (2)

The boundh(x̃) ≤ hρ(x̃)+ρwI ·x (Claim 6.5) implies that(1−ρ)wI · x̃ ≤ hρ(x̃). Similarly (1−ρ)h(x̂) ≤
hρ(x̂). Combining these with the boundOPT ρ ≤ OPT , and plugging inε′ andρ in (2), we get that
h(x̂) ≤ (1 + 7γ)OPT + 18ε.

Under the very mild assumption that for every scenario(A,B) with E(A,B) 6= ∅ (a “non-null” sce-
nario), for everyx ∈ P andyA ≥ 000 the total costwI · x + wA · yA + fA,B(x, yA) is at least 1, the sampling
procedure in Section 7.1 gives a lower bound onOPT (Lemma 7.6). Thus we obtain a(1 + κ)-optimal
solution to (3SSC-P) with the SAA method (with high probability) using polynomially many samples.

Proof of Lemma 6.4 : Let δ′ = δ
2N2

andω′ = ω
2 . Observe that the sampling of outcomes fromA only

determines whether or not we sample fromBA but does not influence the probability of any event determined
by the samples fromBA. So, we may view the sampling process as follows: (1) for each outcomeA, we
independently sample from the conditional distribution onBA to construct (̂fA(x) and)L̂DA;ρ(x); (2) we
sample stage 2 outcomes fromA to determine the probabilitieŝpA, which are the weights used to combine
the functionŝLDA;ρ(x) and construct̂hρ(x). LetΩ2 be the probability space of all random choices involved
in sampling theN2 stage 2 outcomes fromA, and letΩA be the space of all random choices involved in
sampling fromBA. So the entire probability space isΩ = Ω2 ×

∏
A∈A ΩA.
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Let ZA,i be 1 if theith sample results in outcomeA and 0 otherwise. LetO∗
A be the set of all solutions

αA to LDA;ρ(x) satisfyinglA(x;αA) ≥ (1− ω′)LDA(x)− ω′wI · x− ε. Define the random vectorΨA to
be an optimal solution (breaking ties arbitrarily) tôLDA;ρ(x). Let GA ⊆ ΩA be the event thatΨA ∈ O∗

A.
By Lemma 6.3, we know thatPrΩA

[GA] ≥ 1 − δ′, where for clarity we use the subscript to indicate that
the probability is wrt. the spaceΩA. We may assume without loss of generality that this probability is
exactly1 − δ′ since we can simply chooseGA ⊆ ΩA so that this holds. LetGi ⊆ Ω =

⋃
A∈A({ZA,i =

1}×GA×
∏

A′∈A,A′ 6=A ΩA′). SoGi is the event representing “ifA is the stage 2 outcome generated by the

ith sample then eventGA occurs”. We havePr[Gi] = 1 − δ′. We will condition on the eventG =
⋂

i Gi.
Note thatPr[G] ≥ 1 − δ/2. For each componentS of x, defineXi,S =

∑
A∈A ZA,i(wI

S − ΨA,S) and

XS =
(∑N2

i=1 Xi,S

)
/N2. The subgradient̂dx is the random vectorX. We argue that conditioned onG, with

probability at least1 − δ/2, there exist solutionsαA ∈ O∗
A for everyA, such that for every componentS,

|XS−
∑

A pA(wI
S−αA,S)| ≤ ω′wI

S . Therefore conditioned onG, by Lemma 6.2,X is an(2ω′, ε) = (ω, ε)-
subgradient ofhρ(.) at x with probability1 − δ/2; sincePr[G] ≥ 1 − δ/2, with probability at least1 − δ,
d̂x = X is an(ω, ε)-subgradient ofhρ(.) atx.

Select some solutionαA ∈ O∗
A for each outcomeA. We have to show thatPr[E | G] ≤ δ/2 whereE is

the bad event
{
¬

[
∃α = (αA)A∈A ∈

∏
A∈A O∗

A such that∀S, |XS−
∑

A pA(wI
S−αA,S)| ≤ ω′wI

S

]}
. Note

that although the variablesZA,i, i = 1, . . . ,N2 are independent, theXi,S variables fori = 1, . . . ,N2 are
not independentbecause they are coupled by theΨA,S variables. But if we condition on theΨA variables,
theXi,S variables do become independent. LetΨ′

A = ΨA if ΨA ∈ O∗
A andαA otherwise. Conditioning on

Ψ = (ΨA)A∈A, we have

Pr
[
E

∣∣ G,Ψ
]
≤ Pr

[
∃S s.t.

∣∣XS −
∑

ApA(wI
S −Ψ′

A,S)
∣∣ > ω′wI

S

∣∣∣ G,Ψ
]

≤
∑
S

Pr
[∣∣XS −

∑
ApA(wI

S −Ψ′
A,S)

∣∣ > ω′wI
S

∣∣∣ G,Ψ
]

(3)

where the first inequality follows since eventE implies that given the solutions
{
Ψ′

A

}
A∈A, there exists some

componentS such that|XS−
∑

A pAΨ′
A,S | > ω′wI

S . Since we have conditioned onG, if ΨA /∈ O∗
A it follows

that
∑

i ZA,i = 0. Therefore we can writeXS =
(∑N2

i=1 Yi,S

)
/N2 whereYi,S =

∑
A∈A ZA,i(wI

S −Ψ′
A,S).

The variablesYi,S are iid, so by Lemma 2.4,Pr
[
|XS −

∑
A pA(wI

S − Ψ′
A,S)| > ω′wI

S

∣∣ G,Ψ
]
≤ δ/2m,

and using (3), we havePr
[
E

∣∣ G,Ψ
]
≤ δ/2. Since this holds for everyΨ, this also holds if we remove the

conditioning onΨ. ThereforePr[E | G] ≤ δ/2 which completes the proof.

6.1.1 An SAA bound for L̂DA;ρ(x)

We now prove Lemma 6.3. Throughout this sectionε, ε andρ are fixed parameters given by the statement
of Lemma 6.3. LetDA = {αA ∈ Rm : ρwI ≤ αA ≤ ωA}. Recall that the (true) dual problemLDA;ρ(x)
is to maximizelA(x;αA) over the regionDA wherelA(x;αA) = −αA · x + fA(000;αA). In the sample
average dual problem̂LDA;ρ(x), we havêlA(x;αA) = −αA · x + f̂A(000;αA) instead oflA(x;αA). Clearly
we may assume thatyA,S ≤ 1 in the problemsfA(000;αA) and f̂A(000;αA). Let R′ = ‖wA‖ ≤ λ‖wI‖, so
DA ⊆ B(000, R′).

We want to show that if̂αA solveŝLDA;ρ(x), thenlA(x; α̂A) ≥ (1−ε)LDA;ρ(x)−εwI ·x−ε with high
probability. By a now familiar approach, we will show thatl̂A(x; .) andlA(x; .) are close in terms of their
max-subgradients and then use Lemma 4.3. Letg(αA; yA) = αA · yA +

∑
B∈BA

qA,BfA,B(000, yA). We only
consider(ω, ∆,DA)- max-subgradients, so we drop theDA. A max-subgradient tolA(x; .) (respectively
l̂A(x; .)) atαA is obtained from the solution to the 2-stage problemfA(000;αA) (respectivelyf̂A(000;αA)).

14



Lemma 6.7 Fix x ∈ P andαA ∈ DA. Letω′ = ω
λ . If yA is a solution tofA(000;αA) of valueg(αA; yA) ≤

(1 + ω′)fA(000;αA) + ε′, thend = yA − x is an(ω, ωwI · x + ε′)- max-subgradient oflA(x; .) at αA.

Proof : Let C =
∑

B∈BA
qA,BfA,B(000, yA). SoαA · yA + C ≤ (1 + ω′)fA(000;αA) + ε′ andlA(x;αA) =

−αA ·x + fA(000;αA) ≥ (yA−x) ·αA + C −ω′ · fA(000;αA)− ε′. At any other pointα′A, yA gives a feasible
solution to the 2-stage problemfA(000;α′A). SolA(x;α′A) ≤ (yA − x) · α′A + C. Subtracting we get that

lA(x;α′A)− lA(x;αA) ≤ d ·(α′A−αA)+ω′ ·fA(000;αA)+ε′ ≤ d ·(α′A−αA)+ω′ · lA(x;αA)+ε′+ω′αA ·x.

The last term is at mostωwI · x sinceαA ≤ wA ≤ λwI andx ≥ 000. Thusd is an(ω, ωwI · x + ε′)- max-
subgradient.

We can bound the Lipschitz constant oflA(x; .) and l̂A(x; .) by K ′ =
√

m, sincexS , yA,S ≤ 1. The
feasible region of the 2-stage problemfA(000;αA) is contained in the ballB(000,

√
m), and sinceαA ∈ DA,

the ratio of costs in the two stages is at mostλ2

ρ . Thus, we can use Theorem 5.2 to argue that any optimal

solutionŷA to f̂A(000;αA) is a near-optimal solution tofA(000;αA), and this will prove the closeness inmax-
subgradients of̂lA(x; .) andlA(x; .).

Proof of Lemma 6.3 : Setγ = ε andε′ = ε
8 . SetN = log

(
2K′R′

ε′

)
andω = γ

8N . Observe thatlog(K ′R′) is

polynomially bounded. Recall that̂αA is an optimal solution tôLDA;ρ(x). Let G be the extended ε′

KN
√

m
-

grid ofDA andn = |G|. By Theorem 5.2, if we useT (ε, ρ, ε, δ) = poly
(
I, λ2

ρ , λ
ω , ln(2N

ε ), ln(n
δ )

)
samples

fromBA to construct̂LDA;ρ(x), then with probability at least1− δ
n , at a given pointαA ∈ DA, any optimal

solutionŷA to f̂(000;αA) satisfiesg(αA; ŷA) ≤
(
1 + ω

λ

)
fA(000;αA) + ε

2N . So by applying Lemma 6.7 and the
union bound over all points inG, with probability at least1− δ, at each pointαA ∈ G, themax-subgradient
ŷA − x of l̂A(x; .) at αA is an(ω, ωwI · x + ε

2N )- max-subgradient oflA(x; .) at αA. By Lemma 4.3, we
havelA(x; α̂A) ≥ (1− γ)LDA;ρ(x)− 4ε′−NωwI · x− ε

2 which is at least(1− ε)LDA;ρ(x)− εwI · x− ε.
Sincelnn andN arepoly

(
I, ln(1

ε )
)
, we get thatT (ε, ρ, ε, δ) = poly

(
I, λ

ρε , ln(1
ε ), ln(1

δ )
)
.

6.2 A class of solvable 3-stage programs

The above arguments can be adapted to prove an SAA bound for a broad class of 3-stage stochastic pro-
grams, which includes the 3-stage stochastic set cover problem considered above. As before, we useA to
denote an outcome in stage 2, and(A,B) to denote a stage 3 scenario whereA was the stage 2 outcome, and
x, yA andzA,B respectively to denote the decisions in stage 1, outcomeA and scenario(A,B) respectively.
A denotes the set of all stage 2 outcomes, and for eachA ∈ A letBA = {B : (A,B) is a scenario}. Let pA

andpA,B be the probabilities of outcomeA and scenario(A,B) respectively, and letqA,B = pA,B/pA. We
consider the following class of 3-stage problems.

min h(x) = wI · x +
∑
A∈A

pAfA(x) subject to x ∈ P ⊆ Rm
≥0, (3Gen-P)

where fA(x) = min
yA∈Rm

≥0

{
wA · yA +

∑
B∈BA

qA,BfA,B(x, yA) : TAyA ≥ jA − TAx
}

, and (3Rec-P)

fA,B(x, yA) = min
zA,B ∈ Rm

≥0

sA,B ∈ Rn
≥0

{
wA,B · zA,B + cA,B · sA,B : DA,BsA,B + TA,BzA,B ≥ jA,B − TA,B(x + yA)

}
,

where for every outcomeA ∈ A and scenario(A,B), (a)TA, TA,B ≥ 000; (b) for everyx ∈ P, andyA ≥ 000,

0 ≤ fA(x), fA,B(x, yA) < +∞. Let λ = maxS,A∈A,B∈BA
max

(
1,

wA
S

wS
,

wA,B
S

wA
S

)
; we assume thatλ is known.
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As before, we assume thatP ⊆ B(000, R) wherelnR is polynomially bounded. Further we assume that for
anyx ∈ P and anyA ∈ A, the feasible region offA(x) can be restricted toB(000, R) without affecting the
solution quality, that is, there is an optimal solution tofA(x) lying in B(000, R). These assumptions are fairly
mild and unrestrictive; in particular, they hold trivially for the fractional relaxations of 0-1 integer programs
and many combinatorial optimization problems. LetOPT be the optimum value andI be the input size.

The sample average problem is of the same form as (3Gen-P), wherepA andqA,B are replaced by their
estimateŝpA andq̂A,B respectively, the frequencies of occurrence of outcomeA and scenario(A,B) in the
appropriate sampled sets. Letĥ(x) = wI · x +

∑
A∈A p̂Af̂A(x) denote the sample average function where

f̂A(x) = min
yA≥000

{
wA · yA +

∑
B∈BA

q̂A,BfA,B(x, yA) : TAyA ≥ jA − TAx
}

(3SARec-P)

is the sample average recourse problem.
Let fA(000;W ) (respectivelyf̂A(000;W )) denote the recourse problem (3Rec-P) (respectively (3SARec-P))

with x = 000 and costswA = W . The dual of the recourse problem is formulated as before,LDA(x) =
max000≤αA≤wA lA(x;αA) where lA(x;αA) = −αA · x + fA(000;αA). We useL̂DA(x) and l̂A(x;αA) to
denote the corresponding quantities for the sample average problem.

The only portion of the argument in Section 6.1 that needs to be modified is the proof of Lemma 6.1
which proves strong duality in the new dual representation. The proof is along the same lines.

Lemma 6.8 At any pointx ∈ P and outcomeA ∈ A, fA(x) = LDA(x) andf̂A(x) = L̂DA(x). Moreover,
we can restrictyA so that‖yA‖ ≤ 2R in the problemsfA(0;αA) andf̂A(000;αA), without affecting the values
of LDA(x) andL̂DA(x).

Proof : We prove thatfA(x) = LDA(x); an identical argument shows thatf̂A(x) = L̂DA(x). fA(x) can
be written as the following linear program:

min wA · yA +
∑

B∈BA

qA,B(wA,B · zA,B + cA,B · sA,B) (R-P)

s.t. TAyA ≥ jA − TAx

DA,BsA,B + TA,ByA + TA,BzA,B ≥ jA,B − TA,Bx ∀B ∈ BA, (4)

sA,B ∈ Rn, sA,B, yA, zA,B ≥ 000 ∀B ∈ BA.

Let
(
y∗A, {s∗A,B, z∗A,B}

)
be an optimal solution to (R-P) and

(
θ∗A, {β∗A,B}

)
be an optimal solution to the

(standard, LP) dual of (R-P) whereβA,B is the dual multiplier corresponding to inequalities (4) for each
B ∈ BA. Let α∗A be an optimal solution toLDA(x). SettingyA = x + y∗A yields afeasible solutionto
the minimization problemfA(000;α∗A). SoLDA(x) is at most(yA − x) · α∗A +

∑
B∈BA

qA,BfA,B(000, yA) =
α∗A · y∗A +

∑
B∈BA

qA,BfA,B(x, y∗A) which is at mostwA · y∗A +
∑

B∈BA
qA,BfA,B(x, y∗A) = fA(x). For the

other direction, consider the solutionαA = (TA)Tθ∗A +
∑

B∈BA
(TA,B)Tβ∗A,B. This is a feasible solution to

LDA(x) since the dual of (R-P) has(TA)TθA +
∑

B∈BA
(TA,B)TβA,B ≤ wA as a constraint. If we consider

the LP dual offA(000;αA), then observe that
(
θ∗A, β∗A,B

)
yields a feasible solution to the dual that has value

jA ·θ∗A +
∑

B∈BA
jA,B ·β∗A,B. Therefore we can lower boundLDA(x) by−αA ·x+jA ·θ∗A +

∑
B∈BA

jA,B ·
β∗A,B which is equal to(jA − TAx) · θ∗A +

∑
B∈BA

(jA,B − TA,Bx) · β∗A,B = fA(x) by LP duality.
Notice that the upper-bound argument also holds if we restrictyA to lie in the ballB(000, 2R) in the

problemfA(000;αA) embedded in the dual problemLDA(x), that is,max000≤αA≤wA

(
−αA ·x+f ′A(000;αA)

)
≤

fA(x) wheref ′A(000;αA) is the same asfA(000;αA) except that we restrictyA to lie in B(000, 2R). Since
this restriction can only increase the value of the minimization problem,f ′A(000;αA) ≥ f(000;αA), and so
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max000≤αA≤wA

(
−αA · x + f ′A(000;αA)

)
≥ LDA(x) = fA(x). This shows that we may assume‖yA‖ ≤ 2R

in the problemfA(000;αA) (respectivelyf̂A(000;αA)) without changing the value ofLDA(x) (respectively
L̂DA(x)).

It need not be true that for an arbitrary cost vectorαA,000 ≤ αA ≤ wA, there exists an optimal solution to
fA(000;αA) which lies inB(000, 2R). However, sincefA(000;αA) (respectivelyf̂A(000;αA)) is only “used” while
embedded in the maximization problemLDA(x) (respectivelŷLDA(x)), and by Lemma 6.8 its value is not
affected by imposing the constraint‖yA‖ ≤ 2R, we will assume that this constraint is implicitly included in
fA(000;αA), and this will not affect the validity of our arguments. That is, when we sayfA(000;αA) we actual
mean the minimization problemminyA≥000:‖yA‖≤2R

{
αA · yA +

∑
B∈BA

qA,BfA,B(000, yA) : TAyA ≥ jA
}

;
this saves us from having to introduce extra cumbersome notation.

Lemma 6.3 and its proof in Section 6.1.1 remain almost unchanged. The only place where we used
problem-specific information was in boundingyA,S ≤ 1 in the 2-stage problemsfA(000;αA) andf̂A(000;αA)
which allowed us to, a) bound the Lipschitz constant oflA(x; .) andl̂A(x; .), and b) to show that the feasible
region of fA(000;αA) is bounded (so that Theorem 5.2 could be applied). As argued above,yA can be
restricted to the ballB(000, 2R) in the problemsfA(000;αA) and f̂A(000;αA). So using Lemma 6.7 (which
remains unchanged), we can bound the Lipschitz constant oflA(x; .) and l̂A(x; .) by K ′ = 3R (note that
lnR = poly(I), so lnK ′ is polynomially bounded), and sincefA(000;αA) is a 2-stage program of the form
(2Gen-P) with a bounded feasible region, we can still apply Theorem 5.2 tofA(000;αA) (whenαA ≥ ρwA).
So the proof in Section 6.1.1 is essentially unchanged, and thus using essentially the same arguments that
we used for the 3-stage set cover problem, we obtain the following theorem.

Theorem 6.9 For any parametersε, γ > 0 (γ ≤ 1), one can construct the sample average problemĥ using
poly

(
I, λ, 1

γ , ln(1
ε ), ln(1

δ )
)

samples so that, with probability at least1− δ, any optimal solution̂x to ĥ has
valueh(x̂) ≤ (1 + 7γ) ·OPT + 18ε.

The sampling step described in Section 7.1 yields a lower bound onOPT for a subclass of (3Gen-P)
where the recourse problemfA(x) does not have any constraints (for instance, as in the relaxation of the
3-stage set cover problem (3SSCR-P)). This allows us to obtain a purely multiplicative(1 + κ)-guarantee
for this subclass of 3-stage programs.

7 The SAA bound for k-stage programs

We now extend our techniques to solvek-stage stochastic linear programs. Herek is a fixed constant that is
not part of the input; the running time of our algorithm will be exponential ink.

In the k-stage problem, the scenario distribution is specified by ak-level tree, called thedistribution
tree. We start at the rootr of this tree at level 1, which represents the first-stage. Letlevel(i) denote the
set of nodes at leveli, so level(1) = {r}. Each such nodeu represents an outcome in stagei and its
ancestors correspond to the outcomes in the previous stages; so nodeu represents a particular evolution of
the uncertainty through stages1, . . . , i. At a leaf node, the uncertainty has completely resolved itself and we
know the input precisely. As before, for clarity, ascenariowill always refer to a stagek outcome, that is, a
leaf of the tree. The goal is to choose the first stage elements so as to minimize the total expected cost, i.e.,∑k

i=1 E
[
stagei cost

]
where the expectation is taken over all scenarios.

Let path(u) be the set of all nodes (includingu) on u’s path to the root. Letchild(u) be the set of all
children ofu; this is the set of possible outcomes in the next stage given thatu is the current outcome. Let
pu be the probability that outcomeu occurs, andqu be theconditional probabilitythatu occurs given the
outcome in the previous stage.We do not assume anything about the distribution, and it can incorporate
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various correlation effects from previous stages. Note thatpu =
∏

v∈path(u) qv. Clearly we havepr = qr =
1, for anyi

∑
v∈level(i) pv = 1, and for any nodeu,

∑
v∈child(u) qv = 1.

We useyu to refer to the decisions taken in outcomeu andwu to denote the costs in outcomeu; thus the
costs may depend on the history of outcomes in the previous stages. Note thatyu may only depend on the
decisions in the previous outcomes, that is, on theyv ’s wherev ∈ path(u). For convenience we usex ≡ yr

to denote the first-stage decisions, andwI to denote the first-stage costs. We consider the following generic
k-stage linear program.

fk,r = min h(x) = wI · x +
∑

u∈child(r)

qufk−1,u(x) subject to x ∈ P ⊆ Rm
≥0 (kGen-P)

wherefk−1,u(x) gives the expected cost of stages2, . . . , k given the first-stage decisionx and whenu is
the stage 2 outcome. Thusfk−1,u(x) is the cost of the(k − 1)-stage problemthat is obtained whenu is the
second-stage outcome, andx is the first-stage decision. In general, consider an outcomeu ∈ level(i) and let
v ∈ level(i− 1) be it’s parent. Letyv =

(
yr, . . . , yv

)
, where{yr, . . . , yv} = path(v), denote the collective

tuple of decisions taken in the previous stages; for the rootr, yr ≡ yr ≡ x. The functionfk−i+1,u(yv) is a
(k− i+1)-stage stochastic program that determines the expected cost of stagesi, . . . , k given the decisions
in the previous stagesyv, and whenu is the outcome in stagei. It is defined recursively as

fk−i+1,u(yv) = min
{

wu · yu +
∑

u′∈child(u)

qu′fk−i,u′(yv, yu) : yu ∈ Rm
≥0, T uyu ≥ ju −

∑
t∈path(v)

T uyt

}
,

for a non-leaf nodeu ∈ level(i), 2 ≤ i < k. For a leafu at levelk,

f1,u(yv) = min
{

wu · yu + cu · su : yu ∈ Rm
≥0, su ∈ Rn

≥0, Dusu + T uyu ≥ ju −
∑

t∈path(v)

T uyt

}
.

The variablessu appearing inf1,u(.), capture the fact that at a scenariou when we know the input precisely,
one might need to make some additional decisions. We require that (a)T u ≥ 000 for every nodeu; (b)
0 ≤ fk−i+1,u(yv) < ∞ for every nodeu ∈ level(i) with parentv, and feasible decisionsyv — this ensures
that the primal problemfk−i+1,u(yv) and its dual are feasible for every feasibleyv; and (c) there is some
R with lnR polynomially bounded such that for every internal nodeu, the feasible region offk−i+1,u(yv)
can be restricted toB(000, R) without affecting the solution quality (soP ⊆ B(000, R)), that is, for each
fk−i+1,u(yv) there is some optimal solutiony∗u such that‖y∗u‖ ≤ R. Let I denote the input size,λ be the
ratiomax

(
1,maxv,u∈child(v)

wu

wv

)
, andK be the Lipschitz constant ofh(.). DefineOPT = fk,r.

The sample average problem is of the same form as (kGen-P), where the probabilityqu is replaced by
its estimatêqu, which is the frequency of occurrence of outcomeu in the appropriate sampled set. It is
constructed as follows: we sampleT2 times from the entire distribution and estimate the probabilityqu of
a nodeu ∈ level(2) by its frequency of occurrencêqu = T2;u/T2; for eachu such that̂qu > 0, we sample
T3 times from the conditional distribution of scenarios in the tree rooted atu and estimate the probability
qu′ for eachu′ ∈ child(u) by the frequencŷqu′ = T3;u′/T3. We continue this way, sampling for each node
u such that̂qu > 0, the leaves of the tree rooted atu to estimate the probabilities of the children ofu, till
we reach the leaves of the distribution tree. Letp̂u =

∏
v∈path(u) q̂v denote the probability of occurrence

of outcomeu in the sample average problem. We usef̂k,r to denote thek-stage sample average problem;
correspondingly for nodeu ∈ level(i) (wherep̂u > 0) with parentv, f̂k−i+1,u(yv) is the(k − i + 1)-stage
program in the sample average problem that determines the expected cost of stagesi, . . . , k when outcome
u occurs and given the decisionsyv in the previous stages. Note that for a leafu, f1,u(yv) is simply a
(1-stage) deterministic linear program, sof̂1,u(yv) = f1,u(yv). Let ĥ(x) be the objective function of the
k-stage sample average program, sof̂k,r = minx∈P ĥ(x).
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In Sections 5 and 6 we proved a polynomial SAA bound for the generic 2-stage problemf2,r and 3-stage
problemf3,r respectively. We now extend this argument inductively to prove an SAA bound for thek-stage
problemfk,r. We will show that assuming inductively a polynomial SAA boundNk−1 for the(k− 1)-stage
problemfk−1,r, one can construct the sample average problemf̂k,r with a sufficiently large polynomial
sample size, so that, with high probability, any optimal solution tof̂k,r is a near-optimal solution tofk,r.
Combined with the results in Sections 5 and 6 which provide the base case in this argument, this establishes
a polynomial SAA bound fork-stage programs of the form (kGen-P).

We dovetail the approach used for 3-stage programs in Section 6. For a nodeu ∈ level(2), we use
fk−1,u(000;W ) to denote the(k − 1)-stage problemfk−1,u(x) with x = 000 and costswu = W ; f̂k−1,u(000;W )
denotes the corresponding quantity in the sample average problem. Like in Section 6, we formulate a con-
cave maximization problemLDk−1,u(x) that is dual tofk−1,u(x), which has a(k−1)-stage primal problem
of the typefk−1,r embedded inside it. This dual is defined asLDk−1,u(x) = max000≤αu≤wu lk−1,u(x;αu)
where lk−1,u(x;αu) = −αu · x + fk−1,u(000;αu). We usel̂k−1,u(x;αu) and L̂Dk−1,u(x) to denote the
analogues in the sample average problem.

We want to show that the true functionh(.), and the sample average functionĥ(.) are close in terms
of their subgradients. As in Section 6, to avoid some technical difficulties, we consider slightly modified
versions of these functions,hρ andĥρ respectively, and show that they are close in terms of their subgradients
and this will suffice to prove an SAA bound. Definehρ(x) = wI · x +

∑
u∈child(r) quLDk−1,u;ρ(x) and

ĥρ(x) = wI · x +
∑

u∈child(r) q̂uL̂Dk−1,u;ρ(x). whereLDk−1,u;ρ(x) and L̂Dk−1,u;ρ(x) are respectively

the maximum oflk−1,u(x;αu) and l̂k−1,u(x;αu) over the regionDu = {αu ∈ Rm : ρwI ≤ αu ≤ wu}.
A subgradient tohρ(.) and ĥρ(.) at pointx is obtained from the solutions to the dual recourse problems
LDk−1,u;ρ(x) and L̂Dk−1;ρ,u(x) respectively; so we first argue that an optimal solution tôLDk−1;ρ,u(x)
is a near-optimal solution toLDk−1,u;ρ(x). To do this we show that the dual objective functions are close
in terms of theirmax-subgradients. A (approximate)max-subgradient oflk−1,u(x; .) at the pointαu is
obtained from an (near-) optimal solution tofk−1;ρ,u(000;αu), which is a(k− 1)-stage program belonging to
our class with bounded cost ratio (this is the reason why we consider functionshρ andĥρ instead ofh andĥ).
We use the inductive hypothesis to argue that an optimal solution to the(k−1)-stage program̂fk−1,u(000;αu)
in the sample average dual yields a near-optimal solution to the(k − 1)-stage programfk−1,u(000;αu) in the
true dual, and therefore themax-subgradients of the objective functions of the sample-average dual and the
true dual are close to each other. Unfolding the chain of arguments, this shows that an optimal solution to
L̂Dk−1,u(x) is a near-optimal solution toLDk−1,u(x), which shows the closeness in subgradients of the
objective functionsh andĥ. This in turn leads to an SAA bound for thek-stage programfk,r.

To reduce clutter we adopt the following terminology: for a minimization problem, we call a solution a
(γ, ε)-optimal solution if it has cost at most(1 + γ) · (minimum) + ε; for a maximization problem, a(γ, ε)-
optimal solution is a solution that has value at least(1 − γ) · (maximum) − ε. We first state the induction
hypothesis precisely.

Induction Hypothesis For a (k − 1)-stage problem of the typefk−1,r with input sizeI, cost ratioλ,

and satisfying requirements (a), (b), and (c), one can construct the sample average problemf̂k−1,r using
Nk−1(I, λ, γ, ε, δ) = poly

(
I, λ

γ , ln( 1
εδ )

)
samples, with probability at least1 − δ, any optimal solution to

f̂k−1,r is a (γ, ε)-optimal solution tofk−1,r.

Like in Section 6, we show that strong duality holds (with the new dual representation), and state a
structural lemma about the subgradients of the objective function which paves the way for showing the
closeness in subgradients. The proofs of these two lemmas are very similar to those of Lemmas 6.8 and 6.2.
We useΓu to denote the subtree of the distribution tree rooted at nodeu.
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Lemma 7.1 At anyx ∈ P and nodeu ∈ level(2), fk−1,u(x) = LDk−1,u(x) andf̂k−1,u(x) = L̂Dk−1,u(x).
Moreover in the(k−1)-stage problemsfk−1,u(000;αu) andf̂k−1,u(000;αu), we can restrictyu to B(000, 2R) and

yt to B(000, R) for any internal nodet ∈ Γu, without affecting the values ofLDk−1,u(x) andL̂Dk−1,u(x).

Proof : The proof proceeds as in Lemma 6.8 and we only briefly sketch the details. One can expand
fk−1,u(x) into a minimization LP with objective functionwu · yu +

∑
t∈Γu

pt

pu
wt · yt +

∑
t∈Γu∩ level(k)

pt

pu
ct ·

st. The constraints areT t(
∑

t′∈path(t)\{r} yt′) ≥ jt − T tx for every non-leaf nodet ∈ Γu, andDtst +
T t(

∑
t′∈path(t)\{r} yt′) ≥ jt − T tx for every leaft ∈ Γu. Let

(
{y∗t }, {s∗t }

)
be an optimal solution to this

LP, and
(
{θ∗t }

)
be a solution to the dual maximization LP. Letα∗u be an optimal solution toLDk−1,u(x).

Settingyu = x + y∗u in fk−1,u(000;α∗u) shows thatLDk−1,u(x) ≤ fk−1,u(x). Note that this upper bound
also holds when we require that,yu ∈ B(000, 2R) andyt ∈ B(000, R) for all other internal nodest ∈ Γu, in
the problemfk−1,u(000;αu) embedded in the dual maximization problemLDk−1,u(x). We can lower bound
LDk−1,u(x) by fk−1,u(x), by computing the value of the feasible solution whereαu =

∑
t∈Γu

(T t)Tθ∗t
and the solution to the LP dual offk−1,u(000;αu) is given by

(
{θ∗t }

)
. Hence,fk−1,u(x) = LDk−1,u(x), and

constraining‖yu‖ ≤ 2R and‖yt‖ ≤ R for every internal nodet ∈ Γu \ {u} in the problemfk−1,u(000;αu)
does not affect the value ofLDk−1,u(x). The arguments for̂fk−1,u(x) andL̂Dk−1,u(x) are identical.

Lemma 7.2 Let x ∈ P and αu be an(ε, εwI · x + ε)-optimal solution toLDk−1,u(x) for every node

u ∈ level(2). (i) d = wI −
∑

u∈level(2) puαu is an(ε, ε)-subgradient ofh(.) at x with ‖d‖ ≤ λ‖wI‖; (ii) if d̂

is a vector such thatd− ωwI ≤ d̂ ≤ d + ωwI, thend̂ is an(ε + ω, ε)-subgradient ofh(.) at x.

As in Section 6.2, given Lemma 7.1, we abuse notation and usefk−1,u(000;αu) to actually refer to the
problem where we have imposed the constraints thatyu lie in B(000, 2R) andyt lie in B(000, R) for every
internal nodet ∈ Γu. Observe that for anyu ∈ level(2), whenαu ≥ ρwI, in the (k − 1)-stage problem

fk−1,u(000;αu) the ratio of costsw
t′

wt for anyt lying in the tree rooted atu and anyt′ ∈ child(t), is bounded by
λ2

ρ . Let Pk(I, λ, γ, ε, δ) = poly
(
I, λ, 1

γ , ln(1
ε ), ln(1

δ )
)

be a sufficiently large polynomial. To avoid clutter
we suppress the dependence on(I, . . . , δ).

Lemma 7.3 For any ε, ρ, ε > 0, any x ∈ P, and any nodeu ∈ level(2), if we construct the recourse
problem f̂k−1,u(x) with T (ε, ρ, ε, δ) = Nk−1

(
I, λ2

ρ , ε
8N ′λ , ε

16N ′ ,
δ
n′

)
samples, for a suitableN ′, lnn′ =

poly
(
I, ln(1

ε )
)
, then any optimal solution tôLDk−1,u;ρ(x) is an(ε, εwI·x+ε)-optimal solution toLDk−1,u;ρ(x)

with probability at least1− δ.

Proof : We show thatlk−1,u(x; .) and l̂k−1,u(x; .) are close in terms of theirmax-subgradients and then
use Lemma 4.3. Recall thatDu = {αu ∈ Rm : ρwI ≤ αu ≤ wu}. Let R′ = ‖wu‖ ≤ λ‖wI‖, so
Du ⊆ B(000, R′). In the sequel we will only consider(ω, ∆,Du)- max-subgradients, so we will omit theDu.

As in Lemma 6.7, for anyω > 0, one can show that ifyu is an(ω′, ε′)-optimal solution tofk−1,u(000;αu),
whereω′ = ω

λ , thenyu − x is an(ω, ωwI · x + ε′)- max-subgradient oflk−1,u(x; .) at αu. This follows
becauselk−1,u(x;αu) ≥ (yu − x) · αu + C − ω′fk−1,u(000;αu)− ε′ whereC =

∑
u′∈child(u) qu′fk−2,u′(yu),

and at any other pointα′u, we havelk−1,u(x;α′u) ≤ (yu − x) · α′u + C. This also shows that if̂yu is an
optimal solution tof̂k−1,u(000;αu) thenŷu − x is amax-subgradient of̂lk−1,u(x; .) at αu. We may assume
that‖yu‖ ≤ 2R by Lemma 7.1, so the Lipschitz constant oflk−1,u(x; .) andl̂k−1,u(x; .) can be bounded by
K ′ = 3R. fk−1,u(000;αu) is a(k− 1)-stage problem of the formfk−1,r such that for every internal nodet in
the treeΓu we have‖yt‖ ≤ 2R, so we can apply the induction hypothesis to it.

Set ε′ = ε
8 . Let N ′ = log

(
2K′R′

ε′

)
andω = ε

8N ′ . Observe thatlog(K ′R′) = poly(I). Let G be

the extended ε′

K′N ′√m
-grid of Du andn′ = |G|. Suppose that we useNk−1

(
I, λ2

ρ , ω
λ , ε′

2N ′ ,
δ
n′

)
samples to
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construct the recourse problem̂fk−1,u(x), and hence the dual̂LDk−1,u;ρ(x). At any givenαu ∈ G, applying
the induction hypothesis tofk−1,u(000;αu), an optimal solution̂yu to f̂k−1,u(000;αu) is an

(
ω
λ , ε′

2N ′

)
-optimal

solution tofk−1,u(000;αu) with probability at least1 − δ
n′ . Thus, with probability1 − δ, at everyαu ∈ G,

ŷu−x is both amax-subgradient of̂lk−1,u(x; .) and an(ω, ωwI · x + ε′

2N ′ )- max-subgradient oflk−1,u(x; .)
atαu. So by Lemma 4.3 we get that if̂αu ∈ Du maximizeŝlk−1,u(x;αu) then it is an(ε, εwI ·x+ε)-optimal

solution toLDk−1,u;ρ(x). Thus we obtainT (ε, ρ, ε, δ) = Nk−1

(
I, λ2

ρ , ε
8N ′λ , ε

16N ′ ,
δ
n′

)
.

Now we can prove our main theorem. First we state the analogue of Lemma 6.4.

Lemma 7.4 Consider the sample average functionĥ constructed usingN2 = T2(ω, δ) = 16(1+λ)2

ω2 ln
(

4m
δ

)
samples from stage 2, and usingT

(
ε, ρ, ω

2 , δ
2N2

)
samples from the tree rooted atu (to generatef̂k−1,u(x))

for eachu ∈ level(2) with q̂u > 0. At any pointx ∈ P, subgradient̂dx of ĥρ(.) is an(ω, ε)-subgradient of
hρ(.) with probability at least1− δ.

Theorem 7.5 For anyε, γ > 0 (γ < 1), with probability at least1−δ, any optimal solution̂x to thek-stage
sample average problem constructed usingpoly(I, λ, γ, ε, δ) samples satisfiesh(x̂) ≤ (1 + γ) · fk,r + ε.

Proof : Setγ′ = γ
7 andε′ = ε

18 . Let N = log
(

2KR
ε′

)
andω = γ′

8N . Note thatlog(KR) = poly(I). Set

ε′′ = ε′

N andρ = γ′

4N . Let G be the extended ε′

KN
√

m
-grid of P andn = |G|. LetN ′ = 16(1+λ)2

ω2 ln
(

4mn
δ

)
.

Using Lemma 7.4 and the union bound over all points inG, by constructinĝh(.) (and hencêhρ(.)) using
N = N ′ · T

(
ε′′, ρ, ω

2 , δ
2nN ′

)
samples, with probability at least1 − δ, at every pointx ∈ G, subgradient

d̂x of ĥρ(.) is an(ω, ε′′)-subgradient ofhρ(.). Mimicking the proof of Theorem 6.9 we obtain thath(x̂) ≤
(1 + 7γ′)OPT + 18ε′.

Let N ′, n′ be as given by Lemma 7.3. We can choosePk(I, λ, γ, ε, δ) to be a large enough polynomial
so that the following hold:N ′ ≤ Pk, 1

ρ ≤ Pk, ω
16N ′λ = γ

O(1)NN ′λ ≤ γ
Pk

, ε′′

16N ′ = ε
O(1)NN ′ ≤ ε

Pk
,

δ
2nN ′n′ ≤

δ
2Pk

. So using Lemma 7.3 we can boundT
(
ε′′, ρ, ω

2 , δ
2nN ′

)
by Nk−1

(
I, Pkλ

2, γ
Pk

, ε
Pk

, δ
2Pk

)
.

Unfolding the recurrence (note thatk is a constant), and using Theorem 5.2 for the base case, we get that
Nk(I, λ, γ, ε, δ) is a polynomial inI, λ

γ , ln
(

1
εδ

)
.

7.1 Obtaining a lower bound onOPT

The bounds obtained thus far on the quality of an optimal solution to the sample average problem in The-
orem 5.2, Theorem 6.9, and Theorem 7.5 are all of the formh(x̂) ≤

(
1 + O(γ)

)
· OPT + O(ε) (where

γ, ε > 0 are parameters) containing both multiplicative and additive approximation factors. This can be
converted into a purely multiplicative(1 + κ)-guarantee by settingγ andε appropriately provided that we
have a lower bound onOPT (that is at least inverse exponential in the input size). We now show that, under
some mild assumptions, one can obtain such a lower bound for asubclassof (kGen-P), where for every
nodeu in level(i), 2 ≤ i < k, the recourse problemfk−i+1,u(x,yv) does not have any constraints. That is,
we consider the following subclass of (kGen-P):

gk,r = min h(x) = wI · x +
∑

u∈child(r)

qugk−1,u(x) subject to x ∈ P ⊆ Rm
≥0, where

gk−i+1,u(yv) = min
{

wu · yu +
∑

u′∈child(u)

qu′gk−i,u′(yv, yu) : yu ∈ Rm
≥0

}
, for u ∈ level(i), 2 ≤ i < k,

g1,u(yv) = min
{

wu · yu + cu · su : yu ∈ Rm
≥0, su ∈ Rn

≥0, Dusu + T uyu ≥ ju −
∑

t∈path(v)

T uyt

}
.
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Note that for 2-stage programs, the above class isthe same as(2Gen-P).
We make the mild assumption that (a)x = 000 lies inP, and (b) for every scenariou with parentv, either

f1,u(yv) is minimized by settingyt = 000 for all t ∈ path(v), or the total cost
∑

t∈path(u) wtyt + cusu ≥ 1 for
any feasible decisions(yu, su). For example, for the 3-stage set cover problem considered in Section 6.1,
(a) just requires that we are allowed to not pick any set in the first-stage, (b) is satisfied if the total cost
incurred in every scenario(A,B) with E(A,B) 6= ∅ is at least 1 (ifE(A,B) = ∅ then the cost incurred is 0
for everyx, yA). Under these assumptions, we show that we can sample initially to detect ifOPT is large.

Let Null = {u ∈ level(k) : f1,u(yv) is minimized atyv = 000}; we call a scenariou ∈ Null a “null-
scenario”. The basic idea is that if the non-null scenarios account for a probability mass of at least1

λk , then
OPT ≥ 1

λk since the cost incurred in each such scenario is at least 1. Otherwise we show thatx = 000 is
an optimal solution, by arguing that for any solutionx 6= 000 we can substitute thex-decisions with recourse
actionsyu in each scenariou, and the overall cost decreases since the low probability of occurrence of a
non-null scenario outweighs the increase in the cost of such a scenario (at most a factor ofλk).

Lemma 7.6 By samplingM = λk ln
(

1
δ

)
times, one can detect with probability at least1− δ (δ < 1

2), that
eitherx = 000 is an optimal solution to(3SSC-P), or thatOPT ≥ δ

M .

Proof : Let X be the number of times we sample a non-null scenario, i.e., a scenario not inNull. Note
that given a scenariou, one can decide in polynomial time ifu with parentv is a null-scenario by solving
the polynomial-size LPminyv≥000 f1,u(yv). If X = 0, we returnx = 000 as an optimal solution, otherwise we
assert thatOPT ≥ δ

M . In every non-null scenario we incur a cost of at least 1, soOPT ≥ q whereq =∑
u∈level(k)\Null pu is the probability of occurrence of a non-null scenario. Letr = Pr[X = 0] = (1− q)M .

So r ≤ e−qM andr ≥ 1 − qM . If q ≥ 1
λk , thenPr[X = 0] ≤ δ. So with probability at least1 − δ we

will say thatOPT ≥ δ
M which is true sinceOPT ≥ q. We show that ifq < 1

λk , thenx = 000 is an optimal
solution. So ifq ≤ δ/M , thenPr[X = 0] ≥ 1 − δ, and we return the correct answer with probability at
least1− δ. If δ/M < q < ln

(
1
δ

)
/M , then we always return a correct answer since it is both true thatx = 000

is an optimal solution, and thatOPT ≥ q ≥ δ
M .

We now show that ifq < 1
λk , thenx = 000 is an optimal solution. Consider any solution

(
x′, {y′u}). The

cost of this solution is

h(x′) ≥ wI · x′ +
∑

u∈level(i),1<i<k

puwu · y′u +
∑

u∈Null with parentv

puf1,u(y′v) +
∑

u/∈Null

pu(wu · y′u + cu · su).

For any scenariou with parentv, sinceT u ≥ 000, f1,u(yv) is a decreasing function ofyt for everyt ∈ path(v).
So for a null-scenariou, sincef1,u(yv) is minimized atyv = 000, we have thatf1,u(yv) = f1,u(000) for any
feasible decisionsyv. The solution withx = 000 andyu = y′u + x′ for every scenariou, andyu = y′u for
every other nodeu is also feasible, and has cost∑

u∈level(i),1<i<k

puwu · y′u +
∑

u∈Null with parentv

puf1,u(000) +
∑

u/∈Null

pu

(
wu · (y′u + x) + cu · su

)
.

This is at mosth(x′)− wI · x′ + qλkwI · x′ < h(x′) sincewu ≤ λkwI for any scenariou andq < 1
λk .

We can use the above lemma to convert a guarantee of the formh(x̂) ≤ (1 + c1γ) · OPT + c2ε into
a purely multiplicative(1 + κ)-guarantee. We perform the above sampling step, and after this if we detect
that OPT ≥ %/λk where% = δ

ln(1/δ) , then we can setγ = κ/(2c1) and ε = κ%/(2c2λ
k) to obtain a

(1 + κ)-guarantee.
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8 Applications

We consider a number ofk-stage stochastic optimization problems, wherek is a constant, for which we
prove the first known performance guarantees. Our algorithms do not assume anything about the distribution
or the cost structure of the input. Previously, algorithms for these problems were known only in the 2-stage
setting initially with restrictions on the distribution or input [11, 9, 6], and later without any restrictions [14].
For ak-stage integer optimization problem, we obtain a near-optimal solution to its linear relaxation by
solving the sample average problem as argued in Section 7, and round this solution using an extension of
the rounding scheme in [14].

Multicommodity flow We consider a stochastic version of the concurrent multicommodity flow problem
where we have to buy capacity to install on the edges so that one can concurrently ship demand of each
commodityi from its sourcesi to its sinkti. The demand is uncertain and is revealed ink-stages. We can
buy capacity on edgee in any stagei outcomeu at a cost ofcu

e ; and the total amount of capacity that we can
install on an edge is limited by its capacityΓe. The goal is to minimize the expected capacity installation
cost. This problem can be formulated as ak-stage stochastic LP:fk−i+1,u(yv) = min000≤yu≤Γ

(
cu · yu +∑

u′∈child(u) qu′fk−i,u′(yv, yu)
)

for a non-leaf nodeu at leveli; for a leafu, f1,u(yv) = min000≤yu≤Γ cu · yu

subject to the constraints that the total flow routed for(si, ti) is at leastdu
i , and the flow on edgee is at most

min(Γe,
∑

u′∈path(u) yu′,e). We can apply our algorithm to get(1 + ε)-optimal solution to this program.

Covering problems We consider thek-stage versions of set cover, vertex cover and the multicut problem
on tree. In each of these problems, there are elements in some universe that need to covered by sets. In the
k-stage stochastic problem, the target set of elements to cover is determined by a probability distribution,
and becomes known after a sequence ofk stages. In each outcomeu, we can purchase a setS at a price of
cu
S . We have to determine which sets to buy in stage I so as to minimize the (expected) total cost of buying

sets. The LP relaxation for thek-stage problem has a variableyu,S indicating if setS is bought in outcome
u, and constraints stating that for every leaf, and every elemente in its corresponding target set, we must
buy some setS that containse along this root-leaf path.

We can generalize the rounding theorem of Shmoys and Swamy [14] to show that one can use aρ-
approximation algorithm for the deterministic analogue, where the guarantee is with respect to its natural
LP relaxation, to round any fractional solution to thek-stage problem to an integer solution losing a factor
of kρ; combined with the algorithm in Section 7, this yields a(kρ + ε)-approximation algorithm for the
k-stage problem. In general, to compute the decisions in a stagei outcome, we solve a(k − i + 1)-stage
problem, and round the solution. We get a performance guarantee of(k log n + ε) for thek-stage set cover
problem, and(2k + ε) for thek-stage vertex cover problem and thek-stage multicut problem on trees.

Facility location problems In thek-stage uncapacitated facility location (UFL) problem, we are given a
set of candidate facility locationsF , a set of clients, and a probability distribution on the client demands that
evolves overk-stages. In each stage, one can buy facilities paying a certain facility opening cost; in stagek,
we know the exact demands and we have to assign each client’s demand to an open facility incurring a client
assignment cost. The goal is to minimize the expected total cost. This is captured by thek-stage program
wheregk−i+1,u(yv) = minyu≥000

(∑
i f

u
i yu,i + gk−i,u′(yv, yu)

)
for a stagei outcomeu, and for a stagek

scenariou, g1,u(yv) is the minimum of
∑

i f
u
i yu,i +

∑
j du

j cijxu,ij subject to the constraint that for every

client j,
∑

i xu,ij is at least1 if dj
u > 0 and 0 otherwise, and for everyi, j, xu,ij ≤

∑
u′∈path(u) yu′,i. We

can obtain a(1 + ε)-optimal solution to this program. Adapting the rounding procedure in [14], we obtain a
1.71(k−1)+1.52+ ε = O(k)-approximation algorithm fork-stage UFL. This rounding procedure extends
to giveO(k)-approximation algorithms fork-stage UFL with penalties, or with soft capacities.
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