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A famous paper by Alchourrón, Gärdenfors and Makinson opened up a new avenue
of research into the logic of belief and belief change [1]. One of the later extensions
is dynamic doxastic logic (DDL), which channels develops the AGM approach as a
modal logic. Work in this area continues.

It is noteworthy that the erstwhile interest in theory change of one of the founding
fathers of AGM was not in belief change but in normative change. What the late Carlos
Alchourrón, professor of jurisprudence, had originally wanted was, it seems, a logic of
norms and norm change. Many years later it makes sense to ask whether there is a
dynamic deontic logic (D∆L, say) that pursues the ambition that Alchourrón seems to
have had. In this note we outline a blueprint of an answer. As mentioned in the title of
this note, we proceed in three steps.

Already Georg Henrik von Wright, the founder of modern deontic logic, found that
deontic logic must be built on a logic of action. Accordingly, in step 1 we outline a
(fairly meagre) logic of action. It avoids a number of important but difficult topics,
such as agency, causality and intentionality.

In step 2 we develop a deontic logic which is dynamic in the sense of allowing for
what we call real actions. However, it is only in step 3 that also provides for what we
call deontic actions. The treatment is sketchy throughout,in particularly towards the
end. This is not a finished paper. It is not even a proper abstract of an almost finished
paper. It is what it says: a blueprint—and an uneven one at that.1

Step 1: A temporal logic of action

Model theory

Without giving rigorous explanations, let us outline some key concepts. The fundament
of any model will be a set (universe)U of points called theenvironment.Sequences of
points will be called paths; they can be either finite or infinite in one or two directions.
Two pathsp and q can be combined into one path, denoted bypq, if p has a last

∗Some of the work reported in this note was carried out when theauthor was a fellow-in-residence at
N.I.A.S., the Netherlands Institute of Advanced Study at Wassenaar.

1So why publish? One reason is that it gives me a welcome opportunity to publicly thank the organizers
and the Dagstuhl staff for a very well organized workshop—very informative, very enjoyable!
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elementp(#) andq has a first elementq(∗) and the two are the same (if not, we regard
the notationpqas meaningless).

Another fundamental model theoretical ingredient is that of a given setE of actions
or eventsin U.2 An eventin U is a set of finite paths inU. If a is an event andp ∈ a,
we say thatp realizes E(p is a realizationof a). One can think of a number of set-
theoretical operations on events under whichE is closed, for example, the suma∪ b,
the relative producta | b and the differencea− b. (But universal complement is not one
of them, nor is the Kleene star.)

Yet another fundamental concept is a given setH of (complete) historiesin H:
paths inU that are complete in the sense that iff is a proper subpath of a historyh,
then f is not itself a history. If a history is of the formhg, where thus the last element
h(#) of h is also the first elementp(∗) of p, then we will refer to (h, g) as anarticulated
history. One may say that (h, g) represents a particular way of looking athg with h as
the past,g as the future and the pointh(#) = p(∗) as the present.

We say thath is a(possible) pastif hg∈ H for someg, whileg is a(possible) future
if hg ∈ H for someh, If h is a past, then we write cont(h) for the set{g : hg ∈ H}
of possible continuations (possible futures) ofh. If S ⊆ cont(h) we say thatS is a
possible open futureof h. We refer to (h,S) as apossible situation; if S = cont(h) we
say that (h,S) is a possibleactual situation.If g ∈ S, we refer to (h, g,S) as apossible
scenario.

If f is a history or a past or a future we say thatf includesan eventa if f contains
a subpath that realizesa, and thatf excludes aif there is no such subpath.

Syntax and meaning conditions

Our object languages must contain a denumerable set of propositional letters (primitive
formulæ)P0,P1, · · · ,Pn, · · · and a disjoint denumerable sete0, e1, · · · , en, · · · of event
letters primitive terms). In addition there will be an adequate supply of Boolean (truth-
functional) connectives as well as special operators to be mentioned; the latter will
include at least the sum operator (+) and the catenation operator (;). Whatever the
details, our language will contain both formulæ and terms.

A basic frameis a triple (U,E,H) such thatU is a universe,E is a set of events
(with certain closure conditions) andH is a set of complete histories. Avaluationis a
functionV from the set of propositional letters into the power set ofU and from the set
of event letters intoE. This function is extended in a natural way to all pure Boolean
formulæ and to all terms. We will write~φ� for the value assigned to a pure Boolean
formulaφ and~α� for the value assigned to a termα. Examples of meaning conditions
(φ andψ are pure Boolean formulæ,α andβ are terms):

~¬φ� = U − ~φ�,

~φ ∧ ψ� = ~φ� ∩ ~ψ�,

~φ ∨ ψ� = ~φ� ∪ ~ψ�,

2Many philosophers distinguish between actions and events,as they should. But for the limited purposes
of this note it is not important.
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~α + β� = ~α� ∪ ~β�,

~α; β� = ~α� | ~β�.

Relative to such a model it is easy to give meaning conditionsalso for temporal
operators. For example:

(h, g) � [F]θ iff (h′, g′) � θ, for all p, h′, g′ such thathp= h′ andpg′ = g
(and thereforeh′g′ = hg),

(h, g) � [P]θ iff (h′, g′) � θ, for all p, h′, g′ such thath′p = h andg′ = pg
(and thereforeh′g′ = hg),

(h, g) � [H]θ iff (h, g′) � θ, for all g′ ∈ cont(h).

Here [F] and [P] correspond to Prior’sG andH, respectively, while [H] is the operator
which has been read variously as “historically necessary”,“unavoidably” and “settled
true”. In a similar way it would be easy to add unary proposition-forming propositional
operators such as [NEXT], [LAST], [UNTIL φ] and [SINCEφ] (for all formulæφ) with
obvious intuitive meanings (we omit the details).

We also want an operator of a more complicated kind, one that involves the con-
sideration of another model. In the notation so far we have suppressed the reference to
the modelM = (U,E,H,V), which has been taken for granted. To be explicit we could
have written something like (h, g) �M θ in stead of just (h, g) � θ. This perspective is
necessary for the definition of [H : φ], where againφ must be a formula:

(h, g) �M [H : φ] θ iff (h, g′) �M
′

θ, for all g′ ∈ contM′ (h),
whereM′ = (U,E,Hφ,V) andHφ

= { f : (h, f ) �M φ}.

This new operator can of course be viewed as—is!—a conditional operator. But
noting the validity of the schema [H] θ ↔ [H : ⊤] θ, we think of [H : φ] as a kind of
“focus” operator: the operator [H] restricted to or focussed onφ. More specifically,
[H :φ] focusses on the set of futures described byφ.

The dynamic operators that we need are less common. First there are three propo-
sition-forming term operatorsoccurs, occurring andoccurred:

(h, g) � occursα iff g = pg′, for some finite pathp ∈ ~α� and (unique) futureg′,

(h, g) � occurringα iff h = h′p andg = qg′, for some finite nonempty pathsp
andq such thatpq ∈ ~α�, (unique) pasth′ and (unique) futureg′,

(h, g) � occurred α iff h = h′p, for some finite pathp ∈ ~α� and (unique) pasth′.

The dynamic operators also include three complex formula-making operators [afterα],
[duringα] and [beforeα], whereα must be a real term:

(h, g) � [afterα] φ iff (h′, g′) � φ, for all finite pathsp such thatp ∈ ~α� and
h′ = hpandg = pg′,
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(h, g) � [duringα] φ iff (h′, g′) � φ, for all finite pathsp, q such thatpq ∈ ~α�
andh′ = hpandg = qg′,

(h, g) � [beforeα] φ iff (h′, g′) � φ, for all finite pathsp such thatp ∈ ~α� and
h = h′p andg′ = pg.

Note that Pratt’s well-known after-operator [α] is rendered in our idiom as [H][afterα].
Similar remarks relate to [duringα] and [beforeα].

Truth in a model andvalidity in a frame are defined along traditional lines.

The result operator

Minimality is a concept that surfaces in connexion with concepts such as conditionals
and belief revision. Ramsey was happy to accept a conditional “if A then B” if B would
be true in a situation in which things had been changed just enough to make A true. In
AGM type belief revision, a new piece of information is incorporated into one’s set of
beliefs by making a certain minimal adjustment. Makinson has given other examples
of conceptual analysis where minimality shows its face.

One such example is offered by what may be calledresultativeactions or events. In
everyday life there may be many ways in which a certain state of affairs can result, but
talking about them we automatically filter out from consideration ways that are extraor-
dinary or inappropriate. Thus we need to try to capture the notion of “bringing it about
thatP” or “the coming about thatP”, whereP is a proposition: the “paradigmatic” or
“standard” event resulting in its being the case thatP. And this is where minimality
comes in.

To proceed more formally, say thatf is aselection functionfor U if f is defined on
the set of subsets ofU and the following three conditions are satisfied: for allP andQ,

f P ⊆ P (),

if P ⊆ Q, if f P , ∅ then f Q , ∅ (),

if P ⊆ Q andP∩ f Q , ∅ then f P = P∩ f Q ().

Let (U,E,H) be a basic frame andF a function defined onU such that, for each
u ∈ U, Fu is a selection function forU. Assume thatE is closed underF in the sense
that FuP ∈ E, for each pointu ∈ U and propositionP. ThenF is called theresult
functorwhile (U,E, F) is called aresult frame.

On the syntactic side we add a new term-forming propositional operator∂ and a
new meaning-condition:

~∂φ� = {(u, v) : v ∈ Fu~φ�}.

The notions relating to the idea that some actions have results is important, and it
is possible to develop it along with other ideas in this note.However, for reasons of
simplicity we will not pursue this topic further here.
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Step 2: Deontic logic with real actions

Pre-theoretical remarks

A norm draws a distinction between what is acceptable and what is not: what is in
accordance with the norm and what is not. Legal codes separate legal from illegal,
moralities right from wrong and good from bad, conventions correct from incorrect,
fashion what is “in” from what is “out”, and so on. In real lifenorms are never sharp
enough or complete enough to settle all questions, but in thenorms that appear in this
note are supposed to be both sharp and complete.

Thus we may think of a complete norm as a norm-giver (legislator, moral genius,
arbiter, God) who can answer all questions as to what is normal (= in accordance with
the norm) in any given situation. With respect to any given past, however irregular
from a normative point of view, the norm-giver should be ableto delineate a subset
consisting of exactly those futures that are still possibleat that time and that are in
accordance with the norm.3

Traditionally the major deontic notions are obligation, permission and prohibition.
In the dominantSeinsollen(“ought-to-be”) tradition they are treated as concepts ap-
plying to propositions. In our modelling, as presented so far, it seems more natural
to follow theTunsollen(“ought-to-do”) tradition, in which they are treated as concept
applying to actions or events. Thus here we classify the deontic status of an action
or event according to whether it is must or may be done or omitted. Furthermore, we
limit ourselves to one special case among many: “be done” shall mean “be done at
least once”, and “omitted” shall mean “be omitted altogether”.4

a is obligatory iff a must be done,

a is permitted iff a may be done,

a is forbidden iff a must be omitted,

a is non-obligatory iff a may be omitted.

The fourth notion, non-obligation, is not standard, and ourterminology is not ideal.
However, it is not easy to think of a term that is really apt.5 In any case pre-theoretical
intuitions dictate that no action is ever forbidden and permitted at the same time. By
the same token, an obligatory action is always not non-obligatory. Hence if we were

3Thus in this modelling we are committed to the view that thereare no “moral dilemmas”. However
irregular or illegal your past, there will always be a possible legal future. This commitment is of course not
of a logical nature. It would be possible to modify our modelling so as to accommodate philosophers who
believe in the existence of moral dilemmas.

4Actually also the given conditions are still quite general—further conditions can characterize different
varieties of the general case. For example, ifa is permitted, willa still be permitted if done once? Ifa is
forbidden, willa still be forbidden if done once?

5There are also two other instances of linguistic awkwardness. In order to follow the patternpermit /
permitted/ permissionwe will usually chooseforbid / forbidden / forbiddance, rather than, for example,
prohibit / prohibited/ prohibition. Furthermore, we acceptorder / obligatory / obligationrather than insisting
thatorder be replaced byobligate.
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to limit ourselves to so-called closed systems—systems in which every action is ei-
ther permitted and forbidden, and in which actions that are not non-obligatory are
obligatory—then we would have

a is permitted iff a is not forbidden,

a is non-obligatory iff a is not obligatory.

In other words, in closed systems we could begin with the two notions of obligation
and forbiddance and define the other two. But in general we need all four.

In addition to these unconditional concepts there are numerous conditional ones:a
is obligatory / permitted/ forbidden/ non-obligatoryrelative to certain condition.

Model theory, syntax and meaning-conditions

A norm for a basic frame (U,E,H) is a functionN defined on the set of situations
which, for any situation (h,S), whereS ⊆ cont(h), assigns a setN(h,S) (intuitively,
the set of normal futures, that is, normal from the point of view of this situation). There
are four conditions onN:

(i) N(h,S) ⊆ S ();

(ii) if S ⊆ T thenN(h,S) , ∅ only if N(h,T) , ∅ ();

(iii) if S ⊆ T thenN(h,S) = S ∩ N(h,T) ();

(iv) if g = pg′, for a finite pathp, theng ∈ N(h,S) only if g′ ∈ N(hp,S′), where
S′ = { f ∈ fut(p(#)) : p f ∈ S} ().

Notice that a norm-giver must be able to handle not only situations in whichS =
cont (h(#))—in order to be complete, the norm must govern every imaginable situation.
Note that in this modelling there are no degrees of non-normality.

The major new operators are four unary formula-forming termoperatorsob, pm, fb
andno. Given a basic frame (U,E,H) and a normN, truth-conditions of formulæ can
be given with respect to articulated histories:

(h, g) � obα iff for all finite pathsp such thath(#) = p(∗), if p excludes~α�
then

• pf includes~α�,
for all f ∈ N(hp, cont(hp)),

• if f ′ = q f ′′, for anyq ∈ ~α� and f ′ ∈ cont(hp),
thenk excludes~α�, for somek ∈ N(hpq, cont(hpq)).

(h, g) � pmα iff for all finite pathsp such thath(#) = p(∗), if p excludes~α�
then

• pf includes~α�,
for somef ∈ N(hp, cont(hp)),
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• if f ′ = q f ′′, for anyq ∈ ~α� and f ′ ∈ cont(hp),
thenk excludes~α�, for somek ∈ N(hpq, cont(hpq)).6

(h, g) � fbα iff for all finite pathsp such thath(#) = p(∗), if p excludes~α�
then

• pf excludes~α�,
for all f ∈ N(hp, cont(hp)),

• if f ′ = q f ′′, for anyq ∈ ~α� and f ′ ∈ cont(hp),
thenk includes~α�, for somek ∈ N(hpq, cont(hpq)).

(h, g) � noα iff for all finite pathsp such thath(#) = p(∗), if p excludes~α�
then

• pf excludes~α�,
for somef ∈ N(hp, cont(hp)),

• if f ′ = q f ′′, for anyq ∈ ~α� and f ′ ∈ cont(hp),
thenk includes~α�, for somek ∈ N(hpq, cont(hpq)).7

As explained in the following section, the definition ofobα owes much to Ross
[4]. The definitions of the other three operators have been designed to “harmonize”
with that ofobα.

We omit meaning-conditions for the conditional deontic operatorsob(α/φ), pm(α/φ),
fb(α/φ) andno(α/φ).

Seinsollen and Tunsollen

A question sometimes aired in the philosophical literatureconcerns the relative primacy
of SeinsollenandTunsollen. Three views are possible: (i) thatSeinsollenis the basic
concept and thatTunsollencan be defined in terms of it and non-deontic concepts; (ii)
thatTunsollenis the basic concept and thatSeinsollencan be defined in terms of it and
non-deontic concepts; and (iii) that both concepts are basic and that neither is definable
in terms of the other. In this note we are not taking a stand on this issue. For our
(limited) purposes we find theTunsollenapproach congenial, but it would certainly be
possible to introduce a deontic propositional operator in terms of which our deontic
term operators would be definable.

Here is one way of doing it. Let [D]—D for deontic—be a new unary proposition-
forming propositional operator with the truth-condition

(h, g) � [D]φ iff (h, g′) � φ, for all g′ ∈ N(h).

This operator may perhaps be read as “it is deontically necessary that” or “ideally”.
But it is too weak to be identified with “it ought to be the case”or “it is obligatory
that”.

6This defines a “weak” concept of permission. It must be possible to define “strong” concepts of permis-
sion as well.

7This defines a “weak” concept of non-obligation. Cf. the previous footnote!
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With the help of this new operator our four deontic term operators can now be at
least implicitly defined since the following schemata are logically valid:8

obα↔ [UNTIL(occurredα)]
([D]〈F〉(occurredα) ∧ [H](occurredα→ [afterα]¬obα),

pmα↔ [UNTIL(occurredα)]
(〈D〉〈F〉(occurred α) ∧ [H](occurredα→ [afterα]¬pmα),

fbα↔ [UNTIL(occurredα)]
([D]|F]¬(occurredα) ∧ [H](occurredα→ [afterα]¬fbα),

noα↔ [UNTIL(occurredα)]
(〈D〉〈F〉(¬occurred α) ∧ [H](occurredα→ [afterα]¬noα).

Thus in this sense the deontic term operators are definable interms of a deontic
propositional operator and other non-deontic operators. On the other hand, given the
deontic term operators as well as the resultative operator∂mentioned above, we would
be able to define the usual deontic propositional operators.For example, obligation
operatorsO andO′ can be defined and seem natural under certain circumstances:

Oφ↔ ob ∂φ,

O′φ↔ ob ∂([F]φ).

In a similar way the other terms operators also give rise to propositional operators.

Interludium: three so-called paradoxes

There is a family of conundrums in the literature on deontic logic, known as paradoxes.
Most or all of them have been raised in order to make a certain point: that the paradox
in question cannot be formalized within any of the then current systems of deontic
logic. When new systems of deontic logic are presented it is therefore a good idea to
see if and how they can handle these “paradoxes”. The modelling presented in this
section allows us to deal with some but not all of them. We givethree examples.

Chisholm’s Paradox. This well-known paradox, which was first formulated by R.
M. Chisholm in [2], turns on the difficulty of finding a model for four propositions of
the following kind:

(C1) It ought to be the case that if X will do B then X does A (as soon as possible).

(C2) If X will not do B, then X should not do A (ever).

(C3) X ought to do B.

(C4) X will not do B.

8To repeat what has already been said: there are other ways of defining formal operators that may be
claimed to correspond to pre-theoretical intuitive concepts.
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If one tries to formalize these propositions in Standard Deontic Logic (neglecting
the tense-logical aspect), the first two are naturally rendered on the formatO(φ → ψ)
andφ→ Oψ, respectively; and contradiction results.

In one familiar version of this example, B stands for X’s going to see his grand-
mother, while A is notifying her in advance. The situation described is well-known:
X will fail to do his duty. But with this understanding of the situation it is not clear
that (C1) and (C2) are the only way to formalize the human predicament facing X. The
propositions

(C∗1) It ought to be the case that if X will not do B then X does not do A.

(C∗2) If X will do B, then X should not do A.

would also be true of the hypothesized situation. Of course,Chisholm chose his formu-
lations with an eye to bringing out the limitation of SDL. Ourconcern would perhaps
disappear if we could find a new, binary connectiveO(φ, ψ) (different from the ordinary
unaryO, although we use the same letter for both operators), meaning something like
”φ commits toψ” or ” φ makes obligatory thatψ”. Then (C1) and (C1) could be ren-
dered asO(φ, ψ) andO(¬φ,¬ψ), respectively. Moreover, ifO(φ, ψ)→ (φ→ Oψ) were
generally valid, everybody could be happy. (There are such solutions in the literature.)

In our present setting our “solution” to Chisholm’s Paradoxhas to be different,
but in principle it follows the same line. Ifα andβ are two distinct event letters, our
recommended translation is:

(C′1) [H : 〈F〉 occurs β] obα.

(C′2) [H : ¬〈F〉 occurs β] ¬obα.

(C′3) ob β.

(C′4) ¬〈F〉 occurs β.

The problem is then reduced to finding a model and an index (h, g,H) at which all four
formulæ are true. One would have to find sets

H1 = {g
′ ∈ contH(h) : (h, g′,H) � 〈F〉 occurs β},

H2 = {g
′′ ∈ contH(h) : (h, g′′,H) � ¬〈F〉 occurs β}

such that

(i) (h,H1) � obα,

(ii) (h,H2) � ¬obα,

(iii) ( h,H) � ob β,

(iv) (h, g,H) � ¬〈F〉 occurs β.

9



But this task is easily solved. Hence our system may be said topass the Chisholm test.

The Ross Paradox. The Ross Paradox is Alf Ross’s challenge in [4] to imperative
logic provide a plausible formalization of the imperative “Post this letter!” that does
not imply the imperative “Post this letter or burn it!” The parallel challenge to deontic
logic is of course to provide a system in which “Posting the letter is obligatory” does
not imply “Posting the letter or burning it, is obligatory”.Standard Deontic Logic of
course fails to meet Ross’s challenge since it validates theschema

(R1) Oφ→ O(φ ∨ ψ).

Ross’s own advice was to distinguish between what he called the logic of validity
and the logic of satisfaction. According to him there are twosides to the concept of
obligation: it is one thing for an obligation to be in force (valid, in his terminology),
another to be discharged (satisfied, in his terminology). Wecan rephrase his insight
by saying that a (one-time) obligation remains in force as long as it has not been dis-
charged. But once discharged, that particular obligation is no longer in force.

In the logic presented in this paper (which follows the analysis first given in [5])
Ross’s example is formalized in a different way:

(R2) obα→ ob (α + β).

It is easy to see that this is not a valid schema. Hence our system passes the Ross test.

Forrester’s Paradox. Forrester’s Paradox, first presented in [3], is the challenge to
formalize sentences like

(F1) “Don’t kill her! But if you do, do it gently!”

With respect to some model, leta be the event (action) of killing, and letb be any
sub-event ofa. In other words,b ⊆ a. We might then re-state the situation by saying
that, whilea is obligatory, given thata will not be done,b is obligatory. Calling up our
focus operator, we might try the formula

fbα ∧ [H : 〈F〉 oocursα] ob β,

or perhaps
fbα ∧ [H : 〈F〉 oocursα] (ob β ∧ fb (α − β)),

wherea = ~α� andb = ~β�. This formalization goes some of the way towards catching
the structure of the further example

(F2) Don’t kill her! But if you do, do it by giving her enough sleeping-pills (and not
in any other way)!

at least if we consider that feeding someone sufficiently many sleeping-pills is a way
of killing someone. But killing-gently is not in the same sense a sub-event of killing.
Every elementp of a is a particular realization ofa. But, in a different sense of re-
alization,p itself can be realized in different ways, depending on whata is—perhaps
gently, perhaps quickly, perhaps carefully. And this concern performance, an aspect
that the present formalism cannot do justice to. Thus Forrester’s “paradox” marks one
limitation of the present modelling.
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Step 3: Deontic logic with both real and deontic actions

Pre-theoretical remarks

In addition to real actions, there are deontic actions. Corresponding to each of the basic
deontic categories obligation, permission, forbiddance and non-necessitation there is a
type of deontic action. The norm giver may order an action, making it obligatory. He
may permit it, making it permitted. He may forbid it, making it forbidden. He may
non-obligate it,9 making it non-obligatory. How are we to represent those obviously
crucially important actions?

One thing to keep in mind is the rôles played in our formal semantics by the prim-
itive technical conceptsE and H. The former identifies the sets of finite paths that
are recognizable as event types. The latter tells us which complete histories are really
possible (where “really” means ’really’!).

The deontic actions we are primarily interested in in this note are ordering, permis-
sion, prohibition, and non-necessitation: for any action or eventa,

• to ordera: to makea obligatory (“a must be done!”)

• to permita: to makea permissible (“a may be done!”)

• to prohibita: to makea forbidden (“a must be omitted!”)

• to declarea non-obligatory: to makea non-obligatory (“a may be omitted!”)

Here we shall be content to single out one specific explication for each of them.
There are other possibilities that deserve to be considered, but the interest here is in the
general problem of formalization rather than in a philosophical discussion of particular
definitions of deontic conepts.

This said, here is our semi-formal understanding of the fouractions that we want
to formalize:

• orderinga: as long asa has not been realized, every legal future includesa,

• permittinga: as long asa has not been realized, some legal future includesa,

• forbiddinga: as long asa has not been realized, every legal future excludesa,

• non-obligatinga: as long asa has not been realized, some legal future excludes
a.

Model theory, syntax and meaning-conditions

Let (U,E,H) be a basic frame. Norms are still functionsN defined on the set of situa-
tions (h,S) such thatN(h,S) is a subset ofS. As before, real actions are sets of finite
sequences of points inU.10 What is new now is that deontic actions are relations in the

9Yes, it is linguistically awkward!
10More generally, deontic actions of ordern may be viewed as relations in the set ofn-order norms.

However, this idea is not developped here.
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set of norms. In fact, for simplicity we will assume that theyare binary relations in the
set of norms. In particular, our four special deontic actions are analysed as follows:

• The deontic action of ordering an eventa, ordering(a), is the set of all ordered
couples (N,N′) such that, for all real situations (h,S),

N′(S) = N{ f ∈ S : f includesa}.

• The deontic action of permitting an eventa, permitting(a), is some set of ordered
couples (N,N′) such that, for all real situations (h,S),

N′(S) = N(S) ∪ N{ f ∈ S : f includesa}.

• The deontic action of prohibiting an eventa, forbidding(a), is the set of all or-
dered couples (N,N′) such that, for all real situations (h,S),

N′(S) = N{ f ∈ S : f excludesa}.

• The deontic action of non-obligating an eventa, non-obligating(a), is some set
of ordered couples (N,N′) such that, for all real situations (h,S),

N′(S) ⊆ N(S) ∪ N{ f ∈ S : f excludesa}.

Next we introduce four term-forming term operators !!, !, §§ and§. If (U,E,H)
is a basic frame, then the meaning-definition for terms is extended by the following
clauses. whereα is a term and~α� is a real action or event:

~!!α� = ordering(~α�),

~!α� = permitting(~α�),

~§§α� = forbidding(~α�),

~§α� = non-obligating(~α�).

Time for truth-conditions. The plot thickens! Unfortunately there is time only for
some very brief remarks.

When agents are capable of deontic actions, the notions of events and histories
much be generalized. Therefore frames will have to be more complicated than before.
Let us start with a basic frame (U,E,H). Now that we have deontic actions as well as
real actions, we need a new categoryD of deontic actions. Just as a real action or event
is a set of finite paths inU, so a deontic action ought to be a set of finite paths inM,
whereM is a motley of norms (in the sense of norm as defined above).

Furthermore, real histories are sequences of points inU. But now we need a more
inclusive category! Let us use the wordchroniclefor sequences of pairs (h,N), where
h is a past history andN is a norm, and let us writeK for the set of all chronicles. The
notions ofmaximal chronicle, articulated chronicle, past chronicleandfuture chronicle
can be defined in analogy with the corresponding historical concepts. Ifc is a past
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chronicle. thereal past historyof c can be retrieved; and ifc(#) = (u,N) is the last
element ofc then we callN the legal or normative position after h. It is clear that
corresponding to each chronicle inK there is a unique history inH.

Hence our new frames become ordered tuples (U,E,H,M,D,K), with various con-
ditions regulating the primitives. Given a model on such a frame, truth-conditions can
be given with respect to articulated chronicles (c, d). All our old truth-conditions have
to be generalized, but we will spare readers the details except for the conditions per-
taining to our four favourite deontic actions:

(c, d) � [after !!α]θ iff there areh,N,N′ such thatc = (h,N) andd = (h,N′) and
(N,N′) ∈ ~!!α�,

(c, d) � [after !α]θ iff there areh,N,N′ such thatc = (h,N) andd = (h,N′) and
(N,N′) ∈ ~!α�,

(c, d) � [after §§α]θ iff there areh,N,N′ such thatc = (h,N) andd = (h,N′) and
(N,N′) ∈ ~§§α�,

(c, d) � [after §α]θ iff there areh,N,N′ such thatc = (h,N) andd = (h,N′) and
(N,N′) ∈ ~§α�.

Ability and competence

In order to drive a car you need to know how to manœuvre it (realability). But in order
to do it legally, you also need a driver’s licence (legal competence). The ability you
acquire by learning. The competence can be bestowed upon youby the Department of
Motor Vehicles, which under certain circumstances will issue a licence to you (a deon-
tic action). That authority has itself been established by another higher-order authority
(a higher-order deontic action). Which in turn draws its authority from somewhere
(from some even higher-order deontic action). And so on. (Inhuman affairs, this kind
of regression of authority is always finite.)

Let us see how ability and competence can be analysed within the formalism de-
velopped here. Suppose (U,E,H,N,D,K) is a new frame. LetSi be a function on the
set of possible pastsh such that alwaysSi(h) ⊆ contH(h). The informal intuition is that
Si(h) is the set of possible futures afterh that the agenti controls in the sense that by
his action he can make sure that the actual future will turn out to be one of the elements
of Si(h). There are two obvious concepts of ability:

i is weakly ableafterh to realizea iff somef ∈ Si(h) includesa,

i is strongly ableafterh to realizea iff every f ∈ Si(h) includesa.11

Assume thatS∗i is a function on the set of possible past chroniclescsuch that always
S∗i (c) ⊆ contC(c). Then in analogy with the definitions of two concepts of ability there
are the two definitions that follows. Let (c, d) be an articulated chronicle inK and leta
be a deontic action inD.

11There are related concepts that can be defined in a similar vein, such as the opportunity to realize an
event at once.
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i is weakly competentafterc to realizea iff somee ∈ S∗i (c) includesa,

i is strongly ableafterc to realizea iff everye ∈ S∗i (c) includesa.

Whena is one of our four simple deontic actions, weak and strong competence coin-
cide.

What is important in definitions of ability is the interplay between the primitivesE
andH: both are needed. For definitions of competence,D andC play similar rôles.

And then . . . ?

Let us call the basic frames (U,E,H) that we defined in step 1zero-order frames.They
can be written on the form (U,E0,H0,M0), whereM0 = ∅ is the set of zero-order
norms (there aren’t any!). In step 2 we considered zero-order frames with a normN
that regulated the real actions inE0. In step 3 we met with frames that may be called
first-order frames: frames of the form (U,E0,H0,M0,E1,H1), whereE1 is a set of
deontic actions (previously known asD) andH1 is a set of chronicles (K). Then why
not next add a normN′ regulating the deontic actions inE1? And then . . . ? This is
obviously not the end, but rather the beginning of a long regress.

In principle we could define setsEn of actions of ordern (the actions of order 0
being the real ones); setsHn of histories of ordern, and setsMn of norms of ordern
(regulating actions of ordern − 1, if n > 0). This would give us frames of the form
(U, (En,Hn,Mn)m

n=0), wheremshould be a natural number (or possiblyω).
Even more general frames would be of the form (U, ((Ei,Hi ,Mi)i∈I )) whereI is an

index set with some structure to it. Certain families of frames of this kind might be of
interest in connexion with the study of hierarchies.
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