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Abstract. In this paper parallel universes are defined by their relation
to multi-criteria optimization combined with an explicit or implicit link
for the unambiguous identification of an optimum. As an explicit link
function the desirability index is introduced. Desirabilities are also used
for restricting the Pareto set to desired parts.
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1 Parallel Universes

In this paper it is shown how multi-criteria optimization (MCO) fits into the
possible notion of parallel universes. We think of one universe as one view of the
universe, i.e. as one quality of the universe represented by one response. Ana-
logously we think of parallel universes as many views of the universe, i.e. many
qualities or many criteria connected by a link for comparison of outcomes of
the individual criteria. This link appears to be an important feature of parallel
universes since without it the single universes could well be studied indepen-
dently. Moreover, for this paper we assume that all criteria depend (at least in
principle) on the same set of influential factors, and all criteria are optimized in
terms of (the same) influential factors. If the criteria depend on different sets
of factors one could just combine these factor sets to one joint set and imagine
that all criteria in principle depend on all these factors. The notion of parallel
universes appears to be important only when optima corresponding to different
criteria are inconsistent, and one is interested in something like a compromise to
resolve conflict. This could be done by means of the link criterion, or by assess-
ing the multivariate ’optimum candidates’ to identify (a set of) joint (Pareto)
optima and afterwards evaluate them by means of external information. This
would then relate to an unformalized link. But let us discuss all these in more
detail, including a formal definition for parallel universes.
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2 Expert knowledge

Expert knowledge is most important not only for the definition of criteria for the
parallel universes, but also for the definition of the link between the universes.
Prior knowledge may be expressed in an explicit link criterion before optimiza-
tion. This gives the opportunity to replace the multivariate optimization problem
by a univariate one leading (hopefully) to an unambiguous solution. Examples
for such explicit link functions are desirability indices to be defined later, and
the well-known utility functions.

In multivariate optimization, posterior knowledge may be expressed by criteria
for the evaluation of the elements of a set of optimal solutions. One could possibly
judge a set of Pareto optima after optimization based on expert knowledge in
order to select the most appropriate optimum.

In this paper we even suggest a third possibility combining prior and posterior
knowledge. We first assess the criterion values by means of so-called desirabi-
lities, this way restricting the set of Pareto solutions, and then select from this
restricted set by means of posterior knowledge.

3 Multi-Criteria Optimization (M CO)

Definition: Standard MCO Problem for the minimization case
The (error free) Standard MCO Problem is defined by:
Minimize Y =f(X)=(fr(X),..., fr(X))

with Y=Y,...,.Yx) €, quality criteria
X=(X,...,X,) X, influential factors
Jis 1=1,...,k. mathematical models

Note that criteria are modelled here as functions of influential factors without
noise. However, model extensions dealing with noise are possible.

Examples are

Y1 = distance from optimum red color portion, Y5 = distance from optimum
green color portion, X = spectrum, or

Y] = error, Y, = - interpretability, where X = (observable factors, class), or

Y, = distance to target in parallel universe i = 1, 2.

Possible problems in a MCO are non-comparable optima because of non-comparable

scales of criteria, not well-defined order in criteria space R¥, leading to many
non-comparable optimum quality criteria vectors.

4 Parallel Universes: Definition

Let us now study parallel universes more formally.
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Definition: Parallel universes
A parallel universe is a 4-tuple (X, Y, f, L) where

with X=(X,...,.X,)ex, influential factors
Y=M,....Yy) €, quality criteria
=01, fr) mathematical models
L:RF - R. link function.

The link function is applied to the quality criteria which are functions of
the influential factors. The link function is typically minimized leading to a
standard MCO problem with link function:

Minimize L(Y)=L(f(X)) = L(f1(X),..., fxs(X))).

An example for the link function L is the negative of a desirability index D
defined in the next section.

5 A-priori link: Desirability Index

A desirability index is defined in five steps (cp. Trautmann, Weihs (2006), Traut-
mann (2004)):

— The influential factors are fixed: Xy,...,X,

— The quality criteria  Y7,...,Y. and their dependence on the influential
factors are identified: Y; = f;(X1,..., Xn, i)

— The Desirability Function mapping the values of the quality criteria to the
interval [0,1] is fixed: d;(Y;)(i =1,...,k), d:R —[0,1] bzw. (0,1]

— A summary measure called Desirability Index (DI) is fixed linking the indi-
vidual desirabilities to one univariate quality measure: D := f(dy,...,dg),
D :[0,1]%/(0,1]* — [0,1]/(0,1)

— DI is maximized with respect to the influential factors, e.g.:

..... x, —Dg(X1,...,X,) = miny, _x, — (/Hf:l d;(fi(X1,..., Xn,0))
We now give two prominent examples for desirability functions. Harrington
(1965) defined the desirability function in two-sided (target) case (cp. Figure
1):
2Y; — (USL; + LSL;)

USL; — LSL;
Derringer, Suich (1980) defined in the two-sided case (cp. Figure 2):

di(Y/) = exp(=[Y]["), Y] =

, Y, < LSL;
YioLsboyl LSL, <Y; < T,

0

('_Z)}*LSL:

( —USL; )i, Ty, <Y; <USL;
0

T.—USL:
, Y, > USL;

The corresponding one-sided case look as follows. The Harrington functions are
defined as (cp. Fig. 3):

di(Y]) = exp(—exp(—|Y]|)), Y] = boi + b1;Yi.
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LSL v USL
i
Fig. 1. Harrington desirability: two-sided case

Here, you only have to specify pairs (y;,d;), i = 1,2.
The Derringer/Suich functions have the form (cp. Fig. 4):

0’ Yz S Ti
4i(Y;) = (F=gert)" T < Y; <USL;
1, Y, >USL;

Alternative specifications of the Desirability Index are:

k

k k
Dy = ([[d)"*,  Dp:=][div  Dmin:= i diy Dy = 1/kY " d;.
i=1 i=1 ' i=1

6 A-posteriori link: Pareto principle

If no explicit link function is specified like a desirability index, in multivariate
optimization posterior knowledge may be expressed for the evaluation of the
elements of a set of optimal solutions. One could possibly assess a set of Pareto
optima based on expert knowledge in order to select the most appropriate opti-
mum.

Definition: Pareto optimality

A value of a vector of quality criteria (QC) Y = (Y1,...,Y%) is Pareto
optimal iff there is no other value where process quality is improved for at
least one criterion and not diminished for all other criteria. The Pareto front
gives the points in the target space where the process cannot be improved in
one quality without worsening another.

A vector of factor values X = (Xy,...,X,,)" is Pareto optimal iff the cor-
responding vector of quality criteria Y = f(X7,...,X,,) is Pareto optimal.
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LSl v T, uSL,

Fig. 2. Derrington/Suich desirability: two-sided case

This set of vectors is called Pareto set.

The problem is that in general there is a variety of Pareto optimal locations.
Therefore, an a-posteriori link method has to integrate expert knowledge a-
posteriori for the selection of (set of possibly) realized optimal factor vector(s).

7 Combination of prior and posterior expert knowledge

Instead of the standard MCO problem (for minimization) we propose to solve
the, what we call, Desirability MCO problem (for minimization) (cp. Mehnen,
Trautmann (2006)).

Definition: Desirability MCO problem for minimization
The desirability MCO problem is defined as:

Minimize  — d(Y) = —d[f(X)] = —(di[fi(X)],. .. dk[fe(X)])
with Y=W,...,.Yx) €, quality criteria
X=(X1,...,X,) X, influential factors
d; € 0,1], i=1,...,k, desirability functions
fis i=1,...,k. mathematical models

8 Pareto Optimality

Let uns now consider Pareto optimality for the different ways of linkage between
the parallel universes. In the case of prior knowledge linkage by means of de-
sirability indices the situation is optimal since optimal factor values are Pareto
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Yi

Fig. 3. Harrington desirability: one-sided case

optimal.

Theorem: Optimal factor values found by Dg are Desirability Pareto opti-
mal.

Proof: Given optimal factor values X°Pt = (X7*,... X2P') derived from
D, = (T1%_, d;)/* and desirability functions d,.

Assume X°P! is not Desirability Pareto optimal, then

IX*: d(VG|X*) > di (V| XOPY) forie {1,...,k}
and  d;(Y;|X*) > d;(Y;|X") for j=1,...,k;j #1i.

Thus,

k k
D* = ([[di(vi|x*))"/* > D' = (] da(Y:|X°%"))/*. Contradiction!
i=1 i=1

Therefore, DI can be seen as a method for selection of Pareto optimal factor
values.

In the case of the Desirability MCO and one-sided desirability functions of Har-
rington type (minimization) it is true that Pareto optimal solutions of the de-
sirability MCO problem are Pareto optimal for the standard MCO problem as
well. Therefore, desirability functions select relevant local sets of Pareto front
and Pareto set! Unfortunately, this is not valid anymore, if at least one two-sided
desirability function is involved. However, choosing such a desirability MCO
problem this is consciously accepted!

Let us look at some examples.
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Fig. 4. Derringer/Suich desirability: one-sided case

9 Examples

Let us consider the so-called Binh problem (cp. Binh (1999)):
Minimize fi(z1,22) = 23 + 23

Minimize fo(21,22) = (21 — 5) + (22 — 5)?
with —5 < xy <10, -5 < x5 <10.

For this example, the Pareto front and the Pareto set are shown in Figure 5.

200 5 0 5 10

Fig. 5. Binh problem: Pareto front (left) and Pareto set (right)



8 C. Weihs, H. Trautmann

An analogous Desirability MCO problem could look like:

Minimize —d;(f1(x1,22)) = —dy (22 + 23)
Minimize —da(fa(z1,22)) = —da((x1 — 5)% + (22 — 5)?)
with —5 <21 <10, —5 < zy < 10
and y{" =20,d" =0.9,y? =50,d® =102,
g =0.0,dY =1-1072,48% = 10,d = 1072

For this problem Pareto front and Pareto set can be found in Figure 6. Obviously,
desirabilities lead to the restriction of both Pareto front and Pareto set.

60

50
40!

f \ 5
230

20

10 \
o "
0 10 20 30 40 50 60 .
f1 %

Fig. 6. Binh problem with desirabilities: Pareto front (left) and Pareto set (right)

In order to give you an impression what would happen, if desirability functions
are two-sided in Figure 7 examples are given (first row) together with their cor-
responding Pareto fronts showing that also points are optimal now which were
non optimal before transformation by desirabilities.

10 Conclusions

We defined Parallel Universes as Multi-Criteria Optimization in combination
with a Link Function. Linkage was allowed to take place a-priori by means of a
desirability Index, a-posteriori by means of expert selection from the Pareto set,
or by a combination of prior and posterior linkage using desirability functions for
each criterion. The latter procedure leads to a restriction of the Pareto front iff
desirability functions are one-sided, but to (totally) different Pareto fronts and
sets, if there is at least one two-sided desirability function involved. In all three
ways, linkage has the aim of identifying an adequate optimum from the Pareto
set.
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Fig. 7. Two-sided desirability functions (1st row), and corresponding "Pareto
fronts’ (2nd row)
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