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Abstract

Semantic structures for belief revision are proposed. We start with

one-stage revision structures that generalize the notion of choice function

from rational choice theory. A correspondence between these one-stage

structures and AGM belief revision functions is established. We then add

branching time and consider more general structures that accommodate

iterated revision. AGM temporal revision structures are defined and a

syntactic axiomatization is provided.

1 Introduction

We present “possible-worlds” semantic structures for one-stage and iterated be-
lief revision. We begin, in Section 2, with a review of the AGM belief revision
functions. In Section 3 we introduce one-stage revision structures that are re-
lated to the choice structures considered in the rational choice literature and in
Section 4 we show that a sub-class of these structures corresponds to the set of
AGM belief revision functions. In Section 5 we consider a generalization of the
structures of Section 3, which we call temporal belief revision frames. These
incorporate branching time and allow one to model iterated belief revision. We
then define the sub-class of AGM temporal frames and provide, in Section 7, a
modal axiomatization of this class.
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2 AGM belief revision functions

We begin by recalling the theory of belief revision due to Alchourrón, Gärdenfors
and Makinson [1], known as the AGM theory (see also [8]). In their approach
beliefs are modeled as sets of formulas in a given syntactic language and belief
revision is construed as an operation that associates with every deductively
closed set of formulasK (thought of as the initial beliefs) and formula φ (thought
of as new information) a new set of formulas K⊛(φ) representing the revised
beliefs (a more common notation in the literature is K⊛

φ but we prefer the to

use the more explicit functional form K⊛(φ)).
Let S be a countable set of atomic propositions and L0 the propositional

language built on S. Thus the set Φ0 of formulas of L0 is defined recursively as
follows: if p ∈ S then p ∈ Φ0 and if φ, ψ ∈ Φ0 then ¬φ ∈ Φ0 and φ ∨ ψ ∈ Φ0.

Given a subset K ⊆ Φ0, its PL-deductive closure [K]PL (where ‘PL’ stands
for Propositional Logic) is defined as follows: ψ ∈ [K]PL if and only if there exist
φ1, ..., φn ∈ K such that (φ1 ∧ ...∧φn) → ψ is a tautology (that is, a theorem of
Propositional Logic). A set K ⊆ Φ0 is consistent if [K]PL 6= Φ0 (equivalently,
if there is no formula φ such that both φ and ¬φ belong to [K]PL). A set

K ⊆ Φ0 is deductively closed if K = [K]PL. A belief set is a set K ⊆ Φ0 which
is deductively closed. The set of belief sets will be denoted by K and the set of
consistent belief sets by Kcon.

LetK ∈ Kcon be a consistent belief set representing the agent’s initial beliefs.
A belief revision function for K is a function

K⊛ : Φ0 → 2Φ0

that associates with every formula φ ∈ Φ0 (thought of as new information) a set
K⊛(φ) ⊆ Φ0 (thought of as the new belief). A belief revision function is called
an AGM revision function if it satisfies the following properties, known as the
AGM postulates: ∀φ, ψ ∈ Φ0,

(⊛1) K⊛(φ) ∈ K

(⊛2) φ ∈ K⊛(φ)
(⊛3) K⊛(φ) ⊆ [K ∪ {φ}]PL

(⊛4) if ¬φ /∈ K, then [K ∪ {φ}]PL ⊆ K⊛(φ)
(⊛5a) if φ is a contradiction then K⊛(φ) = Φ0

(⊛5b) if φ is not a contradiction then K⊛(φ) 6= Φ0

(⊛6) if φ↔ ψ is a tautology then K⊛(φ) = K⊛(ψ)

(⊛7) K⊛(φ ∧ ψ) ⊆ [K⊛(φ) ∪ {ψ}]
PL

(⊛8) if ¬ψ /∈ K⊛(φ), then [K⊛(φ) ∪ {ψ}]
PL

⊆ K⊛(φ ∧ ψ).

(⊛1) requires the revised belief set to be deductively closed.

(⊛2) requires that the information be believed.

(⊛3) says that beliefs should be revised minimally, in the sense that no new
formula should be added unless it can be deduced from the information received
and the initial beliefs.
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(⊛4) says that if the information received is compatible with the initial
beliefs, then any formula that can be deduced from the information and the
initial beliefs should be part of the revised beliefs.

(⊛5ab) require the revised beliefs to be consistent, unless the information φ
is contradictory (that is, ¬φ is a tautology).

(⊛6) requires that if φ is propositionally equivalent to ψ then the result of
revising by φ be identical to the result of revising by ψ.

(⊛7) and (⊛8) are a generalization of (⊛3) and (⊛4) that

“applies to iterated changes of belief. The idea is that if K⊛(φ)
is a revision of K [prompted by φ] and K⊛(φ) is to be changed by
adding further sentences, such a change should be made by using ex-
pansions of K⊛(φ) whenever possible. More generally, the minimal
change of K to include both φ and ψ (that is, K⊛(φ∧ ψ)) ought to
be the same as the expansion of K⊛(φ) by ψ, so long as ψ does not
contradict the beliefs in K⊛(φ)” (Gärdenfors [8], p. 55).1

3 Choice structures and one-stage revision frames

We now turn to a semantic counterpart to the AGM belief revision functions,
which is in the spirit of Grove’s [10] system of spheres. The structures we
will consider are known in rational choice theory as choice functions (see, for
example, [15] and [16]).

Definition 1 A choice structure is a quadruple 〈Ω, E ,O,R〉 where

• Ω is a non-empty set of states; subsets of Ω are called events.

• E ⊆ 2Ω is a collection of events (2Ω denotes the set of subsets of Ω).

• R : E → 2Ω is a function that associates with every event E ∈ E an event
RE ⊆ Ω (we use the notation RE rather than R(E)).

• O ∈E is a distinguished element of E with O 6= ∅.

In rational choice theory a set E ∈ E is interpreted as a set of available
alternatives and RE is interpreted as the subset of E which consists of those
alternatives that could be rationally chosen. In our case, we interpret the el-
ements of E as possible items of information that the agent might receive and
the interpretation of RE is that, if informed that event E has occurred, the
agent considers as possible all and only the states in RE . For the distinguished
element O, we interpret RO as the original or initial beliefs of the agent.2

Note that we do not impose the requirement that Ω ∈ E .

1The expansion of K⊛(φ) by ψ is
[

K⊛(φ) ∪ {ψ}
]

PL
.

2In the rational choice literature there is no counterpart to the distinguished set O.
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Figure 1

Definition 2 A one-stage revision frame is a choice structure 〈Ω, E ,O,R〉 that
satisfies the following properties: ∀E,F ∈ E,

(BR1) RE ⊆ E,

(BR2) if E 6= ∅ then RE 6= ∅,

(BR3) if E ⊆ F and RF ∩ E 6= ∅ then RE = RF ∩ E.

(BR4) if RO ∩ E 6= ∅ then RE = RO ∩E.

In the rational choice literature, (BR1) and (BR2) are taken to be part of
the definition of a choice function, while (BR3) is known as Arrow’s axiom (see
[16] p. 25). Property (BR4), which corresponds to our Qualitative Bayes Rule
(see below), has not been investigated in that literature.

The following is an example of a one-stage belief revision frame:
Ω = {α, β, γ, δ, ε, ζ, η}, E = {{α, β, γ, δ, ε}, {α, β, γ}, {β, γ, δ}, {γ, δ}},
O = {α, β, γ, δ, ε}, RO = {ε}, R{α,β,γ} = {α, β}, R{β,γ,δ} = {β},
R{γ,δ} = {γ, δ}. The frame is shown in Figure 1, where the elements of E are
represented by rectangles and, for every E ∈ E , the set RE is represented by an
oval inside the rectangle that represents E.

Let S be a set of sentence letters or atomic propositions and Φ0 the set of
propositional formulas based on S. A one-stage revision model is a quintuple
〈Ω, E ,O,R, V 〉 where 〈Ω, E ,O,R〉 is a one-stage revision frame and V : S → 2Ω

is a function (called a valuation) that associates with every atomic proposition
p the set of states at which p is true. Truth of an arbitrary formula φ ∈ Φ0 in a
model is defined recursively as follows (ω |= φ means that formula φ is true at
state ω): (1) for p ∈ S, ω |= p if and only if ω ∈ V (p), (2) ω |= ¬φ if and only if
ω 6|= φ and (3) ω |= φ ∨ ψ if and only if either ω |= φ or ω |= ψ (or both). The
truth set of a formula φ is denoted by ‖φ‖. Thus ‖φ‖ = {ω ∈ Ω : ω |= φ}.
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Given a one-stage revision model, we say that

(1) the agent initially believes that φ if and only if RO ⊆ ‖φ‖,

(2) the agent believes that φ upon learning that ψ if and only if ‖ψ‖ ∈ E and
R‖ψ‖ ⊆ ‖φ‖.

Definition 3 A one-stage revision model is comprehensive if for every formula
φ, ‖φ‖ ∈ E. It is rich if, for every finite set P = {p1, ..., pn, q1, ..., qm} of atomic
propositions, there is a state ωP ∈ Ω such that ωP |= pi for every i = 1, ..., n
and ωP |= ¬qj for every j = 1, ...,m .

Thus in a comprehensive one-stage revision model every formula is a possible
item of information. For example, a model based on a one-stage revision frame
where E = 2Ω is comprehensive. In a rich model every formula consisting of a
conjunction of atomic proposition or the negation of atomic propositions is true
at some state.

4 Correspondence

The following propositions (proved in [5]) show that the set of AGM belief
revision functions corresponds to the set of comprehensive and rich one-stage
revision models, in the sense that
(1) given a comprehensive and rich one-stage revision model, we can associate
with it a consistent belief set K and a corresponding AGM belief revision func-
tion K⊛, and
(2) given a consistent belief setK and an AGM belief revision function K⊛ there
exists a comprehensive and rich one-stage revision model whose associated belief
set and AGM belief revision function coincide with K and K⊛, respectively.

Proposition 1 Let 〈Ω, E ,O,R, V 〉 be a comprehensive one-stage revision model.
Define K = {ψ ∈ Φ0 : RO ⊆ ‖ψ‖}. Then K is a consistent belief set. For ev-
ery φ ∈ Φ0 define K⊛(φ) = {ψ ∈ Φ0 : R‖φ‖ ⊆ ‖ψ‖}. Then the function
K⊛ : Φ0 → 2Φ0 so defined satisfies AGM postulates (⊛1)-(⊛5a) and (⊛6)-(⊛8).
If the model is rich then also (⊛5b) is satisfied.

Proposition 2 Let K ∈ K be a consistent belief set and K⊛ : Φ0 → 2Φ0 be an
AGM belief revision function (that is, K⊛ satisfies the AGM postulates (⊛1)-
(⊛8)). Then there exists a comprehensive and rich one-stage revision model
〈Ω, E ,O,R, V 〉 such that K = {ψ ∈ Φ0 : RO ⊆ ‖ψ‖} and, for every φ ∈ Φ0,
K⊛(φ) = {ψ ∈ Φ0 : R‖φ‖ ⊆ ‖ψ‖}.
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5 Temporal belief revision frames

In order to model iterated belief revision, we now turn to the richer structures
introduced in [4], which are branching-time structures with the addition of a
belief relation and an information relation for every instant t. We then show that
these structures are a generalization of the one-stage belief revision structures
considered above.

A next-time branching frame is a pair 〈T,֌〉 where T is a non-empty, count-
able set of instants and ֌ is a binary relation on T satisfying the following
properties: ∀t1, t2, t3 ∈ T,

(1) backward uniqueness if t1 ֌ t3 and t2 ֌ t3 then t1 = t2

(2) acyclicity if 〈t1, ..., tn〉 is a sequence with ti ֌ ti+1

for every i = 1, ..., n− 1, then tn 6= t1.

The interpretation of t1 ֌ t2 is that t2 is an immediate successor of t1
or t1 is the immediate predecessor of t2 : every instant has at most a unique
immediate predecessor but can have several immediate successors.

Definition 4 A temporal belief revision frame is a tuple 〈T,֌,Ω, {Bt, It}t∈T 〉
where 〈T,֌〉 is a next-time branching frame, Ω is a non-empty set of states (or
possible worlds) and, for every t ∈ T , Bt and It are binary relations on Ω.

The interpretation of ωBtω
′ is that at state ω and time t the individual con-

siders state ω′ possible (an alternative expression is “ω′ is a doxastic alternative
to ω at time t”), while the interpretation of ωItω

′ is that at state ω and time
t, according to the information received, it is possible that the true state is ω′.
We shall use the following notation:

Bt(ω) = {ω′ ∈ Ω : ωBtω
′} and, similarly, It(ω) = {ω′ ∈ Ω : ωItω

′}.

Figure 2 illustrates a temporal belief revision frame. For simplicity, in all
the figures we assume that the information relations It are equivalence relations
(whose equivalence classes are denoted by rectangles) and the belief relations Bt
are serial, transitive and euclidean3 (we represent this fact by enclosing states
in ovals and, within an equivalence class for It, we have that - for every two
states ω and ω′ - ω′ ∈ Bt(ω) if and only if ω′ belongs to an oval).4 For example,
in Figure 2 we have that It1(γ) = {α, β, γ} and Bt1(γ) = {α, β}.

3Bt is serial if, ∀ω ∈ Ω, Bt(ω) 6= ∅; it is transitive if ω′ ∈ Bt(ω) implies that Bt(ω′) ⊆ Bt(ω);
it is euclidean if ω′ ∈ Bt(ω) implies that Bt(ω) ⊆ Bt(ω′).

4Note, however, that our results do not require It to be an equivalence relation, nor do
they require Bt to be serial, transitive and euclidean.
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Temporal belief revision frames can be used to describe either a situation
where the objective facts describing the world do not change − so that only the
beliefs of the agent change over time − or a situation where both the facts and
the doxastic state of the agent change. In the literature the first situation is
called belief revision, while the latter is called belief update (see [12]). We shall
focus on belief revision.

Definition 5 An AGM -frame is a temporal belief revision frame that satisfies
the following properties: ∀ω ∈ Ω, ∀t, t1, t2, t3 ∈ T ,

(1) Bt(ω) ⊆ It(ω),
(2) if It(ω) 6= ∅ then Bt(ω) 6= ∅.
(3) if t1 ֌ t2, t1 ֌ t3, It3(ω) ⊆ It2(ω) and It3(ω) ∩ Bt2(ω) 6= ∅

then Bt3(ω) = It3(ω) ∩ Bt2(ω).
(4) if t1 ֌ t2 and Bt1(ω) ∩ It2(ω) 6= ∅ then Bt2(ω) = Bt1(ω) ∩ It2(ω)

Property (4) is called the Qualitative Bayes Rule in [4]. The frame of Figure
2 is not an AGM -frame, because, although it satisfies properties (1) and (2), it
fails the other two properties. Failure of property (3) can be seen from the fact
that t2 ֌ t3, t2 ֌ t4, It4(δ) = {δ, ε} ⊆ It3(δ) = {γ, δ, ε}, It4(δ)∩Bt3(δ) = {δ}
(since Bt3(δ) = {γ, δ}) and yet Bt4(δ) = {ε} 6= It4(δ) ∩ Bt3(δ) = {δ}. Failure
of property (4) can be seen from the fact that t2 ֌ t3, Bt2(γ) = {β, γ} and
It3(γ) = {γ, δ, ε}, so that Bt2(γ) ∩ It3(γ) = {γ} and yet Bt3(γ) = {γ, δ} 6=
Bt2(β)∩It3(β). On the other hand, the temporal frame of Figure 3 below is an
AGM -frame.

The notion of AGM -frame is a generalization of that of one-stage revision
frame (see Definition 2). In fact, given an AGM -frame 〈T,֌,Ω, {Bt, It}t∈T 〉
we can associate with every state-instant pair (ω0, t0) a one-stage revision frame
〈

Ω0, E0,O0,R0
〉

as follows. Let
֌

t0 = {t ∈ T : t0 ֌ t}, then

• Ω0 = Ω,

• E0 =

{

E ⊆ Ω : E = It(ω0) for some t ∈
֌

t0

}

,

• O0 = It0(ω0),

• RO0 = Bt0(ω0)

• for every E ∈ E , if E = It(ω0) (for some t ∈
֌

t0) then R0
E = Bt(ω0),

By Property (1) of AGM -frames the frame
〈

Ω0, E0,O0,R0
〉

so defined sat-
isfies property BR1 of the definition of one-stage revision frame, while Property
(2) ensures that BR2 is satisfied, Property (3) ensures that BR3 is satisfied and
Property (4) ensures that BR4 is satisfied.

Consider, for example, the AGM -frame of Figure 3 and the state-instant
pair (γ, t0). Then the associated one-stage revision frame is as follows:

E = {{α, β, γ, δ, ε}, {α, β, γ}, {β, γ, δ}, {γ, δ}}, O = {α, β, γ, δ, ε},
RO = {ε}, R{α,β,γ} = {α, β}, R{β,γ,δ} = {β} and R{γ,δ} = {γ, δ}.
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6 Syntactic characterization of AGM-frames

A syntactic characterization of AGM -frames is provided in [4] and [5] and is
briefly reviewed here. We consider a propositional language with five modal
operators: the next-time operator © and its inverse ©−1, the belief operator
B, the information operator I and the “all state” operator A. The intended
interpretation is as follows:

©φ : “at every next instant it will be the case that φ”
©−1φ : “at every previous instant it was the case that φ”
Bφ : “the agent believes that φ”
Iφ : “the agent is informed that φ”
Aφ : “it is true at every state that φ”.

The “all state” operator A is needed in order to capture the non-normality of
the information operator I (see below). For a thorough discussion of the “all
state” operator see [9].

Note that, while the other operators apply to arbitrary formulas, we restrict
the information operator to apply to Boolean formulas only, that is, to formulas
that do not contain modal operators. Boolean formulas are defined recursively
as follows: (1) every atomic proposition is a Boolean formula, and (2) if φ and ψ
are Boolean formulas then so are ¬φ and (φ ∨ ψ). The set of Boolean formulas
is denoted by ΦB. Boolean formulas represent facts and, therefore, we restrict
information to be about facts.

Given a temporal belief revision frame 〈T,֌,Ω, {Bt, It}t∈T 〉 one obtains a
model based on it by adding a function V : S → 2Ω (where S is the set of atomic
propositions and 2Ω denotes the set of subsets of Ω) that associates with every
atomic proposition p the set of states at which p is true. Note that defining a
valuation this way is what frames the problem as one of belief revision, since
the truth value of an atomic proposition p depends only on the state and not
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on the time.5 Given a model, a state ω, an instant t and a formula φ, we write
(ω, t) |= φ to denote that φ is true at state ω and time t. Let ‖φ‖ denote the truth
set of φ, that is, ‖φ‖ = {(ω, t) ∈ Ω×T : (ω, t) |= φ} and let ⌈φ⌉t ⊆ Ω denote the
set of states at which φ is true at time t, that is, ⌈φ⌉t = {ω ∈ Ω : (ω, t) |= φ}.
Truth of an arbitrary formula at a pair (ω, t) is defined recursively as follows:

if p ∈ S, (ω, t) |= p if and only if ω ∈ V (p);
(ω, t) |= ¬φ if and only if (ω, t) 2 φ;
(ω, t) |= φ ∨ ψ if and only if either (ω, t) |= φ or (ω, t) |= ψ (or both);
(ω, t) |= ©φ if and only if (ω, t′) |= φ for every t′ such that t ֌ t′;

(ω, t) |= ©−1φ if and only if (ω, t
′′

) |= φ for every t
′′

such that t
′′

֌ t;
(ω, t) |= Bφ if and only if Bt(ω) ⊆ ⌈φ⌉t, that is,

if (ω′, t) |= φ for all ω′ ∈ Bt(ω);
(ω, t) |= Iφ if and only if It(ω) = ⌈φ⌉t, that is, if (1) (ω′, t) |= φ

for all ω′ ∈ It(ω), and (2) if (ω′, t) |= φ then ω′ ∈ It(ω);
(ω, t) |= Aφ if and only if ⌈φ⌉t = Ω, that is,

if (ω′, t) |= φ for all ω′ ∈ Ω.

Note that, while the truth condition for the operator B is the standard one,
the truth condition for the operator I is non-standard: instead of simply requir-
ing that It(ω) ⊆ ⌈φ⌉t we require equality: It(ω) = ⌈φ⌉t. Thus our information
operator is formally similar to the “all and only” operator introduced in [11]
and the “only knowing” operator studied in [14], although the interpretation is
different. It is also similar to the “assumption” operator used in [6].

Remark 1 The truth value of a Boolean formula does not change over time: it
is only a function of the state. That is, fix an arbitrary model and suppose that
(ω, t) |= φ where φ ∈ ΦB; then, for every t′ ∈ T , (ω, t′) |= φ.

A formula φ is valid in a model if ‖φ‖ = Ω× T , that is, if φ is true at every
state-instant pair (ω, t). A formula φ is valid in a frame if it is valid in every
model based on it.

The formal language is built in the usual way (see [2]) from a countable set
of atomic propositions, the connectives ¬ and ∨ (from which the connectives ∧,
→ and ↔ are defined as usual) and the modal operators ©, ©−1, B, I and A,
with the restriction that Iφ is a well-formed formula if and only if φ is a Boolean

formula. Let ♦φ
def
= ¬©¬φ, and ♦−1φ

def
= ¬©−1¬φ. Thus the interpretation of

♦φ is “at some next instant it will be the case that φ ” while the interpretation
of ♦−1φ is “at some immediately preceding instant it was the case that φ”.

We denote by L0 the basic logic defined by the following axioms and rules
of inference.

AXIOMS:

1. All propositional tautologies.

5Belief update would require a valuation to be defined as a function V : S → 2Ω×T .
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2. Axiom K for ©, ©−1, B and A6: for � ∈ {©,©−1, B,A}

(�φ ∧ �(φ→ ψ)) → �ψ (K)

3. Temporal axioms relating © and ©−1:

φ→ ©♦−1φ (O1)
φ→ ©−1♦φ (O2)

4. Backward Uniqueness axiom:

♦−1φ→ ©−1φ (BU)

5. S5 axioms for A:

Aφ→ φ (TA)
¬Aφ→ A¬Aφ (5A)

6. Inclusion axiom for B (note the absence of an analogous axiom for I):

Aφ→ Bφ (InclB)

7. Axioms to capture the non-standard semantics for I: for φ, ψ ∈ ΦB (recall
that ΦB denotes the set of Boolean formulas),

(Iφ ∧ Iψ) → A(φ↔ ψ) (I1)
A(φ↔ ψ) → (Iφ↔ Iψ) (I2)

RULES OF INFERENCE:

1. Modus Ponens: φ, φ→ψ
ψ

(MP )

2. Necessitation for A, © and ©−1: for every � ∈ {A,©,©−1}, φ
�φ

(Nec).

Note that from MP , InclB and Necessitation for A one can derive necessi-
tation for B. On the other hand, necessitation for I is not a rule of inference of
this logic (indeed it is not validity preserving).

Remark 2 By MP, axiom K and Necessitation, the following is a derived rule
of inference for the operators ©, ©−1, B and A: φ→ψ

�φ→�ψ
for � ∈ {©,©−1, B,A}.

We call this rule RK. On the other hand, rule RK is not a valid rule of inference
for the operator I.

6Axiom K for I is superfluous, since it can be derived from axioms I1 and I2 below (see
[3] , p. 204).
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Our purpose is to model how the beliefs of an individual change over time in
response to factual information. Thus the axioms we introduce are restricted to
Boolean formulas, which are formulas that do not contain any modal operators.

Let LAGM be the logic obtained by adding to L0 the following six axioms.

The first axiom requires the individual not to drop any of his current factual
beliefs at any next instant at which he is informed of some fact that he currently
considers possible: if φ and ψ are Boolean,

(¬B¬φ ∧Bψ) → ©(Iφ→ Bψ). (ND)

The second axiom requires that if the individual considers it possible that
(φ ∧ ¬ψ) then at any next instant at which he is informed that φ he does not
believe that ψ: if φ and ψ are Boolean,

¬B¬(φ ∧ ¬ψ) → ©(Iφ→ ¬Bψ). (NA)

The third axiom states that information is believed:

Iφ→ Bφ. (A)

The fourth axiom says that if there is a next instant where the individual
is informed that φ ∧ ψ and believes that χ, then at every next instant it must
be the case that if the individual is informed that φ then he must believe that
(φ ∧ ψ) → χ (we call this axiom K7 because it corresponds to AGM postulate
⊛7): if φ, ψ and χ are Boolean formulas,

♦(I(φ ∧ ψ) ∧Bχ) → ©(Iφ→ B ((φ ∧ ψ) → χ)). (K7)

The fifth axiom says that if there is a next instant where the individual is
informed that φ, considers φ∧ψ possible and believes that ψ → χ, then at every
next instant it must be the case that if the individual is informed that φ ∧ ψ
then he believes that χ (we call this axiom K8 because it corresponds to AGM
postulate ⊛8): if φ, ψ and χ are Boolean formulas,

♦(Iφ ∧ ¬B¬(φ ∧ ψ) ∧B(ψ → χ)) → ©(I(φ ∧ ψ) → Bχ). (K8)

The sixth axiom says that if the individual receives consistent information
then his beliefs are consistent, in the sense that he does not simultaneously
believe a formula and its negation (‘WC’ stands for ‘Weak Consistency’): if φ
is a Boolean formula,

(Iφ ∧ ¬A¬φ) → (Bψ → ¬B¬ψ). (WC)
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A logic L is characterized by (or characterizes) a class F of frames if (1)
every axiom (hence, every theorem) of L is valid in every frame in F, and (2)
for every frame not in F there is an axiom in L that is not valid in that frame.

The following result is proved in [5].

Proposition 3 Logic LAGM is characterized by the class of AGM -frames.
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