
Strong Price of Anarchy

for

Machine Load Balancing

Amos Fiat?, Haim Kaplan∗, Meital Levy??, and Svetlana Olonetsky∗

Tel Aviv University

Abstract. As defined by Aumann in 1959, a strong equilibrium is a Nash equilibrium that is resilient

to deviations by coalitions. We give tight bounds on the strong price of anarchy for load balancing on

related machines. We also give tight bounds for k-strong equilibria, where the size of a deviating coalition

is at most k.

Key words: Game theory, Strong Nash equilibria, Load balancing, Price of Anarchy

1 Introduction

Many concepts of game theory are now being studied in the context of computer science. This convergence of

different disciplines raises new and interesting questions not previously studied in either of the original areas

of study. Much of this interest in game theory within computer science is due to the seminal papers of Nisan

and Ronen [20] and Koutsoupias and Papadimitriou [17].

A Nash equilibrium ([19]) is a state in a noncooperative game that is stable in the sense that no agent can

gain from unilaterally switching strategies. There are many “solution concepts” used to study the behavior of

selfish agents in a non-cooperative game. Many of these are variants and extensions of the original ideas of

John Nash from 1951.

One immediate objection to Nash equilibria as a solution concept is that agents may in fact collude and

jointly choose strategies so as to “profit”. There are many possible interpretations of the statement that a set of

agents “profit” from collusion. One natural interpretation of this statement is the notion of a strong equilibrium

due to Aumann [5], where no coalition of players have any joint deviation such that every member strictly

benefits. Whereas mixed strategy Nash equilibria always exist for finite games [19], this is not in general true

for strong equilibria.
? School of computer science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail:

{fiat,haimk,levymeit,olonetsk}@post.tau.ac.il. Research partially supported by the Israel Science Foun-

dation and the German Israel Foundation.
?? The research has been supported by the Eshkol Fellowship funded by the Israeli Ministry of Science.

Dagstuhl Seminar Proceedings 07261
Fair Division
http://drops.dagstuhl.de/opus/volltexte/2007/1225

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Holzman and Law-Yone [16] characterized the set of congestion games that admit strong equilibria. The

class of congestion games studied was extended by Rozenfeld and Tennenholtz in [21]. [21] also considered mixed

strong equilibria and correlated mixed strong equilibria under various deviation assumptions, pure, mixed and

correlated. Variants of strong equilibria include limiting the set of possible deviations (coalition-proof equililbria

[8]) and assuming static predefined coalitions ([15, 14]).

The term price of anarchy was coined by Koutsoupias and Papadimitriou [17]. This is the ratio between

the cost of the worst-case Nash equilibria and the cost of the social optimum. A related notion is the price

of stability defined in [3], the ratio between the cost of the best Nash equilibria and the cost of the social

optimum. These concepts have been extensively studied in numerous settings, machine load balancing [17, 18,

11, 7, 10], network routing [22, 6, 9], network design [4, 12, 1, 3, 13], etc.

Andelman et al. [2] initiated the study of the strong price of anarchy (SPoA), the ratio of the worst case

strong equilibria to the social optimum. The authors also define the notion of a k-strong equilibrium, where no

coalition of size up to k has any joint deviation where all strictly benefit. Analogous definitions can be made

for the k-strong price of anarchy.

One may argue that the strong price of anarchy (which is never worse than the price of anarchy) removes

the element of poor coordination and is entirely due to selfishness. Likewise, the k-strong price of anarchy

measures the cost of selfishness and restricted coordination (up to k agents at once).

Our work here is a direct continuation of the work of Andelman et al. [2], and addresses many of the open

problems cited there, in particular in the context of a load balancing game. In this setting agents (jobs) choose

a machine, and job j placed on machine i contributes wj(i) to the load on machine i. Agents seek machines

with small load, and the social cost usually considered is the makespan, i.e., the maximal load on any machine.

Whereas [2] considered strong price of anarchy and k-strong price of anarchy for unrelated machines, herein

we primarily consider the strong price of anarchy for related machines (machines having an associated speed).

Our results.

1. Czumaj and Vocking [11] showed that the price of anarchy for load balancing on related machine is

Θ(log m/log log m), we show that the strong price of anarchy for load balancing on related machine is

Θ
(
log m/(log log m)2

)
. This is our most technically challenging result.

2. We also give tight results for the problems considered by [2]:

(a) In [2] the strong price of anarchy for load balancing on m unrelated machines was shown to lie between

m and 2m− 1. We prove that the true value is always m.

(b) In [2], the k-strong price of anarchy for load balancing of n jobs on m unrelated machines is be-

tween O(nm2/k) and Ω(n/k). We prove that the k-strong price of anarchy falls in between and is

Θ(m(n−m + 1)/(k −m + 1)).

2

2 Preliminaries

A load balancing game consists of a set M = {M1, . . . ,Mm} of machines, a set N = {1, . . . , n} of jobs (agents).

We use the terms machine i or machine Mi interchangeably. Each job j has a weight function wj() such that

wj(i) is the running time of job j on machine Mi. When the machines are unrelated then wj() is an arbitrary

positive real function. For related machines, each job j has weight, denoted by wj , and each machine Mi has a

speed, denoted by v(i). The running time of job j on machine i is wj(i) = wj/v(i) where wj is the weight of job

j. In game theoretic terms, the set of strategies for job j is the set of machines M . A state S is an assignment

of jobs to machines. Let mS(j) be the machine chosen by job j in state S. The load on machine Mi in state S

is
∑

j|Mi=mS(j) wj(i).

Given a state S in which job j is assigned to machine Mi, we say that the load observed by job j is the load

on machine Mi in state S. The makespan of a state S is the maximum load of a machine in S. Jobs seek to

minimize their observed load. The state OPT (the social optimum) is a state with minimal makespan. We also

denote the makespan in state OPT by OPT, and the usage would be clear from the context.

A strong equilibrium is a state where no group of jobs can jointly choose an alternative set of strategies so

that every job in the group has a reduced observed load in the new state. In a k-strong equilibrium we restrict

such groups to include no more than k agents. The strong price of anarchy is the ratio between the makespan

of the worst strong equilibrium and OPT. The k-strong price of anarchy is the ratio between the makespan of

the worst k-strong equilibrium and OPT.

3 Related Machines

Czumaj and Vocking [11] show that the price of anarchy of load balancing on related machines is Θ(log m/ log log m).

We show that the lower bound construction of [11] is not in strong equilibrium. We also give a somewhat weaker

(and tight) lower bound of Ω(log m/(log log m)2). We first present the lower bound of [11] and claim that it is

not resilient to deviation by coalitions.

The lower bound of [11]:

Consider the following instance in which machines are partitioned into ` + 1 groups. Let these groups be

G0, G1, . . ., G` with mj machines in group Gj . We define m0 = 1, and mj+1 = (` − j) ·mj for j = 1, . . . , `.

Since the total number of machines m =
∑`

j=0 mj and m` = `!, it follows that ` ∼ log m/ log log m. Suppose

that all machines in Gj have speed 2(`−j).

Consider the following Nash equilibrium, every machine in Gj receives ` − j jobs, each of weight 2(`−j).

Each such job contributes 1 to the load of its machine. The total load on every machine in Gj is therefore `− j.

Machines in group G` have no jobs assigned to them.

The makespan is `, obtained on machines of group G0. Consider some job assigned to a machine from group

Gj , this job has no incentive to migrate to a machine in a group of lower index since the load there is already

3

higher than the load it currently observes. If a job on a machine in Gj migrate to a machine in Gj+1 then it

would observe a load of `− (j + 1) + 2(`−j)/2(`−(j+1)) = `− j + 1 > `− j and even higher loads on machines

of groups Gj+2, . . . , G`.

For the minimal makespan, move all jobs on machines in Gj to machines in Gj+1 (for j = 0, . . . , ` − 1).

There are sufficiently many machines so that no machine gets more than one job, and the load on all machines

is 2`−j/2`−(j+1) = 2. The price of anarchy is therefore Ω(log m/log log m). (This is also shown to be an upper

bound).

However, this is not a strong Nash equilibrium.

Lemma 1. The above Nash equilibrium is not in strong equilibrium for ` > 8.

Proof. Consider the following scenario. We consider a deviation by a coalition consisting of all ` jobs on

some machine of group G0 (machine M) along with 3 jobs from each of ` different machines from group G2

(machines N1, N2, . . . , N`). We describe the actions of the coalition in two stages, and argue that all members

of the coalition benefit from this deviation.

All ` jobs located on machine M ∈ G0 migrate to separate machines N1, N2, . . . , N` in group G2.

Following this migration, the load on machines Ni is ` + 2 (it was `− 2, we added a job from machine M

that contributed an extra 4 to the load). The load on machine M has dropped to zero (all jobs were removed).

Now, remove 3 original jobs (with weight 2`−2) from each of the Ni machines and place them on machine

M . The load on machine Ni has dropped to `− 1, so the job that migrated from machine M to machine Ni is

now experience lower load than before. The load on machine M is now 3` · 2`−2/2` = 3`/4 < `− 2, for ` > 8.

Thus, the jobs that migrated from machines in G2 to machine M also benefit from this coalition.

3.1 Lower bound on strong price of anarchy for related machines.

Theorem 1. The strong price of anarchy for m related machines and n jobs is Ω
(
log m/(log log m)2

)
.

Proof. Consider the following instance in which machines are partitioned into `+1 groups. Let these groups be

G0, G1, . . ., G`. We further subdivide each group Gi, 0 ≤ i < `, into log ` subgroups, where all machines within

the same subgroup have the same speed, but machines from different subgroups of a group differ in speed. The

group G` consists of a single subgroup F` log `. In total, we have ` log ` + 1 subgroups F0, F1, . . . , F` log `, where

subgroups F0, . . . , Flog `−1 are a partition of G0, Flog `, . . . , F2 log `−1 are the subgroups of G1, etc. The speed of

each machine in subgroup Fj is 2(` log `−j).

Let mj denote the number of machines in subgroup Fj , 0 ≤ j ≤ ` log `. Then m0 = 1, and for subgroup

Fj+1 such that Fj ⊂ Gi we define mj+1 = (` − i) ×mj . It follows that the number of machines in subgroup

F` log ` is at least (`!)log ` and therefore m ≥ (`!)log ` and ` ∼ log m/(log log m)2.

4

Consider the following state, S. Each machine of group Gi is assigned `− i jobs. Jobs that are assigned to

machines in subgroup Fj have weight 2(` log `−j). As the speed of such machines is 2(` log `−j), it follows that

each such job contributes one to the load of the machine it is assigned to. I.e., the load on all machines in Gi

is `− i. Machines of F` log ` have no jobs assigned to them.

The load on the machines in group G0 is ` which is also the makespan in S. The minimal makespan (OPT)

is attained by moving the jobs assigned to machines from Fj each to a separate machine of subgroup Fj+1, for

0 ≤ j < ` log `. The load on all machines is now 2` log `−j/2` log `−(j+1) = 2.

State S is a Nash equlibrium. A job assigned to a machine of subgroup Fj has no incentive to migrate to

a machine with a lower indexed subgroup since the current load there is equal or higher to the current load

it observes. There is no incentive to migrate to a higher indexed subgroup as it observes a load of at least

`− j +1 > `− j. We now argue that state S is not only a Nash Equilibrium but also a strong Nash equilibrium.

First, note that jobs residing on machines of group Gi, 0 ≤ i ≤ ` − 2, have no incentive to migrate to

machines of group Gj , for j ≥ i + 2. This follows since the speed of each machine in group Gj is smaller by a

factor of more than 2log ` = ` from the speed of any machine in group Gi. Thus, even if the job is alone on such

a machine, the resulting load is higher than the load currently observed by the job (current load is ≤ `). Thus,

any deviating coalition has the property that jobs assigned to machines from group Gi may only migrate to

machines from groups Gj , for j ≤ i + 1.

Suppose that jobs that participate in a deviating coalition are from machines in groups Gi, Gi+1, . . ., Gj ,

1 ≤ i ≤ j ≤ `. The load on machines from group Gi holding participating jobs must strictly decrease since

either jobs leave (and the load goes down) or jobs from higher or equal indexed groups join (and then the load

must strictly go down too). If machines from group Gi have their load decrease, and all deviating jobs belong to

groups i through j, i < j, then there must be some machine M ∈ Gp, i < p ≤ j, with an increase in load. Jobs

can migrate to machine M either from a machine in group Gp−1, or from a machine in group Gj for some j ≥ p.

If a deviating job migrates from a machine in Gj for some j ≥ p then this contradicts the increase in the

load on M . The contradiction arises as such jobs will only join the coalition if they become strictly better off,

and for this to happen the load on M should decrease.

However, this holds even if the deviating job migrates to M from a machine in Gp−1. The observed load

for this job prior to deviating was `− (p− 1) and it must strictly decrease. A job that migrates to machine M

from Gp−1 increases the load by an integral value. A job that migrates away from machine M decreases the

load by an integral value too. This implies that the new load on M must be an integer smaller than `− (p−1),

which contradicts the increase in load on M . ut

5

4 Upper bound on strong price of anarchy for related machines.

We assume that machines are indexed such that v(i) ≥ v(j) for i < j. We also assume that the speeds of the

machines are scaled so that OPT is 1. Let S be an arbitrary strong Nash equilibrium, and let `max be the

maximum load of a machine in S. Our goal is to give an upper bound on `max. When required, we may assume

that `max is a sufficiently large constant, since otherwise an upper bound follows trivially. Recall that machines

are ordered such that v(1) ≥ v(2) ≥ · · · ≥ v(m) > 0. Let `(i) be the load on machine Mi, i.e., the total weight

of jobs assigned to machine Mi is `(i)v(i).

4.1 Sketch of the proof

We prove that m = Ω(`max
`max log `max), which implies `max = O(log m/(log log m)2). To show that m =

Ω(`max
`max log `max) we partition the machines into consecutive disjoint “phases” (Definition 1), with the prop-

erty that the number of machines in phase i is Ω(`) times the number of machines in phase i− 1 (Lemma 4.3),

where ` is the minimal load in phases 1 through i.

For technical reasons we introduce shifted phases (s-phases, Definition 2) which are in one-to-one correspon-

dence to the phases. We focus on the s-phases of faster machines, so that the total drop in load amongst the

machines of these s-phases is about `max/2. We next partition the s-phases into consecutive blocks. Let δi be

the load difference between slowest machine in block i− 1 and the slowest machine in block i. By construction

we get that
∑

δi = Θ(`max).

We map s-phases to blocks such that each s-phase is mapped to at most one block as follows (Lemmas 7

and 8), see Fig. 1.

– If δi < 1/ log `max ⇒ we map a single (1 = dδi log `maxe) s-phase to block i

– If δi ≥ 1/ log `max ⇒ we map Ω(δi log `max) s-phases to block i

Therefore the total number of s-phases is at least
∑

δi log `max = Ω(`max log `max). Given the one-to-one

mapping from s-phases to phases, this also gives us a lower bound of Ω(`max log `max) on the number of phases.

In Lemma 4.3 we prove that the number of machines in phase i is Ω(`max) times the number of machines

in phase i− 1. This allows us to conclude that the total number of machines m = Ω(`max
`max log `max), or that

`max = O(log m/(log log m)2).

4.2 Excess Weight and Excess Jobs

Given that the makespan of OPT is 1, the total weight of all jobs assigned to machine σ in OPT cannot exceed

v(σ), the speed of machine σ. We define the excess weight on machine 1 ≤ σ ≤ m to be X(σ) = (`(σ)−1)v(σ).

(Note that excess weight can be positive or negative).

6

δ3 ≤ 1/ log ` δ4 ≤ 1/ log `δ1 > 1/ log `

B0 B1 B2

P (B1) P (B3) P (B4)

Fig. 1. The machines are sorted in order of decreasing speed (and increasing index), and partitioned into s-phases. The

s-phases are further partitioned into blocks Bi. The s-phases that are mapped to block i are marked P (Bi).

Given a set R ⊂ {1, . . . , m}, we define the excess weight on R to be

X(R) =
∑

σ∈R

X(σ). (1)

For clarity of exposition, we use intuitive shorthand notation for sets R forming consecutive subsequences of

1, . . . , m. In particular, we use the notation X(σ) for X({σ}), X(≤ w) for X({σ|1 ≤ σ ≤ w}), X(w . . . y) for

X({w ≤ σ ≤ y}), etc.

Given that some set of machines R has excess weight X(R) > 0, it follows that there must be some set of

jobs J(R), of total weight at least X(R), that are assigned to machines in R by S, but are assigned to machines

in {1, . . . , m}−R by OPT. Given sets of machines R and Q, let J(R 7→ Q) be the set of jobs that are assigned

by S to machines in R but assigned by OPT to machines in Q, and let X(R 7→ Q) be the weight of the jobs

in J(R 7→ Q). Let R1, and R2 be a partition of the set of machines R. Then we have

X(R) ≤ X(R 7→ {1, . . . , m} \R) = X(R 7→ R1) + X(R 7→ R2) . (2)

In particular, using the shorthand notation above, we have that for 1 ≤ y < σ ≤ m,

X(≤ y) ≤ X(≤ y 7→> y) = X(≤ y 7→ y + 1 . . . σ) + X(≤ y 7→ σ + 1 . . . m) . (3)

Similarly, for 1 ≤ σ < y ≤ m we have

X(≤ y) ≤ X(≤ σ) + X(σ + 1 . . . y) . (4)

4.3 Partition into phases

Definition 1. We partition the machines 1, . . . , m into disjoint sets of consecutive machines called phases,

Φ1, Φ2, . . ., where machines of Φi precede those of Φi+1. We define ρ0 = 0 and ρi = max{j | j ∈ Φi} for i ≥ 1.

Thus, it follows that Φi = {ρi−1 + 1, . . . , ρi}. It also follows that machines in Φi are no slower than those of

Φi+1. Let ni be number of machines in the ith phase, i.e., ni = ρi − ρi−1, for i ≥ 1.

7

To determine Φi it suffices to know ρi−1 and ρi. For i = 1 we define ρ1 = 1, as ρ0 = 0 it follows that

Φ1 = {1}. We define ρi+1 inductively using both ρi and ρi−1 as follows.

ρi+1 = argminσ

{
X(≤ ρi 7→> σ) < X(≤ ρi−1) +

X (Φi)
2

}
. (5)

The phases have the following properties.

Lemma 2. Let ` be the minimal load of a machine in phases 1, . . . , i, (` = min{`(σ)|1 ≤ σ ≤ ρi}), then

ni+1 ≥ ni(`− 1)/2.

Proof. By the inductive definition of ρi+1 above (Equation 5), we have that

X(≤ ρi 7→> ρi+1) < X(≤ ρi−1) +
X (Φi)

2
.

Now, since X(≤ ρi) ≤ X(≤ ρi 7→ Φi+1) + X(≤ ρi 7→> ρi+1), we have

X(≤ ρi 7→ Φi+1) ≥ X(≤ ρi)−X(≤ ρi 7→> ρi+1) (6)

> X(≤ ρi−1) + X (Φi)−
(

X(≤ ρi−1) +
X (Φi)

2

)
(7)

=
X (Φi)

2
; (8)

Equation (6) follows by rewriting Equation (2). Equation (7) follows from the definition of ρi+1 (Equation

(5)), and the rest is trivial manipulation.

Since the speed of any machine in Φi is no smaller than v(ρi) (the lowest speed of any machine in phases

1, . . . , i), and we have chosen ` to be the minimum load of any machine in the set ≤ ρi, for every machine

σ ∈ Φi the excess weight X(σ) = (`(σ)− 1)v(σ) ≥ (`− 1)v(ρi). Therefore by substituting this into (8) we get

X(≤ ρi 7→ Φi+1) >
ni(`− 1)v(ρi)

2
.

In OPT, no machine can have a load greater than one. Therefore since the speed of any machine in Φi+1

is no larger than v(ρi) at most v(ρi) of the weight is on one machine in Φi+1, so there are at least (`− 1)ni/2

machines in Φi+1. ut

Lemma 3. Let j < i be two phases. If the minimal load of a machine ρj−1 ≤ k ≤ ρi is at least 3 then

X (Φi) > X (Φj).

Proof. Clearly it suffices to prove that X (Φi+1) > X (Φi) for every i > 0.

Since in OPT the load of every machine is at most one we have that

X(≤ ρi 7→ Φi+1) ≤
∑

σ∈Φi+1

v(σ). (9)

8

This together with (8) gives that
∑

σ∈Φi+1

v(σ) >
X (Φi)

2
. (10)

Let ` be the minimal load of a machine in Φi+1. From our definition follows that

X (Φi+1) ≥ (`− 1)
∑

σ∈Φi+1

v(σ) . (11)

The lemma now follows by combining (10) and (11) together with the assumption that ` > 3. ut

Let ` be the minimal load among machines 1, . . . , ρi. Let Γi be the subset of Φi that have at least (`− 1)/2

of their load contributed by jobs of weight w ≤ v(ρi+1).

Lemma 4. For i > j,
∑

σ∈Γi
v(σ) ≥ v(ρj)nj(`− 1)/(` + 3).

Proof. First we want to estimate X(Φi 7→≥ ρi+1). By rewriting Equation (2) we get that

X(Φi 7→≥ ρi+1) = X(≤ ρi 7→≥ ρi+1)−X(≤ ρi−1 7→≥ ρi+1) .

Since X(≤ ρi−1 7→≥ ρi+1) ≤ X(≤ ρi−1 7→> ρi), we also have that

X(Φi 7→≥ ρi+1) ≥ X(≤ ρi 7→≥ ρi+1)−X(≤ ρi−1 7→> ρi) . (12)

From the definition of ρi+1 follows that

X(≤ ρi 7→≥ ρi+1) ≥ X(≤ ρi−1) +
X (Φi)

2
, (13)

Similarly, from the definition of ρi follows that

X(≤ ρi−1 7→> ρi) < X(≤ ρi−2) +
X (Φi−1)

2
. (14)

Substituting Equations (13) and (14) into Equation (12) we get that

X(Φi 7→≥ ρi+1) ≥ X(≤ ρi−1) +
X (Φi)

2
−

(
X(≤ ρi−2) +

X (Φi−1)
2

)

≥ X(≤ ρi−2) + X (Φi−1) +
X (Φi)

2
−

(
X(≤ ρi−2) +

X (Φi−1)
2

)

≥ X (Φi−1)
2

+
X (Φi)

2
. (15)

Let A(σ) be the total weight of jobs j on machine σ with wj ≤ v(ρi+1) and let A(Φi) =
∑

σ∈Φi
A(σ). Since

every job in J(Φi 7→≥ ρi+1) has weight of at most v(ρi+1), it follows that X(Φi 7→≥ ρi+1) ≤ A(Φi), and by

Equation (15)

A(Φi) ≥ X (Φi−1)
2

+
X (Φi)

2
. (16)

We claim that every machine σ with A(σ) > 0 (i.e. the machine has at least one job j with wj ≤ v(ρi+1))

has load of at most ` + 1. To prove the claim, let q ≤ ρi+1 be a machine that has load greater than ` + 1 and

9

a job j with wj ≤ v(ρi+1), and let q′ be the machine among 1, . . . , ρi with load `. This state is not a Nash

equilibrium since if job j switches to machine q′ it would have a smaller cost. We get that

A(Φi) ≤
∑

σ∈Γi

v(σ)(` + 1) +
∑

σ∈Φi−Γi

v(σ)
`− 1

2

=
∑

σ∈Γi

v(σ)
` + 3

2
+

∑

σ∈Φi

v(σ)
`− 1

2

≤
∑

σ∈Γi

v(σ)
` + 3

2
+

X (Φi)
2

. (17)

Inequality (17) holds ` is the smallest load of a machine in 1, . . . , ρi. Combining (17) and (16) we get that

∑

σ∈Γi

v(σ)
` + 3

2
+

X (Φi)
2

≥ X (Φi−1)
2

+
X (Φi)

2
, (18)

and therefore
∑

σ∈Γi

v(σ)
` + 3

2
≥ X (Φi−1)

2
≥ X (Φj)

2
≥ v(ρj)nj

`− 1
2

. (19)

The first inequality in (19) follows from (18), the second follows from Lemma 3, and the third inequality follows

since ` is the smallest load of a machine in 1, . . . , ρi and since v(ρj) is the smallest speed in Φj . From (19) the

lemma clearly follows. ut

Recall that `max is the maximum load in S. Define k to be min{i | `(i) < `max/2}. Let t be the phase such

that ρt < k and ρt+1 ≥ k. Consider machines 1, . . . , ρt. From now on ` would be the minimal load of a machine

in this set of machines. Then, ` = Θ(`max), and we may assume that ` is large enough.

Definition 2. We define another partition of the machines into shifted phases (s-phases) Ψ1, Ψ2, . . . based on

the partition to phases Φ1, Φ2, . . . as follows. We define ϕ0 = 0. Let ϕi be the slowest machine in Φi such that

at least (` − 1)/2 of its load is contributed by jobs with weight w ≤ v(ρi+1) (there exists such a machine by

Lemma 4). We define Ψi = {ϕi−1 + 1, . . . , ϕi}.

Note that there is a bijection between the s-phases Ψ1, Ψ2, . . . and the phases Φ1, Φ2, Furthermore, all

machines in Φi such that at least (`− 1)/2 of their load is contributed by jobs of weight ≤ v(ρi+1) are in Ψi.

Lemma 5. The load difference between machines ϕ2 and ϕt, `(ϕ2)− `(ϕt) > `max/4 + 4.

Proof. According to the definition of Ψi, there is a job on machine ϕi with weight w ≤ v(ρi+1) ≤ v(ϕi+1) and

therefore it contributes load of at most 1 to machine ϕi+1. As S is a Nash equilibrium, the load difference

between machines ϕi and ϕi+1 is at most 1. The load on the fastest machine ϕ1 is `(ϕ1) > `max−1 since every job

contributes a load of at most 1 to it. Thus, the load on machine ϕ2 ∈ Φ2 is at least `(ϕ2) ≥ `(ϕ1)−1 ≥ `max−2.

The load on machine ϕt is `(ϕt) ≤ `max/2 + 1, since there is a job with weight of at most v(ϕt+1) on ϕs

and by the definition of ϕi there is a machine k ≤ ϕt+1 with load less than `max/2.

10

Therefore, the load difference between machines ϕ2 and ϕt is at least (`max−2)−(`max/2+1) > `max/4+4,

for `max sufficiently large (> 28). ut

We define zi+1 to be v(ϕi)/v(ϕi+1). Notice that zi+1 ≥ 1. We redefine Γb to be the subset of machines of Ψb

such that for every such machine, at least (`−1)/2 of the load is contributed by jobs with weight w ≤ v(ϕb+1).

For two s-phases Ψa, and Ψb the lemma below relates the difference in load of ϕa and ϕb, to the ratio of speeds

v(ϕa) and v(ϕb).

Lemma 6. Consider s-phases Ψa and Ψb such that a < b. Let ` be the minimal load in Ψa and Ψb. If

v(ϕa)/v(ϕb) ≤ za+1(`− 1)/5 then `(ϕa) ≤ `(ϕb) + 4/zb+1.

Proof. Proof by contradiction, assume that `(ϕa) = `(ϕb) + α/zb+1, for some α > 4, and that v(ϕa)/v(ϕb) ≤
za+1(`−1)/5. We exhibit a deviating coalition all of whose members reduce their observed loads, contradicting

the assumption that the current state is a strong equilibrium.

We observe that for every machine σ ∈ Γb we have `(σ) ≤ `(ϕb) + 1/zb+1.(From this also follows that

`(σ) < `(ϕa).) If not, take any job j located on σ, such that wσ ≤ v(ϕb+1) and send it to machine ϕb, the

contribution of job j to the load of ϕb is at most v(ϕb+1)/v(ϕb) = 1/zb+1, i.e., the current state is not even a

Nash equilibrium. Similarly, we have `(ϕb) ≤ `(σ) + 1/zb+1.

We group jobs on ϕa in a way such that the current load contribution of each group is greater than 1/(2za+1)

and no more than 1/za+1. I.e., for one such group of jobs G, 1/(2za+1) <
∑

j∈G wj/v(ϕa) ≤ 1/za+1. At least

za+1(` − 1)/2 such groups are formed. Every such group is assigned a unique machine in Γb and all jobs

comprising the group migrate to this machine. Let Γ ⊆ Γb be a subset of machines that got an assignment,

|Γ | = min{za+1(` − 1)/2, |Γb|}. The load contributed by migrating jobs to the target machine, σ ∈ Γb, is

therefore
∑

j∈G

wj

v(σ)
≤

∑

j∈G

wj

v(ϕb)
,

we also know that v(ϕa)/v(ϕb) ≤ za+1(`− 1)/5 and
∑

j∈G wj/v(ϕa) ≤ 1/za+1, this gives us that

∑

j∈G

wj

v(ϕb)
≤

∑

j∈G

wj

v(ϕa)
· v(ϕa)
v(ϕb)

≤ (`− 1)/5.

Therefore, after migration, the load on σ ∈ Γb is ≤ `(σ)+ (`− 1)/5 ≤ `(ϕa)+ (`− 1)/5. It is also at least `(ϕa)

(otherwise S is not a Nash equilibrium).

Additionally, jobs will also migrate from machines σ ∈ Γ to machine ϕa (not the same jobs previously sent

the other way). We choose jobs to migrate from σ ∈ Γ to ϕa, so that the final load on σ is strictly smaller

than `(ϕa) and at least `(ϕa) − 1/zb+1 = `(ϕb) + (α − 1)/zb+1. It has to be smaller than `(ϕa) to guarantee

that every job migrating from ϕa to σ observes a load strictly smaller than the load it observed before the

deviation. We want it to be at least `(ϕb) + (α− 1)/zb+1, so that a job migrating to ϕa from σ would observe

11

a smaller load as we will show below. To achieve this, slightly more than (`− 1)/5 of the load of σ ∈ Γ has to

migrate back to ϕa.

The jobs that migrate from σ ∈ Γ to ϕa are those jobs with load ≤ 1/zb+1 on σ. Therefore, each such job

which leaves σ reduces the load of σ by at most 1/zb+1. Since the total load of these jobs on σ is (`− 1)/2 >

(` − 1)/5, we can successively send jobs from σ to ϕa until the load drops below to some value y such that

`(ϕb) + (α− 1)/zb+1 ≤ y < `(ϕb) + α/zb+1.

We argued that prior to any migration, the load `(σ) ≤ `(ϕb)+1/zb+1 for σ ∈ Γb. Following the migrations

above, the new load `(σ) on machine σ is `(σ) ≥ `(ϕb) + (α− 1)/zb+1. Thus, the load on every such machine

has gone up by at least (α− 2)/zb+1.

If |Γ | = za+1(`− 1)/2 the net decrease in load on machine ϕa is at least
∑

σ∈Γ

α− 2
zb+1

· v(σ)
v(ϕa)

≥
∑

σ∈Γ

α− 2
zb+1

· v(ϕb)
v(ϕa)

≥ za+1(`− 1)
2

· α− 2
zb+1

· 5
za+1(`− 1)

≥ 2.5(α− 2)
zb+1

>
α + 1
zb+1

.

If |Γ | < za+1(`− 1)/2, then Γ = Γb and the net decrease in load on machine ϕa is at least
∑

σ∈Γb

α− 2
zb+1

· v(σ)
v(ϕa)

≥ α− 2
zb+1v(ϕa)

∑

σ∈Γb

v(σ)

≥ α− 2
zb+1

· na(`− 1)
` + 3

(20)

≥ 2.5(α− 2)
zb+1

>
α + 1
zb+1

. (21)

Inequality (20) follows from Lemma 4. Inequality (21) holds for a > 1 (according to Lemma for a > 1 we

get that na > (`− 1)/2) and for ` ≥ 10.

Thus, the new load `(ϕa) on machine ϕa is at most

`(ϕa) < `(ϕb) + α/zb+1 − (α + 1)/zb+1 = `(ϕb)− 1/zb+1,

which ensures that the jobs that migrate to machine ϕa could form a coalition, benefiting all members, in

contradiction to the strong equilibrium assumption. ut

We define a partition of the s-phases into blocks B0, B1, The first block B0 consists of the first two

s-phases. Given blocks B0, . . . , Bj−1, define Bj as follows: For all i, let ai be the first s-phase of block Bi and

let bi be be the last s-phase of block Bi. The first s-phase of Bj is s-phase bj−1 + 1, i.e., aj = bj−1 + 1.

To specify the last phase of Bj we define a consecutive set of s-phases denoted by P1, where bj ∈ P1.

The first s-phase in P1 is aj . The last s-phase of P1 is the first phase, indexed p, following aj , such that

v(ϕbj−1)/v(ϕp) > zaj (` − 1)/5. Note that P1 always contains at least two s-phases. Let m1 be an s-phase in

P1 \ {aj} such that zm1 ≥ zi for every i in P1 \ {aj}. We consider two cases:

12

– Case 1: zm1 ≥ log `. We define bj = m1 − 1. In this case we refer to Bj as a block of a type I.

– Case 2: zm1 < log `. We define P2 to be the suffix of P1 containing all s-phases i for which v(ϕbj−1)/v(ϕi) ≥
zaj ((`− 1)/5)2/3. Note that s-phase p is in P2 and s-phase aj is not in P2. Let m2 be an s-phase in P2 such

that zm2 ≥ zi for every i in P2. We define bj to be m2− 1. In this case we refer to Bj as a block of type II.

If v(ϕbj−1)/v(ϕt) ≤ zaj (`− 1)/5 we do not define Bj and Bj−1 is the last block.

For each block Bj let P (Bj) be the s-phases which we map to Bj . In Case 1 we define P (Bj) = m1 = aj+1.

In Case 2 we define P (Bj) = P2.

Lemma 7. The number of s-phases associated with block Bj, |P (Bj)|, is Ω(log `/zaj+1).

Proof. If zm1 ≥ log ` then P (Bj) consists of a single phase. As log `/zm1 < 1, the claim trivially follows. Assume

that zm1 < log `. Let s be the first s-phase in P2, then

v(ϕbj−1)/v(ϕs−1) ≤ zaj

(
`− 1

5

)2/3

. (22)

Let k be the last s-phase of P2 (which is also the last s-phase of P1), we have that

v(ϕbj−1)/v(ϕk) ≥ zaj

`− 1
5

. (23)

If we divide (22) by (23) we obtain that v(ϕk)/v(ϕs−1) ≥ ((`− 1)/5)1/3. Let q be the number of s-phases in

P2. Since zm2 ≥ zi for all i ∈ P2 it follows that (zm2)
q ≥ ((`− 1)/5)1/3. We conclude that q = Ω(log `/zm2) =

Ω(log `/zaj+1), as log x ≤ x for all x. ut

The following lemma shows each s-phase is mapped into at most one block.

Lemma 8. For every pair of blocks B, and B′ we have P (B)
⋂

P (B′) = ∅.

Proof. This is clear if B is of type I and B′ is of type II since we map to blocks of type I s-phase i for which

zi < log ` and we map to blocks of type II s-phases i for which zi < log `.

The statement is also holds if both B and B′ are of type I since each block is of size at least two. So we

are left with case where both B and B′ are of type II.

It is enough to prove it for two consecutive blocks Bj and Bj+1.

Let x1,y1 be the first and the last phase in P (Bj), and let x2 be the first phase in P (Bj+1).

From the definition of P (Bj) follows:

v(ϕbj−1) / v(ϕx1) ≥ zaj ((`− 1)/5)2/3 , (24)

v(ϕbj−1) / v(ϕy1) > zaj (`− 1)/5 , (25)

v(ϕbj−1) / v(ϕy1−1) ≤ zaj (`− 1)/5 . (26)

13

Since both blocks Bj and Bj+1 are of type II, we have v(ϕy1−1)/v(ϕy1) < log ` and therefore,

v(ϕbj−1)/v(ϕy1) < zaj
log `(`− 1)/5 . (27)

Using Inequality (27) and Inequality (24), we get

v(ϕy1) >
v(ϕx1)

log `((`− 1)/5)1/3
. (28)

According to the definition, bj ≥ x1 − 1 and therefore v(ϕbj
) = zaj+1v(ϕx1). By substituting it in (28) we get,

v(ϕy1) >
v(ϕbj)

zaj+1 log `((`− 1)/5)1/3
. (29)

From the definition of P (bj+1) follows:

v(ϕbj
)/v(ϕx2) ≥ zaj+1((`− 1)/5)2/3 . (30)

Therefore, we get that

v(ϕx2) ≤
v(ϕbj

)
zaj+1((`− 1)/5)2/3

. (31)

In order to avoid collision it have to be v(ϕx2) < v(ϕy1), so it is enough to show that

v(ϕbj)
zaj+1 log `((`− 1)/5)1/3

>
v(ϕbj)

zaj+1((`− 1)/5)2/3
(32)

The inequality holds for log ` < ((`− 1)/5)1/3. ut

We now conclude the proof of the upper bound of the strong price of anarchy. By definition, we have that

v(ϕbj−1)/v(ϕbj) ≤ zaj (`− 1)/5, so using Lemma 6 we get that

`(ϕbj−1)− `(ϕbj) ≤ 4/zaj . (33)

Let f be the index of the last block. Then, bf is the last phase of this block. We have that v(ϕbf
)/v(ϕt) ≤

zbf +1(`− 1)/5, (where t is the last phase with minimal load > `max/2) so by Lemma 6, `(ϕbf
) ≤ `(ϕt) + 4. By

Lemma 5, `(ϕ2) − `(ϕt) ≥ `max/4 + 4. Therefore, `(ϕ2) − `(ϕbf
) ≥ `max/4. This together with Equation (33)

gives that

Θ(`max) = `(ϕ2)− `(ϕbf
) =

∑

j=1,...,f

(
`(ϕbj−1)− `(ϕbj)

) ≤
∑

j=1,...,f

4/zbj+1 . (34)

Using Lemma 7 and Inequality (34) the total number of s-phases is

∑

i=1,...,f

Ω(log `)/zbi+1 = log `
∑

i=1,...,f

1/zbi+1 = Ω(`max log `max) .

As described in the proof sketch this gives `max = O(log m/(log log m)2) as required. We conclude:

Theorem 2. The strong price of anarchy for m related machines is Θ
(
log m/(log log m)2

)
.

14

5 Unrelated Machines

5.1 Strong Price of Anarchy

We can show that the strong price of anarchy for m unrelated machine load balancing is at most m, improving

the 2m−1 upper bound given by Andelman et al. [2]. Our new upper bound is tight since it matches the lower

bound shown in [2].

Theorem 3. The strong price of anarchy for m unrelated machine load balancing is at most m.

Proof. Omitted. Let s be a strong equilibrium. Let M1, . . . , Mm be the machines ordered by decreasing loads

in s, and let `1 ≥ `2 ≥ · · · ≥ `m be their loads in s.

Note that `m ≤ OPT. If `m > OPT then all jobs benefit from cooperating and moving to the optimal state

OPT.

Next, we argue that `i ≤ `i+1 + OPT for all 1 ≤ i ≤ m − 1. Assume that for some i, `i+1 = x and

`i > x + OPT . Consider a coalition of all jobs running on machines Mj , 1 ≤ j ≤ i, where each such job

migrates to run on the machine in which it runs in state OPT. A job which migrates to a machine Mk for

k ≥ i + 1 observes a load of at most x + OPT which is strictly smaller than what it had previously observed.

A job that migrates to machine Mk for 1 ≤ k ≤ i observes a load of ≤ OPT which is also strictly smaller than

the previously observed load. This contradicts the assumption that s was a strong equilibrium.

Applying the argument above repeatedly, we conclude that `1 ≤ `m + (m − 1)OPT . Combining this with

the fact that `m ≤ OPT concludes the proof. ut

5.2 k-Strong Price of Anarchy

In this section we consider coalitions of size at most k, where k ≥ m (for k < m the upper bound is unbounded).

Andelman et al. [2] show that for m machines and n ≥ m players the k-strong price of anarchy is O(nm2/k)

and Ω(n/k). We give a refined analysis:

Theorem 4. The k-strong price of anarchy for m unrelated machine load balancing, k ≥ m, and given n jobs,

c = Θ(m(n−m)/(k−m)), more precisely, (m− 1)(n−m + 1)/(k−m + 1) ≤ c ≤ 2m(n−m + 1)/(k−m + 2).

Proof. If k < m then the k-strong price of anarchy is unbounded as shown in [2]. Thus, k ≥ m. Consider the

following scenario with m unrelated machines and n jobs. Each of the jobs has a finite weight only on two

machines. Let x = (m − 1)(n −m + 1)/(k −m + 1). For i ∈ {1, . . . , m − 1}, the weight of job i on machine i

is 1 and its weight on machine i + 1 is x−m + i + 1. For i ∈ {m, . . . , n} the weight of job i on machine m is

1/(n−m + 1) and its weight on machine 1 is x/(n−m + 1). See Figure 2.

The optimal solution assigns job i to machine i for i ∈ {1, . . . , m − 1}, and all other jobs are assigned to

machine m. So, the load on all machines is 1 and the makespan is 1.

15

1 2 .. m− 2 m− 1 m, ... ,n

M1 1 ∞ ∞ ∞ ∞ x
n−m+1

M2 x−m + 2 1 ∞ ∞ ∞ ∞
M3 ∞ x−m + 3 .. ∞ ∞ ∞
.. ∞ ∞ .. ∞ ∞ ∞

Mm−2 ∞ ∞ .. 1 ∞ ∞
Mm−1 ∞ ∞ ∞ x− 1 1 ∞
Mm ∞ ∞ ∞ ∞ x 1

n−m+1

Fig. 2. This example shows that the k-strong price of anarchy ≥ (m− 1)(n−m + 1)/(k −m + 1).

Consider the following state which we claim is a k-strong equilibrium. Assign job i, i ∈ {1, . . . , m− 1}, to

machine i + 1. Job i is the only job that runs on machine i + 1 which therefore has load of x−m + i + 1, all

other jobs run on machine 1 with a total load of x, see Figure 3.

n

m + 1

m

1 2 m− 2 m− 1n− 1

L2 = x−m + 2L1 = x L3 = x−m + 3 Lm = xLm−1 = x− 1

Fig. 3. Example of a Strong Equilibrium.

Since machine m has load of x which is the same as the load on machine 1 no job i ∈ {m, . . . , n} has incentive

to migrate to machine m unless job m−1 leaves machine m. Furthermore, in order for job i, i ∈ {2, . . . ,m−1},
to join a coalition and move from machine i + 1 to machine i, job i− 1 has to leave machine i. So any coalition

must include at least one job from each machine.

The load on machine 2 is x − m + 2 and the load on machine 1 is x. Hence the load of machine 1 must

decrease by more than m−1 so it would be beneficial for job 1 to migrate from machine 2 to machine 1. In order

to reduce the load of machine 1 by more than m−1 units of weight, more than (m−1)(n−m+1)/x = k−m+1

jobs have to migrate from machine 1. Thus, such a coalition must include > k −m + 1 jobs from machine 1

and all jobs 1 ≤ i ≤ m − 1, jointly these are more than k jobs. Since the largest allowable coalition is of size

k, this deviation is illegal and, therefore, this state is a k-strong equilibrium. ut

16

Remark: We can improve the lower bound of Theorem 4 to ((m− 1)(n−m+1)+1)/(k−m+1) by a slightly

more careful choice of parameters.

Definition 3. Let M1, . . . , Mm be the machines sorted in decreasing order of load in state s. We say that Mi

and Mj, are directly connected, and denote this by Mi ½s Mj, if i < j and there is a job that runs on Mj in

OPT and runs on Mi in s.

We say that machines Mi and Mj, i < j, are connected in state s if there exist machines Mi′ and Mj′ such

that i′ ≤ i, j ≤ j′, and Mi′ and Mj′ are directly connected.

Let C(s) = M1, . . . ,M` denote the maximal prefix of machines (when ordered by decreasing loads), such

that Mi+1 is connected to Mi in state s.

A variation of this definition was also used by [2]. We use the following lemma which is proved in [2].

Lemma 9. [2] Let s be a Nash equilibrium. Let M1, . . . ,Mm be the machines sorted by decreasing load in s,

and let `i be the load on machine Mi. If Mi ½s Mj then `i ≤ `j + OPT . In addition, for any i, j ∈ C(s) we

have `i ≤ `j + (m− 1)OPT .

Proof. The proof can be found in [2].

Theorem 5. For any job scheduling game with m unrelated machines, n jobs, k ≥ m, and n ≥ m, the k-strong

price of anarchy is at most 2m(n−m + 1)/(k −m + 2).

Proof. Let s be a strong Nash equilibrium with the largest makespan amongst all Nash equilibria and let

C(s) = M1, . . . ,M`. Also let `max be the load on M1, the machine with the largest load, and let `min be the

load on M`, the machine with the smallest load in C(s). Note that if `min ≤ OPT, then, by Lemma 9, the

k-strong price of anarchy ≤ m ≤ 2m(n−m + 1)/(k−m + 2). So we may assume for the rest of the proof that

`min > OPT.

For every i ≤ ` let Si be a subset of jobs that run on machine Mi ∈ C(s) of minimal cardinality, such that
∑

j∈Si
wi(j) > `i − `min + OPT. Let si = |Si|.

We claim that
∑

i:Mi∈C(s) si > k. To establish this claim we show that if
∑

i:Mi∈C(s) si ≤ k then the jobs

in ∪`
i=1Si can jointly migrate so that they all benefit. This contradicts the assumption that s is a k-strong

equilibrium. If k = n then we cannot have
∑

i:Mi∈C(s) si > k which means that `min could not have been larger

than OPT and therefore the k-strong price of anarchy is ≤ m.

To prove the claim let each job j ∈ ∪`
i=1Si migrate to the machine on which it runs in state OPT. Consider

a machine Mi ∈ C(s). Since
∑

j∈Si
wi(j) > `i − `min + OPT the sum of the loads of the jobs leaving machine

Mi is at least `i− `min +OPT. But the sum of the loads of the jobs migrating to machine Mi is at most OPT.

So the new load on machine Mi is less than `i − (`i − `min + OPT) + OPT = `min. This means that every job

17

migrating to a machine in C(s) sees an improvement. By definition of C(s), no job migrates to a machine Mi,

i > `, the claim follows.

Let k′ =
∑

i:Mi∈C(s) si. We now know that k′ > k. Note that the number of machines in C(s) is ` and let

ni be the number of jobs running on machine Mi in s for every 1 ≤ i ≤ `.

For every i such that si > 1 the weight of any si − 1 jobs is at most `i − `min + OPT otherwise Si is not of

minimal cardinality. Therefore the total load on Mi is

`i ≤ ni(`i − `min + OPT)
si − 1

. (35)

Let x be the number of machines in C(s) for which si > 1. Since k′ > m there exists some i such that

si > 1 and hence x ≥ 1. The total number of jobs on machines with si > 1 is
∑

i:si>1 ni ≤ n − (` − x). Also
∑

i:si>1 si = k′ − (`− x).

We argue that there exists a machine Mi with si > 1 such that

ni ≤ si(n− ` + x)
k′ − ` + x

. (36)

Indeed, if this is not true, for every such i we have ni > si(n− ` + x)/(k′ − ` + x). Summing over all machines

we obtain that ∑

i:si>1

ni >
∑ si(n− ` + x)

k′ − ` + x
=

(n− ` + x)
∑

si

k′ − ` + x
= n− ` + x .

which is a contradiction.

Let Mp be a machine for which Equation (36) holds. Then using Equations (35) and (36) we obtain that

`p ≤ np(`p − `min + OPT)
sp − 1

≤ sp(n− ` + x)(`p − `min + OPT)
(sp − 1)(k′ − ` + x)

.

Since `max = `p + (`max − `p) we have that

`max ≤ sp(n− ` + x)(`p − `min + OPT)
(sp − 1)(k′ − ` + x)

+ (`max − `p) ,

and since sp(n−`+x)
(sp−1)(k′−`+x) > 1 we obtain that

`max ≤ sp(n− ` + x)(`max − `min + OPT)
(sp − 1)(k′ − ` + x)

.

Recall that by Lemma 9, `max − `min ≤ (`− 1)OPT, so we obtain that

`max ≤ sp(n− ` + x)`
(sp − 1)(k′ − ` + x)

OPT .

Since sp/(sp − 1) ≤ 2

`max ≤ 2(n− ` + x)`
k′ − ` + x

OPT ,

and since (n−`+x)`
k′−`+x is maximized for x = 1, ` = m, and k′ = k + 1, the lemma follows. ut

18

References

1. S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty. On nash equilibria for a network creation game. In

SODA, pages 89–98, 2006.

2. N. Andelman, M. Feldman, and Y. Mansour. Strong price of anarchy. In SODA, 2007.

3. Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Eva Tardos, Tom Wexler, and Tim Roughgarden. The price

of stability for network design with fair cost allocation. In FOCS, pages 295–304, 2004.

4. Elliot Anshelevich, Anirban Dasgupta, Eva Tardos, and Tom Wexler. Near-optimal network design with selfish

agents. In STOC, pages 511–520, 2003.

5. R.J. Aumann. Acceptable points in general cooperative n-person games. In A.W. Tucker and R.D. Luce, editors,

Contribution to the Thoery of Games, Vol. IV (Annals of Mathematics Studies, 40), pages 287–324. 1959.

6. Baruch Awerbuch, Yossi Azar, and Amir Epstein. Large the price of routing unsplittable flow. In STOC, pages

57–66, 2005.

7. Baruch Awerbuch, Yossi Azar, Yossi Richter, and Dekel Tsur. Tradeoffs in worst-case equilibria. In WAOA, volume

2909, pages 41–52, 2003.

8. M Whinston BD Bernheim, B Peleg. Coalition-proof nash equilibria i: Concepts. Journal of Economic Theory,

1987.

9. George Christodoulou and Elias Koutsoupias. The price of anarchy of finite congestion games. In STOC, pages

67–73, 2005.

10. George Christodoulou, Elias Koutsoupias, and Akash Nanavati. Coordination mechanisms. In ICALP, volume 3142,

pages 345–357, 2004.

11. Artur Czumaj and Berthold Vöcking. Tight bounds for worst-case equilibria. In SODA, pages 413–420, 2002.

12. Alex Fabrikant, Ankur Luthra, Elitza Maneva, Christos H. Papadimitriou, and Scott Shenker. On a network creation

game. In PODC, pages 347–351, 2003.

13. Amos Fiat, Haim Kaplan, Meital Levy, Svetlana Olonetsky, and Ronen Shabo. On the price of stability for designing

undirected networks with fair cost allocations. In ICALP, pages 608–618, 2006.

14. Dimitris Fotakis, Spyros C. Kontogiannis, and Paul G. Spirakis. Atomic congestion games among coalitions. In

ICALP, pages 572–583, 2006.

15. Ara Hayrapetyan, Éva Tardos, and Tom Wexler. The effect of collusion in congestion games. In STOC, pages

89–98. ACM Press, 2006.

16. Ron Holzman and Nissan Law-Yone. Strong equilibrium in congestion games. Games and Economic Behavior,

21(1-2):85–101, 1997.

17. E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In STACS, pages 404–413, 1999.

18. M. Mavronicolas and P. Spirakis. The price of selfish routing. In STOC, pages 510–519, 2001.

19. John Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951.

20. N. Nisan and A. Ronen. Algorithmic mechanism design (extended abstract). In STOC, 1999.

21. Moshe Tennenholtz Ola Rozenfeld. Strong and correlated strong equilibria in monotone congestion games. In

WINE, pages 74–86, 2006.

22. Tim Roughgarden and Eva Tardos. How bad is selfish routing? J. ACM, 49(2):236–259, 2002.

19

