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Elisa Fromont, René Quiniou, Marie-Odile Cordier

Abstract

We are interested in using parallel universes to learn interpretable
models that can be subsequently used to automatically diagnose cardiac
arrhythmias. In our study, parallel universes are heterogeneous sources
such as electrocardiograms, blood pressure measurements, phonocardio-
grams etc. that give relevant information about the cardiac state of a
patient. To learn interpretable rules, we use an inductive logic program-
ming (ILP) method on a symbolic version of our data. Aggregating the
symbolic data coming from all the sources before learning, increases both
the number of possible relations that can be learned and the richness of
the language. We propose a two-step strategy to deal with these dimen-
sionality problems when using ILP. First, rules are learned independently
in each universe. Second, the learned rules are used to bias a new learning
process from the aggregated data. The results show that this method is
much more efficient than learning directly from the aggregated data. Fur-
thermore the good accuracy results confirm the benefits of using multiple
sources when trying to improve the diagnosis of cardiac arrhythmias.

1 Problem description

To improve the quality of cardiac monitoring systems and in particular, the au-
tomated diagnosis of cardiac arrhythmias, we want to benefit from the presence
of multiple complementary sources such as electrocardiograms, blood pressure
measurements, phonocardiograms etc.. Each source is a parallel universe from
which we can extract relevant information about the cardiac state of a patient.

We are interested in learning, across all those universes, temporal rules
that could be used in a diagnosis scheme. To learn this kind of rules, a re-
lational learning system that uses Inductive Logic Programming (ILP) [3] is
well-adapted. ILP not only enables to learn relations between specific events
occurring in all universes but also provides rules that are understandable by
doctors since the representation method relies on first order logic.

One possible way to combine information coming from different universes is
simply, to aggregate all the learning data and then, to learn as if having one
rich universe. However, in such a large universe, the amount of data and the
expressiveness of the language, can increase dramatically with the number of
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sources and with them, the computation time of ILP algorithms and the size of
the hypothesis search space. Many methods have been proposed in ILP to cope
with the search space dimensions, one of them is using a declarative bias [4].
This bias aims either at narrowing the search space or at ranking hypotheses to
consider first the better ones for a given problem. Designing an efficient bias to
learn across all universes is a difficult task.

We propose a divide-and-conquer strategy (called biased multisource learn-
ing) where first, symbolic rules are learned independently from each universe.
Then, we use the learned rules to automatically create a bias that can restrict
the large and rich universe composed by the aggregation of the data of every
smaller universes.

2 Biased multi-source learning

To describe the method, we focus on learning from two universes. Both universes
contain specific events that can be described in terms of logic predicates.

For each cardiac arrhythmia, a discriminating set of rules (H1 and H2) are
learned in each universe independently. From these set of rules, we create a
strong declarative bias to learn another set of rules from the rich universe com-
posed by the aggregation of the data coming from those two smaller universes 1
and 2. The language L defined by the bias contains only predicates that occurs
in H1 and H2. To further constrain the learning process, we compute from the
sets H1 and H2 all relevant sequences of events across both universes and im-
pose these sequences as a syntactic bias. Relevant sequences are physiologically
possible sequences that maintain the relative order of the events computed in
rules H1 and H2.

To efficiently compute rules across the universes with the biased multisource
method, the rules learned a priori in each universe must contain common rela-
tional predicates (here, the temporal succession relation). If it is not the case,
there is no possible layout between events occurring in the different universes.
In the latter case, the biased multisource method behaves as a voting method
and learns the best single-universe rules from H1 and H2. This is also true
when data from the different sources are redundant. On the contrary, when the
universes are really complementary, the biased multisource method gives very
good results compared to learning from a single universe.

3 Results

We use data from MIMIC database (Multi-parameter Intelligent Monitoring
for Intensive Care [2]) which contains 72 patients files recorded in the CICU
of the Beth Israel Hospital Arrhythmia Laboratory. Seven cardiac rhythms
(corresponding to seven classes) are investigated in this work: normal rhythm
(sr), ventricular extra-systole (ves), bigeminy (bige), ventricular doublet (doub),
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ECG only (a) ABP only (b) rich univ (c) biased rich (d)

Nodes Time Nodes Time * Nodes Time Nodes Time

sr 2544 176.64 2679 89.49 18789 3851.36 243 438.55
ves 2616 68.15 5467 68.04 29653 3100.00 657 363.86

bige 1063 26.99 1023 14.27 22735 3299.43 98 92.74
doub 2100 52.88 4593 64.11 22281 2417.77 1071 290.17

vt 999 26.40 3747 40.01 8442 724.69 30 70.84
svt 945 29.67 537 17.85 4218 1879.71 20 57.58
af 896 23.78 972 21.47 2319 550.63 19 63.92

TOT 11163 404.51 19018 315.24 108437 15823.59 2138 1377.66

Table 1: Number of nodes visited for learning and computation times.

ventricular tachycardia (vt), supra-ventricular tachycardia (svt) and atrial fib-
rillation (af ).

Table 1 gives an idea of the computational complexity of four different learn-
ing processes: from each universe separately (a and b); from one rich universe
composed by the aggregated data without using a bias (c); from one rich uni-
verse composed by the aggregated data using the biased multisource method
(d). All universes are synchronized. They describe in parallel the cardiac state
of the patient. In the following experiments, universes are one lead of an elec-
trocardiogram (ECG) and a blood pressure measurement (ABP). Nodes is the
number of nodes explored in the search space and Time is the learning com-
putation time in CPU seconds on a Sun Ultra-Sparc 5. On average, from 5 to
10 times more nodes are explored when learning from (c) than when learning
from (a) and (b) and about 500 to 1000 times less nodes are explored during
(d) multisource learning than during (c). However the computation time does
not grow linearly with the number of explored nodes because the covering tests
(determining whether an hypothesis is consistent with the examples) are more
complex for (c) and (d). Biased multisource learning (d) computation times
take into account the necessary time to first learn the rules in each universe
separately. They are still very much smaller (8 to 35 times less) than when
learning on the rich universe without using the bias (c).

We give accuracy results obtained with a leave-one-out cross validation
method when learning on each universe separately and when learning across
the universe using the biased method. The universes are complementary: the
lead V of an electrocardiogram without information on the shape of the waves
and the arterial blood pressure channel without information on the diastole.
The results of this study are given in Table 2. The table shows that the accu-
racy is really improved by using multiple universes not only during the learning
process but also, in most cases, during the test step.

More results on these data can be found in [1].
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ECG (c) ABP (b) biased multisource (d)
PrecAp PrecT PrecAp PrecT PrecAp PrecT

rs 0.48 0.44 1 0.98 1 1
esv 0.52 0.46 0.928 0.80 0.942 0.76
bige 0.98 0.90 0.997 0.84 0.999 0.88
doub 0.85 0.78 0.98 0.86 0.99 0.88
tv 0.88 0.72 0.93 0.82 0.97 0.8
tsv 0.96 0.96 0.96 0.82 0.99 0.96
fa 0.977 0.9 0.978 0.78 0.98 0.82

Table 2: ross validation results when learning in each universe separately and
when learning in the rich universe using the biased method
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