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Abstract. Representing an epistemic situation involving several agents
depends very much on the modeling point of view one takes. In fact,
the interpretation of a formalism relies quite a lot on the nature of this
modeling point of view. Classically, in epistemic logic, the models built
are supposed to represent the situation from an external and objective
point of view. We call this modeling approach the objective approach. In
this paper, we study the modeling point of view of a particular agent in-
volved in the situation with other agents. We propose a logical formalism
based on epistemic logic that this agent can use to represent ‘for herself’
the surrounding world. We call this modeling approach the subjective
approach. We then set some formal connections between the subjective
approach and the objective approach. Finally we axiomatize our logical
formalism and show that the resulting logic is decidable.

Note 1. All the proofs of this paper can be found in the appendix.

1 Introduction

In the literature about epistemic logic, when it comes to model epistemic situ-
ations, not much is said explicitly about which modeling point of view is con-
sidered. However, modeling an epistemic situation depends very much on the
modeling point of view. Indeed, the models built will be quite different whether
the modeler is an agent involved in the situation or not. Let us consider the
following example. Assume that the agents Ann and Bob are in a room and that
there is a coin in a box that both cannot see because the box is closed. Now,
assume that Bob cheats, opens the box and looks at the coin. Moreover, assume
that Ann does not suspect anything about it and that Bob knows it (Ann might
be inattentive or out of the room for a while). On the one hand, if the modeler
is an external agent (different from Ann and Bob) knowing everything that has
happened, then in the model that this modeler builds to represent this resulting
situation Bob knows whether the coin is heads or tails up. On the other hand, if
the modeler is Ann then in the model that Ann builds to represent this resulting
situation Bob does not know whether the coin is heads or tails up. As we see
in this example, specifying the modeling point of view is also quite essential to
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interpret the formal models.

But what kinds of modeling points of view are there ? For a start, we can
distinguish whether the modeler is involved in the situation or not.

1. First, consider the case where the modeler is involved in the situation. In
other words she has the same status as the other agents and is considered
by them on a par. So the modeler should be represented in the formalism
because she takes an active part in the situation. This formalism then deals
not only with the other agents’ beliefs but also with the other agents’ beliefs
about her own beliefs. This is then an internal point of view, and the models
built are supposed to represent the way she perceives the surrounding world.
Note that because the modeler is part of the situation, her beliefs might be
erroneous. Hence the models she builds might also be erroneous. We call this
point of view the subjective point of view because the models built are the
formal models that the modeler-agent has ‘in her mind’ in order to represent
the surrounding world.

2. Second, consider the case where the modeler is not involved in the situation.
In other words, she simply does not exist for the other agents, or at least
she is not taken into consideration in their representation of the world. So
the modeler should not be represented in the formalism and particularly the
agents’ beliefs about her own beliefs should also not be represented because
they simply do not exist. The models that the modeler builds are supposed to
represent the situation from an external and objective point of view. There
are then two other possibilities depending on whether or not the modeler
has a perfect and omniscient knowledge of the situation.
(a) In case the modeler has a perfect and omniscient knowledge of the situ-

ation then everything that is true in the model that she builds is true in
reality and vice versa, everything that is true in reality is also true in the
model. This thesis was already introduced in [1]. Basically, the models
built by the modeler are perfectly correct. The modeler has access to the
mind of the agents and knows perfectly not only what they believe but
also what the real state of affairs is. This is a kind of ‘divine’ point of
view and we call it the objective point of view.

(b) In case the modeler does not have a perfect and omniscient knowledge of
the situation then, unlike the objective point of view, the models built
might be erroneous. The models could also be correct but then, typically,
the modeler would be uncertain about which is the actual world (in that
sense, she would not have an omniscient knowledge of the situation).
What the modeler knows can be obtained for example by observing what
the agents say and do by asking them questions . . .We call this point of
view the imperfectly objective point of view.

We claim that the subjective, the objective and the imperfectly objective
point of view are the only three possible points of view when we want to model
epistemic situations. From now on we will call them the subjective, the objective
and the imperfectly objective approach.



Moreover, the fields of application of these approaches are different. The
subjective approach has rather applications in artificial intelligence where au-
tonomous agents like machines or robots acting in the world need to have a
formal representation of the surrounding world. The objective and imperfectly
objective approach have rather applications in game theory [2], cognitive psy-
chology or distributed systems [3] for example. Indeed, in these fields we need to
model situations from an external point of view in order to explain and predict
what happens in these situations.

In this paper we will focus only on the subjective approach (and its connec-
tions with the objective approach). For a work that deals with reasoning about
another agent using an imperfectly objective approach, see [4, 5]. Standard epis-
temic logic [6] rather follows the objective approach. On the other hand, AGM
belief revision theory [7] rather follows the subjective approach. But AGM is
designed for a single agent. In fact there is no logical formalism for the subjec-
tive approach in a multi-agent setting. However, such a formalism is crucial if
we want to design autonomous agents. That is what we are going to propose in
this paper.

The paper is organized as follows. In Section 2 we recall epistemic logic. In
Section 3 we propose a semantics for the subjective approach. Then in Section
4 we set some connections between the subjective and the objective approach.
Finally, in Section 5 we propose an axiomatization of the subjective semantics.

2 Epistemic logic

Epistemic logic is a modal logic [8] that is concerned with the logical study of
the notions of knowledge and belief. So what we call an epistemic model is just
a particular kind of Kripke model as used in modal logic. The only difference is
that instead of having a single accessibility relation we have a set of accessibility
relations, one for each agent. This set of agents is noted G and its cardinality
N . Besides, Φ is a set of propositional letters.

Definition 1. An epistemic model M is a triple M = (W,R, V ) such that

– W is a non-empty set of possible worlds;
– R : G → 2W×W assigns an accessibility relation to each agent;
– V : Φ → 2W assigns a set of possible world to each propositional letter.

If M = (W,R, V ) is an epistemic model, a pair (M, wa) with wa ∈ W is called
a pointed epistemic model. We also note Rj := R(j) and Rj(w) := {w′ ∈
W ;wRjw

′}, and w ∈ M for w ∈ W .

Intuitively, a pointed epistemic model (M,wa) represents from an external
point of view how the actual world wa is perceived by the agents G. This entails
that epistemic logic clearly follows the objective approach. The possible worlds
W are the relevant worlds needed to define such a representation and the val-
uation V specifies which propositional facts (such as ‘it is raining’) are true in



these worlds. Finally the accessibility relations Rj models the notion of belief.
We set w′ ∈ Rj(w) in case in world w, agent j considers the world w′ possible.

Finally, the submodel of M generated by a set of worlds S ⊆ M is the re-
striction1 of M to the worlds {( ⋃

j∈G

Rj)∗(wS); wS ∈ S} (where (
⋃

j∈G

Rj)∗ is the

reflexive transitive closure of (
⋃

j∈G

Rj), see [8] for details). In case the submodel

of M generated by a set of worlds S ⊆ M is M itself then M is said to be
generated by S. Intuitively, the submodel of M generated by a set of worlds S
contains all the relevant information in M about these worlds S.

Now inspiring ourselves from modal logic, we can define a language for epis-
temic models which will enable us to express things about them. The modal
operator is then a ‘belief’ operator, one for each agent.

Definition 2. The language L is defined as follows:

L : ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Bjϕ

where p ranges over Φ and j over G. Moreover, ϕ∨ϕ′ is an abbreviation for
¬(¬ϕ∧¬ϕ′); ϕ → ϕ′ is an abbreviation for ¬ϕ∨ ϕ′; B̂jϕ is an abbreviation for
¬Bj¬ϕ; and ⊥ is an abbreviation for ¬>.

Now we can give meaning to the formulas of this language by defining truth
conditions for these formulas on the class of epistemic models.

Definition 3. Let M = (W,R, V ) be an epistemic model and w ∈ W . M,w |= ϕ
is defined inductively as follows:

– M, w |= >;
– M, w |= p iff w ∈ V (p);
– M, w |= ¬ϕ iff it is not the case that M,w |= ϕ;
– M, w |= ϕ ∧ ϕ′ iff M,w |= ϕ and M,w |= ϕ′;
– M, w |= Bjϕ iff for all v ∈ Rj(w), M, v |= ϕ.

We write M |= ϕ for M,w |= ϕ for all w ∈ M .

So agent j believes ϕ in world w (formally M, w |= ϕ) if ϕ is true in all the
worlds that the agent j considers possible (in world w).

But note that the notion of belief might comply to some constraints (or ax-
ioms) such as Bjϕ → BjBjϕ: if agent j believes something, she knows that she
believes it. These constraints might affect the nature of the accessibility relations
Rj which may then comply to some extra properties. We list here some proper-
ties that will be useful in the sequel: seriality: for all w, Rj(w) 6= ∅; transitivity:
for all w, w′, w′′, if w′ ∈ Rj(w) and w′′ ∈ Rj(w′) then w′′ ∈ Rj(w); euclidicity: for

1 Let M = (W, R, V ) be an epistemic model. The restriction of M to a set of worlds
S is the submodel M ′ = (W ′, R′, V ′) of M defined as follows. W ′ = W ∩ S; R′j :=
Rj ∩ (S × S) for all j ∈ G; and V ′(p) = V (p) ∩ S for all p ∈ Φ.



all w,w′, w′′, if w′ ∈ Rj(w) and w′′ ∈ Rj(w) then w′ ∈ Rj(w′′). Then we define
the class of KD45G-models as the class of epistemic models whose accessibility
relations are serial, transitive and euclidean. If for all KD45G-models M , M |= ϕ
then ϕ is said to be KD45G-valid and it is noted |=KD45G ϕ.

Now we are going to axiomatize this semantics with the help of a particular
modal logic. Generally speaking, a modal logic is built from a set of axiom
schemes and inference rules, called a proof system. Then a formula ϕ belongs to
this logic either if it is an axiom or if it is derived by applying successively some
inference rules to some axioms. In that case we say that the formula is provable.

Definition 4. The logic KD45G is defined by the following axiom schemes and
inference rules:

Taut `KD45G
ϕ for all propositional tautologies ϕ

K `KD45G
Bj(ϕ → ψ) → (Bjϕ → Bjψ) for all j ∈ G

D `KD45G
Bjϕ → B̂jϕ

4 `KD45G
Bjϕ → BjBjϕ

5 `KD45G ¬Bjϕ → Bj¬Bjϕ
Nec If `KD45G ϕ then `KD45G Bjϕ for all j ∈ G
MP If `KD45G

ϕ and `KD45G
ϕ → ψ then `KD45G

ψ.

We write `KD45G
ϕ in case ϕ belongs to the logic KD45G.

An interesting feature of epistemic (and modal) logic is that we can some-
how match the constraints imposed by the axioms on the belief operator Bj

with constraints on the accessibility relations Rj . In other words, the notions of
validity and provability coincide. That is what the following theorem expresses.

Theorem 1 (soundness and completeness). For all ϕ ∈ L,

`KD45G
ϕ iff |=KD45G

ϕ

As we said, epistemic logic rather follows the objective approach. So now we
are going to propose a formalism for the subjective approach.

3 A semantics for the subjective approach

To define a semantics for the subjective approach in a multi-agent setting, we
will start from the standard view of an agent’s epistemic state as a set of possible
worlds (used in the AGM framework), and then extend it to the multi-agent case.
Then we will propose an equivalent formalism which will be used in the rest of
this paper.

But first some important notations. As we said, in the subjective approach,
the modeler is a given agent involved in the situation. Throughout this paper,
this given agent/modeler will be called the agent Y (like Y ou) and we thus
have that Y ∈ G. Besides, because a computer cannot easily deal with infinite
structures, the set Φ of propositional letters is assumed to be finite.



3.1 Multi-agent possible world and subjective model

In the AGM framework, one considers a single agent Y . The possible worlds
are supposed to represent how the agent Y perceives the surrounding world. As
she is the only agent, these possible worlds deal only with propositional facts
about the surrounding world. Now, if we suppose that there are other agents
than agent Y , a possible world for Y in that case should also deal with how the
other agents perceive the surrounding world. These “multi-agent” possible worlds
should then not only deal with propositional facts but also with epistemic facts.
So to represent a multi-agent possible world we need to add a modal structure
to our (single agent) possible worlds. We do so as follows.

Definition 5. A multi-agent possible world (M,w) is a finite pointed epistemic
model M = (W,R, V, w) generated by w ∈ W such that Rj is serial, transitive
and euclidean for all j ∈ G, and

1. RY (w) = {w};
2. there is no v and j 6= Y such that w ∈ Rj(v).

Let us have a closer look at the definition. Condition 2 will be motivated
later, but note that any pointed epistemic model satisfying the conditions of
a multi-agent possible world except condition 2 is bisimilar to a multi-agent
possible world. Condition 1 ensures that in case Y is the only agent then a
multi-agent possible world is a unique possible world with a reflexive arrow
indexed by Y . This is very similar to the possible worlds of the AGM theory to
which we could perfectly add reflexive arrows indexed by Y . Condition 1 also
ensures that in case Y assumes that the situation is correctly represented by the
multi-agent possible world (M,w) then for her w is the (only) actual world. In
fact the other possible worlds of a multi-agent possible world are just present for
technical reasons: they express the other agents’ beliefs (in world w). One could
get rid of the condition that a multi-agent possible world (M, w) is generated by
w but the worlds which do not belong to the submodel generated by w would
not have neither philosophical nor technical motivation. Besides, for the same
reason that Φ is finite, a multi-agent possible world is also assumed to be finite.
Finally, notice that we assume that accessibility relations are serial, transitive
and euclidean. This means that the agents’ beliefs are consistent and that agents
know what they believe and disbelieve. These seem to be very natural constraints
to impose on the notion of belief. Intuitively, this notion of belief corresponds
for example to the kind of belief in a theorem that you have after having proved
this theorem and checked the proof several times. In the literature, this notion of
belief corresponds to Lenzen’s notion of conviction [9] or to Gardenfors’ notion
of acceptance [10] or to Voorbraak’s notion of rational introspective belief [11].
In fact, in all the agent theories the notion of belief satisfies these constraints:
in Cohen and Levesque’s theory of intention [12] or in Rao and Georgeff BDI
architecture [13] or in Meyer et. al. KARO architecture [14] or in the AOP
paradigm [15]. However, one should note that all these agent theories follow the
objective approach. This is of course at odds with their intention to implement
their theories in machines.



Remark 1. In this paper we deal only with the notion of belief but one could also
add the notion of knowledge. Indeed, it might be interesting to express things
such as ‘the agent Y believes that agent j does not know p’ (even if this could
be rephrased in terms of beliefs). We refrain to do so in order to highlight the
main new ideas and because in most applications of the subjective approach the
notion of knowledge is not essential.

Example 1. We see in the figure above that a multi-agent possible world is really
a generalization of a possible world.

a (single-agent) possible world:

w : p,¬q

a multi-agent possible world:

w′ : p,¬q

Y
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In the single agent case (in AGM belief revision theory), the epistemic state
of the agent Y is represented by a finite set of possible worlds. In a multi agent
setting, this is very similar: the epistemic state of the agent Y is represented by a
(disjoint and) finite set of multi-agent possible worlds. We call this a subjective
model of type 1.

Definition 6. A subjective model of type 1 is a disjoint and finite union of
multi-agent possible worlds.

A subjective model of type 1 will sometimes be noted (M, Wa) where Wa

are the roots of its multi-agent possible worlds.

Example 2. In Figure 1 is depicted an example of subjective model. In this
subjective model, the agent Y does not know wether p is true or not (formally



¬BY p∧¬BY ¬p). Indeed, in one multi-agent possible world (on the left) p is true
at the root and in the other (on the right) p is false at the root. The agent Y
also believes that the agent A does not know whether p is true or false (formally
BY (¬BAp∧¬BA¬p). Indeed, in both multi-agent possible worlds, ¬BAp∧¬BA¬p
is true (at the roots). Finally, the agent Y believes that A believes that she does
not know whether p is true or false (formally BY BA(¬BY p ∧ ¬BY ¬p)) since
BA(¬BY p ∧ ¬BY ¬p) is true at the roots of both multi-agent possible worlds.

w : p

Y

¼¼

A

}}{{{{{{{{
A

""EEEEEEEE w′ : ¬p

Y

ºº

A

||yy
yy

yy
yy

y
A

##GGGGGGGG

p

A,Y

YY A,Y
// ¬p

A,Y

YY
oo p

A,Y

YY A,Y
// ¬p

A,Y

YY
oo

Fig. 1. Example of subjective model of type 1

Thanks to condition 2 in the definition of a multi-agent possible world, we
could define the notion of subjective model differently. Indeed, we could perfectly
set an accessibility relation between the roots of the multi-agent possible worlds.
Figure 2 gives an example of such a process, starting from the example of Figure
1. Condition 2 ensures us that by doing so we do not modify the information
present in the original subjective model. Indeed, if condition 2 was not fulfilled
then it might be possible that j’s beliefs about Y ’s beliefs (for some j 6= Y ) might
be different between the original subjective model and the new one, due to the
creation of these new accessibility relations between the multi-agent possible
worlds. This phenomenon will become explicit when we define the language for
the subjective models of type 1.
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Fig. 2. A new definition of subjective model



Then in this new formalism, one can notice that the former roots of the
multi-agent possible worlds form an equivalence class for the accessibility relation
indexed by Y . Note also that the accessibility relations are still serial, transitive
and euclidean. This leads us to the following new definition of a subjective model.

Definition 7. A subjective model of type 2 is a couple (M,Wa) where M is
a finite epistemic model M = (W,R, V ) generated by Wa ⊆ W such that Rj is
serial, transitive and euclidean for all j ∈ G, and RY (wa) = Wa for all wa ∈ Wa.
Wa is called the actual equivalence class.

So from a subjective model of type 1, one can easily define an equivalent
subjective model of type 2. But of course, the other way around, we will see
that from a subjective model of type 2 one can also easily define an equivalent
subjective model of type 1 (see Proposition 1).

Example 3. In Figure 3 is depicted a subjective model of type 2. The worlds of
the actual equivalence class are within boxes. It turns out that this subjective
model is bisimilar to the one depicted in Figure 2, which is itself an equiva-
lent representation of the subjective model of type 1 depicted in Figure 1. So
the subjective model of type 2 depicted in Figure 3 is an equivalent represen-
tation of the subjective model of type 1 depicted in Figure 1. One can indeed
check for example that the formulas ¬BY p ∧ ¬BY ¬p, BY (¬BAp ∧ ¬BA¬p) and
BY BA(¬BY p∧¬BY ¬p) are indeed true. Note that this second representation is
much more compact.

w : p
A,Y //

A,Y

¦¦
w′ : ¬p

A,Y

¨¨
oo

Fig. 3. Example of subjective model of type 2

As we said in the introduction, the subjective approach can be applied in
artificial intelligence. In this case, the agent Y is an artificial agent (such as
a robot) that has a subjective model ‘in her mind’. But to stick with a more
standard approach (used in the single agent case), we could perfectly consider
that the agent Y has sentences from a particular language ‘in her mind’ and
draws inferences from them. In that respect, this language could also be used
by the agent Y in the former approach to perform some model checking in her
subjective model in order to reason about the situation or to answer queries. So
in any case we do need to define a language.

3.2 Language for the subjective approach

Definition 8.
L : ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | Bjϕ



where p ranges over Φ and j over G.

For sake of simplicity and in order to highlight the new results, we do not
introduce in this paper a common knowledge operator, but this could be done
easily. In fact all the results of this paper still hold if we add the common
knowledge operator to the language. Note that the language is identical to the
usual language of epistemic logic. If we consider the class of subjective models
of type 2 then its truth conditions are also the same and are spelled out in
Definition 3. But if we consider the class of subjective models of type 1 then its
truth conditions are a bit different and are set out below.

Definition 9. Let (M, {w1, . . . , wn}) = {(M1, w1), . . . ,
(Mn, wn)} be a subjective model of type 1 and let w ∈M. Then w ∈ Mk for

some k, with Mk = (W k, Rk, V k). M, w |= ϕ is defined inductively as follows:

– M, w |= >;
– M, w |= p iff w ∈ V k(p);
– M, w |= ¬ϕ iff it is not the case that M, w |= ϕ;
– M, w |= ϕ ∧ ϕ′ iff M, w |= ϕ and M, w |= ϕ′;
– M, w |= BY ϕ iff

• w ∈ Wa and for all wi ∈ Wa, M, wi |= ϕ; or
• w ∈ W k −Wa and for all w′ ∈ Rk

Y (w), M, w′ |= ϕ
– If j 6= Y then M, w |= Bjϕ iff for all w′ ∈ Rk

j (w), M, w′ |= ϕ.

Note that the truth condition for the operator BY is defined as if there were
accessibility relations indexed by Y between the roots of the multi-agent possible
worlds. Condition 2 of Definition 5 then ensures that the agents j’s beliefs about
agent Y ’s beliefs (with j 6= Y ) of a given multi-agent possible world stay the same
whatever other multi-agent possible world we add to this multi-agent possible
world. This would of course be a problem if it was not the case. Condition 2 thus
provides a kind of modularity of the multi-agent possible worlds in a subjective
model (of type 1).

This truth condition for the operator BY is of course completely in line with
the truth conditions for the subjective models of type 2. In fact, thanks to the
definition of this language, we can show that the two types of subjective models
are somehow equivalent.

Definition 10. Let (M,Wa) be a subjective model of type 1 and (M′,W ′
a) be a

subjective model of type 2. (M, Wa) and (M′, W ′
a) are equivalent if and only if

– for all w ∈ Wa there is w′ ∈ W ′
a such that for all ϕ ∈ L, M, w |= ϕ iff

M′, w′ |= ϕ;
– for all w ∈ W ′

a there is w′ ∈ Wa such that for all ϕ ∈ L, M, w |= ϕ iff
M′, w′ |= ϕ.

Proposition 1.
Let (M,Wa) be a subjective model of type 2. Then there is a subjective model

of type 1 (M′,W ′
a) which is equivalent to (M,Wa).

Let (M,Wa) be a subjective model of type 1. Then there is a subjective model
of type 2 (M′,W ′

a) which is equivalent to (M,Wa).



So from now on, by subjective model we mean subjective models of type 2.
Even if we do not use subjective models of type 1 anymore, their introduction
was useful. Indeed, they helped us to motivate the introduction of subjective
models of type 2 and, even if it is beyond the scope of this paper, they turn out
to be very useful in a dynamic setting (see conclusion).

Thanks to the truth conditions we can now define the notions of satisfiability
and validity of a formula. The truth conditions are defined for any world of
the subjective model. However, the satisfiability and the validity should not be
defined relatively to any possible world of the subjective model (as it is usually
done in epistemic logic) but only to the possible worlds of the actual equivalence
class. Indeed, these are the worlds that do count for the agent Y in a subjective
model: they are the worlds that agent Y actually considers possible. The other
possible worlds are just here for technical reasons in order to express the other
agents’ beliefs (in these worlds). This leads us to the following definition of
satisfiability and validity.

Definition 11. Let ϕ ∈ L. The formula ϕ is subjectively satisfiable if there is
a subjective model (M, Wa) and there is w ∈ Wa such that M, w |= ϕ. The
formula ϕ is subjectively valid if for all subjective models (M, Wa), M, w |= ϕ
for all w ∈ Wa. In this last case we write |=Subj ϕ.

Remark 2. One could define the notions of subjective satisfiability and subjective
validity differently. One could say that ϕ ∈ L is satisfiable if there is a subjective
model (M,Wa) such that M, w |= ϕ for all w ∈ Wa. Then, following this new
definition, ϕ ∈ L is valid if for every subjective model (M,Wa), there is w ∈ Wa

such that M, w |= ϕ.
This second notion of subjective validity corresponds to Gärdenfors’ notion

of validity [10]. In fact these two notions of subjective validity correspond to the
two notions of validity introduced by Levi and Arlo Costa [16]: they call the first
one “positive validity” and the second one “negative validity”.

These two notions coincide in the single agent case but not in the multi-
agent case. Indeed, the Moore sentence p∧¬BY p is positively satisfiable but not
negatively satisfiable. Nevertheless there are some connections between them. We
can indeed prove that ϕ ∈ L is positively valid if and only if BY ϕ is negatively
valid. Moreover, both have advantages and drawbacks. On the one hand, positive
validity is intuitive because it says that a formula ϕ is valid if in every possible
situation, the agent Y believes ϕ. However positive satisfiability is less intuitive
because ϕ is positively satisfiable if there exists a situation in which the agent
Y does not reject ϕ. On the other hand, negative satisfiability is also intuitive
because it says that ϕ is negatively satisfiable if there exists a situation in which
agent Y believes ϕ. However negative validity is less intuitive because it says
that ϕ is negatively valid if in every situation agent Y does not reject ϕ.

In modal logic [8] there are two notions of semantic consequence. In the
subjective approach we can also define two notions of semantic consequence.



Definition 12. Let C be a class of subjective models; let Σ be a set of formulas
of L and let ϕ ∈ L.

– We say that ϕ is a local subjective consequence of Σ over C, noted Σ |=C ϕ,
if for all subjective models (M,Wa) ∈ C and all w ∈ Wa, if M, w |= Σ then
M, w |= ϕ.

– We say that ϕ is a global subjective consequence of Σ over C, noted Σ |=g
C ϕ,

if and only if for all subjective models (M,Wa) ∈ C, if M, w |= Σ for all
w ∈ Wa then M, w |= ϕ for all w ∈ Wa.

For example, if we take any class C of subjective models then it is not neces-
sarily the case that ϕ |=C BY ϕ, whereas we do have that ϕ |=g

C BY ϕ. Moreover,
these two notions can be informally associated to the two notions of satisfiabil-
ity mentioned in Remark 2: local subjective consequence can be associated to
positive satisfiability and the global subjective consequence can be associated to
negative satisfiability.

4 Some connections between the subjective and the
objective approach

Intuitively, there are some connections between the subjective and the objective
approach. Indeed, in the objective approach the modeler is supposed to know
perfectly how the agents perceive the surrounding world. So from the model she
builds we should be able to extract the subjective model of each agent. Likewise,
it seems natural to claim that for the agent Y a formula is true if and only if,
objectively speaking, the agent Y believes this formula. In this section we are
going to formalize these intuitions.

4.1 From objective model to subjective model and vice versa

First we define the notion of objective model. An objective model is a pointed
epistemic model (M,wa) = (W,R, V,wa) where wa ∈ W and the accessibility
relations Rj are serial, transitive and euclidean. So what we call an objective
model is just a standard pointed epistemic model used in epistemic logic. An
objective model is supposed to model truthfully and from an external point of
view how all the agents involved in the same situation perceive the actual world
(represented formally by wa). This is thus simply the type of model built by the
modeler in the objective approach spelled out in the introduction. The language
and truth conditions for these objective models are the same as in epistemic
logic and are spelled out in Definitions 8 and 3. The notion of objective validity
is also the same as in epistemic logic and we say that ϕ ∈ L is objectively valid,
noted |=Obj ϕ, if for all objective model (M,w), M,w |= ϕ (and similarly for
objective satisfiability).

Now for a given objective model representing truthfully how a situation is
perceived by the agents, we can extract for each agent her subjective model
pertaining to this situation.



Definition 13. Let (M,wa) be an objective model and let j ∈ G. The model
associated to agent j and (M,wa) is the submodel of M generated by Rj(wa).
Besides Rj(wa) is its actual equivalence class.

Because the objective model is supposed to model truthfully the situation,
wa does correspond formally to the actual world. So Rj(wa) are the worlds
that the agent j actually considers possible in reality. In agent j’s subjective
model pertaining to this situation, these worlds should then be the worlds of
the actual equivalence class. Finally, taking the submodel generated by these
worlds ensures that the piece of information encoded in the worlds Rj(wa) in
the objective model is kept unchanged in the associated subjective model.

Proposition 2. Let (M, wa) be an objective model. The model associated to
agent j and (M, wa) is a subjective model.

Example 4. In Figure 4 is depicted the ‘coin example’ after Bob’s cheating (see
introduction). Here p stands for ‘the coin is heads up’; A for Ann and B for
Bob. We can check that in the objective model, Ann does not know whether the
coin is heads or tails up and moreover believes that Bob does not know neither.
This is also true in the subjective model associated to Ann. However, in the
objective model, Bob knows that the coin is heads up but this is false in the
subjective model associated to Ann and true in Bob’s subjective model. Note
finally that the subjective model associated to Bob is the same as the objective
model. This is because we assumed that Bob perceived correctly the situation
and what happened.

So we know from an objective model how to obtain the subjective model of
each agent. But the other way round, we could wonder how to get the objective
model (of a particular situation) if we suppose given the subjective models of
each agent. In that case we must moreover assume that the modeler knows the
real state of the world, more precisely she knows what propositional facts are true
in the actual world. We can then introduce a single world wa whose valuation
Va satisfies these propositional facts. The objective model is built by setting
accessibility relations indexed by j from wa to the actual equivalence class of j’s
subjective model, and so for each agent j.

4.2 A semantic correspondence

As we said in Section 3.2, the language of the subjective approach is the same as
that of the objective approach. This enables us to draw easily some connections
between the two approaches.

Proposition 3. For all ϕ ∈ L, |=Subj ϕ iff |=Obj BY ϕ

Intuitively, this result is correct: for you ϕ is true if and only if from an ex-
ternal point of view you believe that ϕ is the case. (Note that this result does
not hold for the notion of negative validity.)
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Fig. 4. Objective model (M, wa) (up); Subjective model associated to Ann (center),
Subjective model associated to Bob (down).

As we said earlier, instead of subjective models, agent Y might have formulas
‘in her mind’ in order to represent the surrounding world. But to draw inferences
from them she needs a proof system. In other words, we still need to axiomatize
the subjective semantics. That is what we are going to do now.

5 Axiomatization of the subjective semantics

First some notations. Let Obj designate from now on the logic KD45G. So for all
ϕ ∈ L, `Obj ϕ iff ϕ ∈ KD45G.

Definition 14. The subjective logic Subj is defined by the following axiom schemes
and inference rules:

T `Subj BY ϕ → ϕ;
S-O `Subj ϕ for all ϕ ∈ L such that `Obj ϕ;
MP if `Subj ϕ and `Subj ϕ → ψ then `Subj ψ.

Let us have a closer look at the axiom schemes. The first one tells us that for
you, everything you believe is true. This is coherent if we construe the notion of



belief as conviction. The second one tells us that you should believe everything
which is objectively true, i.e. which is true independently of your own subjectiv-
ity. Finally note that the necessitation rule (`Subj ϕ implies `Subj Bjϕ for all j)
is not present, which is intuitively correct. Indeed, if for you ϕ is true (i.e. you
believe ϕ) then in general there is no reason that you should believe that the
other agents believe ϕ as well.

As we announced in Section 3.2, if we add a common knowledge operator to
our language then the axiomatization is identical, but in that case formulas ϕ
in the proof system belong to the epistemic language with common knowledge.

Remark 3. In Remark 2, we proposed an alternative definition of validity for
the subjective semantics, called negative validity. We do not have a complete
axiomatization for the negative validity. However we know that the axiom scheme
ϕ → Bjϕ is valid but Modus Ponens does not hold anymore.

Theorem 2 (soundness and completeness). For all ϕ ∈ L,

|=Subj ϕ iff `Subj ϕ.

From this axiomatization we can prove other nice properties.

Proposition 4. For all ϕ ∈ L,

1. `Subj ϕ iff `Obj BY ϕ;
2. `Subj ϕ iff `Subj BY ϕ.

Finally the subjective logic Subj has also nice computational properties. Its
complexity turns out to be the same as in the objective approach.

Theorem 3. The validity problem for the subjective logic Subj is decidable and
it is PSPACE-complete if N ≥ 3.

Remark 4. Soon after Hintikka’s seminal book was published [6], an issue now
known as the logical omniscience problem was raised by Castañeda about Hin-
tikka’s epistemic logic: his “senses of ‘knowledge’ and ‘belief’ are much too strong
[. . . ] since most people do not even understand all deductions from premises they
know to be true” [17]. It sparked a lot of work aimed at avoiding this problem
(such as [18], [19] or [20]).

While we believe that it is indeed a problem when we want to model or
describe human-like agents, we nevertheless believe that it is not really a problem
for artificial agents. Indeed, these agents are supposed to reason according to
our subjective logic and because of its decidability, artificial agents are in fact
logically omniscient (even if it will take them some time to compute all the
deductions given the complexity of our logic).



6 Conclusion

In the introduction, we have identified what we claim to be the only three possible
modeling approaches by proceeding by successive dichotomies. Afterwards, we
have focused on the subjective approach for which a logical formalism is missing
in a multi-agent setting, although such a formalism is crucial if we want to design
autonomous agents. We have proposed one by generalizing the possible world
semantics of the AGM belief revision theory. This formalism enabled us to draw
some formal links between the objective and the subjective approach which are
in line with our intuitions of these two approaches. Finally, we have provided an
axiomatization of our formalism whose axioms are also in line with our intuitions
of the subjective approach.

However, there are still open problems to be solved. First we do not have an
axiomatization for the notion of negative validity. Second, we still need to prove
that the subjective logic Subj is PSPACE-complete for N = 2.

Finally, we have not considered whether and how we could add dynamics
to our formalism. In fact one can show that our formalism, and more precisely
the notion of multi-agent possible world, allows for a straightforward transfer
of the AGM results to the multi-agent case. To do so, we follow the belief base
approach and represent a belief base in a multi-agent setting by an epistemic
formula ψ. Then we replace possible worlds in the AGM theory by multi-agent
possible worlds and we replace the propositional language of AGM theory by the
epistemic language. This means that the models of the epistemic formula ψ are
the multi-agent possible worlds that satisfy ψ. Then the definition of a faithful
ordering ≤ψ on multi-agent possible worlds for a given epistemic formula ψ is the
same as the definition of a faithful ordering ≤ψ′ on possible worlds for a given
propositional formula ψ′. Intuitively, (M, w) ≤ψ (M ′, w′) means that the multi-
agent possible world (M, w) is closer to ψ than the multi-agent possible world
(M ′, w′). Likewise, the rationality postulates for belief revision in a multi-agent
setting are the same as in the AGM theory except that propositional formulas
are replaced by epistemic formulas. Then we can show, as in the AGM theory,
that a revision operator satisfies these postulates in a multi-agent setting if and
only if the models of the revision of the belief base ψ by the epistemic formula
ϕ are the multi-agent possible worlds that satisfy ϕ and which are minimal with
respect to ≤ψ.
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Proposition 5 (Proposition 1).
Let (M,Wa) be a subjective model of type 2. Then there is a subjective model

of type 1 (M′,W ′
a) which is equivalent to (M,Wa).

Let (M,Wa) be a subjective model of type 1. Then there is a subjective model
of type 2 (M′,W ′

a) which is equivalent to (M,Wa).

Proof. We only prove the first part. The second part is obvious given what has
been said so far.

Let (M, Wa) = (W,R, V ) be a subjective model of type 2. For each w ∈ Wa

we define a corresponding multi-agent possible world (Mw, w) as follows: for all
k 6= Y , let Mk := (W k, Rk, V k) be the submodel of M generated by Rk(w).
The multi-agent possible world (Mw, w) = (Ww, Rw, V w, w) is then defined as
follows.

– Ww = {w} ∪ ⋃
k 6=Y

W k;

– Rw
j = (Rj ∪

⋃
k 6=Y

Rk
j ) ∩Ww ×Ww for all j ∈ G;

– V w(p) = (V (p) ∪ ⋃
k 6=Y

V k(p)) ∩Ww.

Then one can easily show that (Mw, w) is a multi-agent possible world and
that M′ := {(Mw, w); w ∈ Wa} is a subjective model of type 1 which is equiva-
lent to (M,Wa) := (W,R, V ).

Proposition 6 (Proposition 2). Let (M, wa) be an objective model. The model
associated to agent j and (M,wa) is a subjective model.

Proof. Let (M′,W ′
a) be the subjective model associated to agent j and (M, wa)

(with M′ = (W ′, R′, V ′)).
Obviously, M′ is generated by Wa. By the generated submodel property, R′j

is serial, transitive and euclidean for all j. Finally, because Rj is euclidean, for
all w ∈ Wa(= Rj(wa)), Rj(w) = Rj(wa) = Wa.

So (M′,Wa) is indeed a subjective model.

Proposition 7 (Proposition 3). For all ϕ ∈ L, |=Subj ϕ iff |=Obj BY ϕ

Proof. For all ϕ ∈ L, |=Subj ϕ iff |=Obj BY ϕ amounts to prove that for all ϕ ∈ L,
ϕ is subjectively satisfiable iff B̂Y ϕ is objectively satisfiable.

Assume that ϕ is subjectively satisfiable. Then there is a subjective model
(M,Wa) and w ∈ Wa such that M, w |= ϕ. But w ∈ RY (w), so M, w |= B̂Y ϕ.
Besides, (M, w) can be viewed as an objective model. So B̂Y ϕ is objectively
satisfiable.

Assume that B̂Y ϕ is objectively satisfiable. Then there is an objective model
(M, wa) such that M, wa |= B̂Y ϕ. Then there is w ∈ RY (wa) such that M,w |=
ϕ. Let (M′, Wa) be the subjective model associated to (M,wa) and agent Y .
Then w ∈ Wa and M′, w |= ϕ by the generated submodel property. So ϕ is
subjectively satisfiable.



Theorem 4 (soundness and completeness). For all ϕ ∈ L,

|=Subj ϕ iff `Subj ϕ.

Proof. Proving the soundness of the axiomatic system is straightforward. We
only focus on the completeness proof.

Let ϕ be a Subj-consistent formula. We need to prove that there is a subjec-
tive model (MSubj,Wa), there is w ∈ Wa such that MSubj, w |= ϕ.

Let Sub+(ϕ) be all the subformulas of ϕ with their negations. Let WSubj be
the set of maximal Subj-consistent subsets of Sub+(ϕ). Let WObj be the set of
maximal Obj-consistent subsets of Sub+(ϕ). For all Γ, Γ ′ ∈ WSubj ∪ WObj, let
Γ/Bj := {ψ;Bjψ ∈ Γ} and BjΓ := {Bjψ;Bjψ ∈ Γ} ∪ {¬Bjψ;¬Bjψ ∈ Γ}.

We define the epistemic model M := (W,R, V ) as follows:

– W := WSubj ∪WObj;
– for all j ∈ G and Γ, Γ ′ ∈ W , Γ ′ ∈ Rj(Γ ) iff Γ/Bj = Γ ′/Bj and Γ/Bj ⊆ Γ ′;
– Γ ∈ V (p) iff p ∈ Γ .

We are going to prove the truth lemma, i.e. for all ψ ∈ Sub+(ϕ), all Γ ∈ W

M,Γ |= ψ iff ψ ∈ Γ

We prove it by induction on ψ. The case ψ = p is fulfilled by the definition
of the valuation. The cases ψ = ¬χ, ψ = ψ1 ∧ ψ2 are fulfilled by the induction
hypothesis. It remains to prove the case ψ = Bjχ.

– Assume ψ ∈ Γ . Then χ ∈ Γ/Bj . So for all Γ ′ such that Γ ′ ∈ Rj(Γ ), χ ∈ Γ ′.
So for all Γ ′ such that Γ ′ ∈ Rj(Γ ) M, Γ ′ |= χ by induction hypothesis. So
M, Γ |= Bjχ, i.e. M, Γ |= χ.

– Assume M,Γ |= Bjψ. Then BjΓ ∪ Γ/Bj ∪ {¬ψ} is not Obj-consistent.
Assume on the contrary that BjΓ ∪ Γ/Bj ∪ {¬ψ} is Obj-consistent. Then
there is Γ ′ ∈ WObj such that BjΓ ∪ Γ/Bj ∪ {¬ψ} ⊆ Γ ′. So Γ/Bj = Γ ′/Bj

and Γ/Bj ⊆ Γ ′. Then Γ ′ ∈ Rj(Γ ) and ¬ψ ∈ Γ ′, i.e. Γ ′ ∈ Rj(Γ ) and
M, Γ ′ |= ¬ψ by induction hypothesis. So M, Γ |= ¬Bjψ, which is impossible
by assumption.
So BjΓ ∪ Γ/Bj ∪ {¬ψ} is not Obj-consistent. Now we consider two cases:
first Γ ∈ WSubj and then Γ ∈ WObj.
1. Γ ∈ WSubj. Then there are ϕ1, . . . , ϕn ∈ Γ/Bj , ϕ′1, . . . , ϕ

′
m ∈ BjΓ such

that
`Obj ϕ1 → (ϕ2 → . . . → (ϕn → (ϕ′1 → (ϕ′2 → . . . → (ϕ′m → ψ)))))). So
`Obj Bj [ϕ1 → (ϕ2 → . . . → (ϕn → (ϕ′1 → (ϕ′2 → . . . → (ϕ′m → ψ))))))]
by the necessitation rule of Obj. So
`Obj Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (Bjϕ

′
1 → (Bjϕ

′
2 → . . . →

(Bjϕ
′
m → Bjψ)))))). i.e.

`Obj Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (ϕ′1 → (ϕ′2 → . . . → (ϕ′m →
Bjψ)))))) because for all i `Obj ϕ′i ↔ Bjϕ

′
i. So



`Subj Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (ϕ′1 → . . . → (ϕ′m → Bjψ))))
by axiom scheme (S-O).
But Bjϕ1, . . . , Bjϕn, ϕ′1, . . . , ϕ

′
m ∈ Γ . So Bjψ ∈ Γ .

2. Γ ∈ WObj. Then there are ϕ1, . . . , ϕn ∈ Γ/Bj and ϕ′1, . . . , ϕ
′
m ∈ BjΓ

such that
`Obj ϕ1 → (ϕ2 → . . . → (ϕn → (ϕ′1 → (ϕ′2 → . . . → (ϕ′m → ψ)))))). So
`Obj Bj [ϕ1 → (ϕ2 → . . . → (ϕn → (ϕ′1 → (ϕ′2 → . . . → (ϕ′m → ψ))))))]
by the necessitation rule of Obj. So
`Obj Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (Bjϕ

′
1 → (Bjϕ

′
2 → . . . →

(Bjϕ
′
m → Bjψ)))))). i.e.

`Obj Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (ϕ′1 → (ϕ′2 → . . . → (ϕ′m →
Bjψ)))))) because for all i `Obj ϕ′i ↔ Bjϕ

′
i.

But Bjϕ1, . . . , Bjϕn, ϕ′1, . . . , ϕ
′
m ∈ Γ . So Bjψ ∈ Γ .

Finally we have shown that in all cases Bjψ ∈ Γ .

So we have proved the truth lemma. Now we need to prove that the accessi-
bility relations Rj are serial, transitive and euclidean.

– Transitivity. Assume that Γ ′ ∈ Rj(Γ ) and Γ ′′ ∈ Rj(Γ ′). i.e. Γ ′/Bj = Γ ′′/Bj

and Γ ′/Bj ⊆ Γ ′′; and Γ/Bj = Γ ′/Bj and Γ/Bj ⊆ Γ ′. Then clearly Γ/Bj =
Γ ′′/Bj and Γ/Bj ⊆ Γ ′′. i.e. Γ ′′ ∈ Rj(Γ ).

– Euclidicity. Assume that Γ ′ ∈ Rj(Γ ) and Γ ′′ ∈ Rj(Γ ). i.e. Γ/Bj = Γ ′/Bj

and Γ/Bj ⊆ Γ ′; and Γ/Bj = Γ ′′/Bj and Γ/Bj ⊆ Γ ′′. Then clearly Γ ′/Bj =
Γ ′′/Bj and Γ ′/Bj ⊆ Γ ′′. i.e. Γ ′′ ∈ Rj(Γ ′).

– Seriality. We only prove the case Γ ∈ WSubj. The case Γ ∈ WObj is similar.
We are going to show that BjΓ ∪ Γ/Bj is Obj-consistent.
Assume the contrary. Then there are ϕ1, . . . , ϕn ∈ Γ/Bj and ϕ′1, . . . , ϕ

′
m ∈

BjΓ such that
`Obj ϕ1 → (ϕ2 → . . . → (ϕn → (ϕ′1 → . . . → (ϕ′m−1 → ¬ϕ′m)))). So
`Obj Bj [ϕ1 → (ϕ2 → . . . → (ϕn → (ϕ′1 → . . . → (ϕ′m−1 → ¬ϕ′m))))]. So
`Obj Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (Bjϕ

′
1 → . . . → (Bjϕ

′
m−1 →

Bj¬ϕ′m)))). So
`Obj Bjϕ1 → (Bjϕ2 → . . . → (Bjϕn → (ϕ′1 → . . . → (ϕ′m−1 → ¬ϕ′m)))).
But Bjϕ1, . . . , Bjϕn, ϕ′1, . . . , ϕ

′
m ∈ Γ . So ¬ϕ′m ∈ Γ which is impossible be-

cause ϕ′m ∈ Γ .
Finally BjΓ ∪Γ/Bj is Obj-consistent. So there is Γ ′ ∈ WObj such that BjΓ ∪
Γ/Bj ⊆ Γ ′. i.e. there is Γ ′ ∈ W such that Γ ′ ∈ Rj(Γ )

Finally we prove that for all Γ ∈ WSubj, Γ ∈ RY (Γ ) (*).
Let Γ ∈ WSubj. For all BY ϕ ∈ Γ , ϕ ∈ Γ by axiom scheme (T). So Γ/Bj ⊆ Γ .

So Γ ∈ RY (Γ ).

ϕ is a Subj-consistent formula so there is Γ ∈ WSubj such that ϕ ∈ Γ ,
i.e. M, Γ |= ϕ. Let MSubj be the submodel generated by RY (Γ ). Then clearly
(M,Wa) with Wa := RY (Γ ) is a subjective model. Finally, because Γ ∈ RY (Γ )
by (*), there is Γ ∈ Wa such that MSubj, Γ |= ϕ.



Theorem 5. The subjective logic Subj is decidable and its validity problem is
PSPACE-complete if N ≥ 3.

Proof. – The decidability of Subj can be proved in two ways. First, because Obj
is decidable, Subj is also decidable by Proposition 3. Second, because Subj
has the finite model property (see proof of Theorem 2), Subj is decidable.

– Because the validity problem is PSPACE-complete for Obj if N ≥ 2 then the
validity problem for Subj is in PSPACE by Proposition 3.
Besides, as a corollary of the lemma below, we get that the validity problem
for Subj is PSPACE-complete if N ≥ 3 because the validity problem for Obj
is PSPACE-complete if N = 2.

Lemma 1. Assume {Y, i, j} ⊆ G and let ϕ ∈ L dealing only with agents Y
and j. Then,

|=Obj ϕ iff |=Subj t(ϕ)

where t(ϕ) is the formula obtained by replacing every occurence of Y by i.

Proof. Assume ϕ ∈ L dealing only with agents Y and j is objectively satisfi-
able. Then clearly t(ϕ) is also objectively satisfiable. Let M = (W,R, V ) be
an objective model generated by w ∈ M such that M, w |= t(ϕ). Let M ′ be
the epistemic model obtained from M by replacing the accessibility relation
RY by R′Y = {(v, v); v ∈ W}. Then clearly M ′, w |= t(ϕ) and (M ′, w) is a
multi-agent possible world. So t(ϕ) is subjectively satisfiable.
Finally, if |=Obj ϕ then clearly |=Obj t(ϕ). So |=Subj t(ϕ) by axiom S-O.


