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Abstract
Software in real time systems underlies strict timing con-
straints. These are among others hard deadlines regarding
the worst-case execution time (WCET) of the application.
Thus, the computation of a safe and precise WCET is a key
issue1 for validating the behavior of safety-critical systems,
e.g. the flight control system in avionics or the airbag con-
trol software in the automotive industry.
Saarland University and AbsInt Angewandte Informatik
GmbH have developed a successful approach for comput-
ing the WCET of a task. The resulting tool, called aiT, is
based on the abstract interpretation [3, 4] of timing mod-
els of the processor and its periphery. Such timing models
are hand-crafted and therefore error-prone. Additionally
the modeling requires a hard engineering effort, so that the
development process is very time consuming.
Because modern processors are synthesized from a formal
hardware specification, e.g., inVHDL or VERILOG, the
hand-crafted timing model can be developed by manually
analyzing the processor specification.
Due to the complexity of this step, there is a need for sup-
port tools that ease the creation of analyzes on such specifi-
cations. This paper introduces the primer work on a frame-
work for static analyzes onVHDL.

1 Introduction
During the last years, embedded systems have become
nearly omnipresent in everyday life. Embedded processors
are used in a variety of application fields: health-care tech-
nology, multimedia applications, telecommunication, auto-
motive and avionics, weapon guidance, etc. Common char-
acteristics of many applications are that high computation
performance has to be obtained at low cost and low power
consumption. Moreover many applications have safety-
critical characteristics and must satisfy hard real-time con-
straints. This leads to an additional requirement to be re-
spected in embedded system design: the requirement of
predictable performance. It is not enough for micropro-
cessors to yield high peak performance, but it should also

1besides the functional correctness of the system

be possible to statically guarantee their worst-case perfor-
mance. Contemporary superscalar architectures are charac-
terized by deep complex pipelines, often with features like
out-of-order execution, branch prediction, and speculative
execution which make determining the guaranteed perfor-
mance of applications a difficult task [8].
The worst-case execution time analyzeraiT originally de-
veloped bySaarland UniversityandAbsInt Angewandte In-
formatik GmbHis a tool for computing safe and precise
upper bounds of the worst-case execution time (WCET)
of tasks. The computation is based on theabstract in-
terpretation[3, 4] of timing modelsof the processor core
and its system controller [18, 19]. The tool takes the exe-
cutable as input and performs several static analyzes on it.
The input is transformed into an intermediate representation
calledControl-Flow Representation Language(CRL)2 [13],
on which the analyzes are based. Further details about the
aiT tool-chain can be found in [6].
The computation of the WCET of a task mainly depends
on the so calledpipeline analysisin which the behavior of
the processor pipeline and the underlying system controller
are modeled. This is done by abstracting from everything
that is not needed for the timing behavior of the processor
pipeline. Further details about how to create a pipeline anal-
ysis can be found in [18].
As of today, these models are hand-crafted and only ob-
tainable with a hard engineering effort. Therefore, the de-
velopment of a pipeline analysis is a very time consuming
and error prone process. And the complexity dramatically
increases along with each new processor generation used
within embedded systems3.
A formal processor specification (usually coded in aHard-
ware description languagelike VHDL or VERILOG) can
be very helpful in the creation of a pipeline analysis. But
even then, one needs to manually analyze the specification
in order to find suitable abstractions. In order to ease this
we introduce a framework for static analyzes of VHDL de-

2In our framework we use the second version of this intermediate rep-
resentation, called CRL2.

3As of today, these embedded processors are rather similar toand fea-
tureful as modern desktop processors.
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scriptions. To this end, we developed a VHDL frontend
that transforms the specification into the intermediate lan-
guage CRL2 mentioned above. Different static analyzers
can be generated using theProgram Analyzer Generator
PAG based on a formal analysis specification.
The paper is structured as follows: Section 2 contains a de-
scription of PAG and CRL2. Section 3 then details the se-
mantics of VHDL. In Section 4, our analysis framework is
described and illustrated with an example in Section 5. Sec-
tion 6 shows some experimental results. Section 7 gives an
outlook on future work and Section 8 concludes.

2 Preliminaries
We use PAG to generate static program analyzers based on
a control flow graph. The next two sections introduce the
basics of the control flow representation language and the
Program Analyzer Generator.

2.1 CRL
The Control-Flow Representation Language (CRL2) was
developed to provide an intermediate format that simplifies
analyzes and optimizations on a control flow graph [13].
A control flow graph is a representation, using graph
notation, of all paths that might be traversed through a
program during its execution. Nodes in the graph represent
basic blocks, i.e. straight-line pieces of code. Directed
edges are used to represent jumps in the control flow.
Assuming that the control flow graph is always well-
formed, the structure of CRL2 is hierarchically organized
in instructions, basic blocks and routines. Thereby, the
former is always completely enclosed within the latter. A
sample control flow graph is given in Figure 1 showing two
routines (simul andenvironment). The edge between
the two routines indicates a call dependency, each routine
call is represented throughcall/return blocksin the callee’s
routine. The call/return blocks ease interprocedural control
flow analyzes [17] and are more or less placeholders for the
branch to the called routine.
CRL2 is a very flexible language by virtue of an attribute-
value concept, i.e. each element can be extended by
attributes coding arbitrary information. To process a
program represented by its control flow graph, PAG can be
used.

2.2 Program Analyzer Generator
PAG is a powerful tool for generating program analyzers.
Based on a high-level specification of a data flow problem,
PAG automatically generates a program analyzer4 which
can be used in arbitrary applications [14].
The triple (K , L, [[]] ) is called adata flow problemfor a
complete lattice5 L and a control flow graphK , if [[]] : N →

4in ANSI-C
5A complete latticeis a partially ordered set in which all subsets have

both a supremum and an infimum. An example for a complete lattice is the

Figure 1: Sample CRL2-graph

(L → L) is a function assigning functions fromL → L to
the nodes ofK . These functions are calledtransition func-
tions and are used for updating the data flow value during
analysis.
More details on data flow problems can be found in [16], a
description of the specification language for PAG in [1].

3 VHDL Semantics
VHDL is an IEEE Standard defined in IEEE 1076 [2, 12].
The focus of the language ranges from specifying circuits
at wavefront level to describing large system behaviors with
high-level constructs. As a result, the standard is huge. The
focus of this paper only considers thesynthesizable subset
of VHDL, defined in [11].
A V HDL description of a circuit consists of an interface dec-
laration defining the in- and output signals of the circuit and
of one or more implementation(s). In VHDL, the first is
called anentity, the second anarchitecture. Figure 2 shows
a simple 3-bit counter.
The implementation is given in form of twoprocesses(P1
andP2). Each process executes its code, whenever one of
the signalscontained in the processessensitivity lists(clk
and rst for P1, cnt for P2) changes its value. After ex-
ecution of all statements, execution suspends until another

power set of a given set, ordered by inclusion. The supremum is given by
the union and the infimum by the intersection of subsets.
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e n t i t y comb_log ic i s
port ( a , b , c :in s t d _ l o g i c ; r e s :out s t d _ l o g i c ) ;

end ;
a r c h i t e c t u r e r t l of comb_log ic i s

s i g n a l wire : s t d _ l o g i c ;
component and_ga te i s

port ( u , v : in s t d _ l o g i c ;w:out s t d _ l o g i c ) ;
end component ;
component o r _ g a t e i s

port ( x , y : in s t d _ l o g i c ; z :out s t d _ l o g i c ) ;
end component ;

begin
and_ga te port map ( a , b , w i re ) ;
o r _ g a t e port map ( wire , c , r e s ) ;

end ;

Figure 3: Composition of VHDL components

e n t i t y c o u n t e r i s
port ( c l k : in s t d _ l o g i c ; r s t :in s t d _ l o g i c ;

v a l : out s t d _ l o g i c _ v e c t o r (2 downto 0) ) ;
end ;
a r c h i t e c t u r e r t l of c o u n t e r i s

s i g n a l c n t : s t d _ l o g i c _ v e c t o r (2downto 0) ;
begin

P1 : p r o c e s s ( c lk , r s t ) i s
i f ( r s t = ’1 ’ ) then

cnt <=" 000 " ;
e l s i f ( r i s i n g _ e d g e ( c l k ) ) then

cnt <= c n t + ’1 ’ ;
end i f ;

end ;
P2 : p r o c e s s ( c n t ) i s

va l <= c n t ;
end ;

end ;

Figure 2: 3-bit counter in VHDL

change of at least one signals value. Thus, the sensitivity
list of a process is an implicit wait-statement at its end.6

VHDL also supports component-based circuit specifica-
tions. Figure 3 gives an example for hierarchical circuit
composition. Here, the combinatorial functionres = a ∧

b ∨ c is modeled using a logical-and and a logical-or gate.
Having a hierarchical composed specification of a circuit,
elaborationhas to be performed in order to get a flat defi-
nition of it. Elaboration does all the required renaming for
unifying names, wires all structural descriptions, etc. The
result is one large entity consisting of a number of processes
and some locally defined signals.
A V HDL process consists of a set of localvariablesthat are
only accessible from inside the process. By contrast, local
signals can be accessed by more than one process, but only

6In VHDL, the use of explicit wait-statements and sensitivity listsis
exclusive. We assume, that the only place within a process, where wait-
statements may occur, is at the end of the body of a process.

one process is allowed to drive the value of a signal.7 Within
a process, execution of statements is done sequentially.
VHDL makes a distinction between the assignments to a
variable and to a signal. Assigning a value to a variable
takes effect immediately (i.e., the next reference of this
variable returns the newly assigned value), whereas the as-
signment of a value to a signal is onlyscheduledto be the
future value (i.e., the next reference returns the old value).
E.g., in Figure 2, the signal assignmentcnt<=cnt+’1’;
schedules the next value ofcnt to becnt plus one, but
the next referenceval<=cnt; schedules the next value of
val to be thecurrent value ofcnt. These future values
take effect as soon as all processessuspendtheir execution.
The semantics of a VHDL program, i.e. a set of processes,
can be described as follows:

1. Execute processes until they suspend.

2. If all processes are suspended, make all scheduled sig-
nal assignments visible at once.

3. If there is a process being sensitive on a signal having
changed its value, resume this process and go to step 1.

4. Otherwise, an external signal must change its value
(e.g., the clock signal). If this happens, resume all pro-
cesses waiting for this signal and go to step 1.

Thus, the semantics of VHDL can be seen as a two-level
semantics: sequential process execution at its first, signal
update and process revocation at its second level.

4 A VHDL analysis framework
As mentioned in the introduction, we present here a
framework for statically analyzing VHDL code using
abstract interpretation. The structure and data flow of
our framework is illustrated in Figure 4. As input, we
have the VHDL model that we want to analyze and a PAG

specification for a static analysis. We developed a tool

7In full V HDL, resolution functionscan be used for value computation
of signals being driven by two or more processes.
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Figure 4: Structure of VHDL analysis framework

VHDL element CRL2 element
Process, Routine
Function,
Procedure,
Concurrent signal assignment,
Concurrent procedure call,
Loop
Function calls Routine calls
Procedure calls Routine calls
Sequential statement Instruction

Table 1: Mapping VHDL to CRL2

called Vhdl2Crl2 that transforms the VHDL into se-
mantically equivalent CRL2 constructs. From the analysis
specification, PAG generates a static analyzer that works on
the CRL2 description. And at the end, the analysis emits its
results. The mentioned components in our framework are
now detailed in the following subsections.

4.1 Mapping VHDL to CRL2
In order to express a VHDL description in semantically
equivalent CRL2 constructs, we need to give a mapping
from VHDL components to CRL2 components. Table 1
shows this mapping. Processes are transformed into
routines as well as functions, procedures, concurrent signal
assignments, concurrent procedure calls and loops. The
transformation of loops to routines roughly means, that the
whole loop body is moved into a newly created routine and
the original location of the loop is replaced by a call to
the new loop routine. This improves the quality of static
analyzes of loops. More details on this so calledLoop
transformationcan be found in [15].
The correspondence of function/procedure calls to routine
calls as well as the mapping of sequential statements to
instructions is rather intuitive.

4.2 VHDL as a sequential program
Regarding the special semantics of VHDL (cf. Section 3),
we need to express the input VHDL description as a
sequential program whose control flow is represented by
CRL2. The reason for this is that we want to generate the
analyzer itself from a concise PAG specification, where
PAG is an analyzer generator for programs (cf. Section 2).
As mentioned in Section 3, variables in VHDL are process-
local and processes run in parallel. Additionally signal
assignments only take effect after all processes have
finished their execution. These semantics directly induce
that there are no side effects between the different VHDL

processes. So, we can serialize their execution without
changing the semantics of the whole model.
In order to formulate a VHDL description as a sequential
program, we just need to choose an arbitrary execution
order among the processes and iteratively execute them in
this order. The program then consists of a routine, let’s call
it simul (cf. Figure 1), whose body contains routine calls,
where each called routine represents one of the former
VHDL processes. Additionally each such routine call for
an original process it guarded with a conditional statement
that evaluates the sensitivity list of the process. If at least
one of the signals in the sensitivity list has changed, the call
is taken. The result of such a transformation from a VHDL

model into a sequential program is shown in Figure 1. Here,
you can see thesimul routine, containing routine calls
for each VHDL process, namely forP1 andP2. The basic
blocksb38andb42contain an instructionsimul_if that
represents the guards for the sensitivity list evaluation.The
basic blockb49 containing the instructionsimul_wait
is the so called synchronization point. Here, the signal
assignments take effect and we can decide whether a signal
value has changed compared with the previous iteration.
In Figure 1 there is another call instruction not mentioned
so far, the simul_call_environment that calls
the routineenvironment. We need this routine for
analyzing open systems, which roughly are systems that
have external input signals. These signals have to be set
somewhere in the environment of the system modeled by
the VHDL description and they drive the behavior of the
whole system. One intuitive example for such an external
signal is thereset signal.

4.3 Modeling the clock
If we want to analyze synchronous designs, i.e. systems that
are synchronized with either the rising or the falling edge of
the clock signal, we need to model this signal somehow.
Unfortunately the synthesizable subset of the VHDL stan-
dard [11] does not enable us to model a clock signal8.

8In synthesizable VHDL, there are two main restrictions: a process can
not be sensitive on a signal it drives and there is no possibility to wait for a
timeout. Thus, there is no construct left for modeling the frequent change
of a clock signal.
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Despite this, we can simulate the clock easily by intro-
ducing a new routine, calledclock, that calls the routine
simul twice. Before one call the clock signal is set to one
and before the other call the clock signal is set to zero. This
makes our approach rather flexible as we can analyze syn-
chronous designs as well as asynchronous ones.

5 Example: Constant Propagation
This sections describes, how the framework introduced in
Section 4 can be used to model a constant propagation anal-
ysis on VHDL.
A constant propagation analysisdetermines for each pro-
gram point, i.e. each statement, if a signal or variable has
a constant value, when execution reaches that point. To
model this, we introduce a mapping from identifier names
to their corresponding value and extend it by the usual bot-
tom and top elements to denote not yet considered program
points and unknown values respectively.

F ≡ (identifier→ (value∪ ⊤)) ∪ ⊥

As stated in Section 3, VHDL differs between signal and
variable assignments. Thus, the domain of the data flow
problem for constant propagation analysis has to covercur-
rent andfuturevalues of the identifiers used. Furthermore,
to evaluate the condition of process guards (simul_if,
see Section 4.2), it is necessary to decide, whether a signal
has changed its value or not. Therefore, the domain has to
be extended by theold values of signals. Thus, the domain
dfi for the constant propagation analysis is:

dfi ≡ F × F × F

The transition functions for updating an incoming data flow
value dfipre = (curpre, futpre, oldpre) to the output value
dfipost for the different nodes can be directly defined as fol-
lows:

• assignment node
The data flow value for an assignment can be computed
from the incoming value in case of a variable assign-
ment by updating the current and the future value of
dfipre with the newly assigned value or⊤, if this value
is statically not computable. In case of a signal assign-
ment, only the future value has to be updated.

• simul_if node
The guard encapsulates the sensitivity list of a process
and is responsible for the repeated execution of it. A
process is only re-executed, if one of the signals in its
sensitivity list changes its value. This can be checked
by comparingcurpre with oldpre. Based on this result,
the data flow value is propagated into the process or
not.

• sync node
At this node, all scheduled signal assignments take ef-
fect and are made visible at once. The new data flow

value is computed by copying the future values to the
current one and the current ones to the old ones.

dfipost = (futpre, futpre, curpre)

• environment node
Writing a special rule for this node allows us to an-
alyze the VHDL code with respect to special system
criteria. E.g., if we want to analyze the reset behav-
ior of the code displayed in Figure 2, we introduce
a rulecurpost = curpre\[rst → 0] and f utpost =

f utpre\[rst → 1] always setting the current and fu-
ture value ofrst to 0 and 1 respectively. This yields
to the perception, thatcnt and therewithval have
constant values during reset.

Using PAG and the rules above yields in a constant propa-
gation analysis on VHDL. The results can now be used for
further analyzes and transformations of the VHDL code as
described in Section 7.

6 Experiments
Despite the example given in the previous section, we
successfully9 tested our implementation with the complete
VHDL specification of the Leon2 processor core [7]. The
Leon2 is a synthesizable VHDL model of a 32-bit processor
compliant with the SPARC V8 architecture with a 5-stage
pipelined integer unit, data and instruction cache, hard-
ware multiply, divide and MAC units. The model is highly
configurable, and particularly suitable for system-on-a-chip
(SOC) designs. The VHDL specification of the Leon2 con-
sists of more than 80 modules containing about 75.000 lines
of code.

7 Outlook
The analysis framework described in this paper is only one
part of a much bigger task: The semi-automatically deriva-
tion of timing analyzers from a formal processor specifica-
tion.
With the work here, we are able to read VHDL specifications
and to perform static analyzes like constant propagation on
it. This eases the task of finding suitable abstractions for a
processor model, i.e. cropping the model to the parts that
are only relevant for the timing behavior.
As noted earlier, a VHDL design is too large to be used di-
rectly in timing analysis, thus we have to throw away things
not influencing the timing. This can be achieved by slic-
ing backwards from the place, where instructions leave the
pipeline, i.e. finish execution. Only external signals and
variables or those being assigned to in the slice can influ-
ence timing. Signals and variables used (i.e. read) but not
assigned in the slice do not change their values (i.e. have
fixed values) and can be omitted.

9Successfully here means, that we are able to create static analyzers
based on analysis specifications.
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Even after this removal, the model may be too large for tim-
ing analysis. Thus, we approximate concrete components
by abstract ones (see [6] for more details) which are smaller
in size. An example can be found in [5].
For this, we want to develop support tools to incorporate
transformations on the VHDL model based on the analysis
results semi-automatically in order to derive abstract mod-
els.
From an abstract processor model, we need to generate a
C-code analysis fitting into the tool chain of theaiT tool.
At the end of the story, we want to derive a timing analyzer
from a formal hardware specification. This not only speeds
up the task a creating such a timing analysis but addition-
ally the generated analyzer is already validated due to the
derivation from the hardware specification.

8 Conclusions

Safety-critical applications as for example the flight control
software in avionics or the airbag control software in the au-
tomotive industry are underlying hard real-time constraints.
Therefore the computation of the worst-case execution time
(WCET) is the key issue for guaranteeing that a system sat-
isfies its timing boundaries.
The growing complexity of modern processor architectures
used within such safety-critical systems complicates the
task of creating a sound timing analysis. Currently, these
analyzes are based on hand-crafted abstract processor mod-
els. But this is a very time consuming and error-prone pro-
cess.
To ease the task of finding suitable abstractions, we intro-
duced a framework for static analyzes of formal processor
descriptions in VHDL. By transforming the VHDL model
into a sequential program, we can generate static analyzers
from a concise specification using theProgram Analyzer
Generator[14]. Our framework is very flexible because we
can analyze open designs as well as closed ones, i.e. sys-
tems that does or does not depend on external driven signals
respectively.
By using CRL2 as the intermediate representation, we can
combine several analyzes. This means that an analysis can
use the result of another one because the results are anno-
tated as attributes in our intermediate representation.
To illustrate the practicability of our framework, we showed
how to create a constant propagation analysis on a VHDL

description of a 3-bit counter.
In [9, 10] Charles Hymans gives a design for static analysis
of VHDL that uses abstract interpretation. Despite this and
to the best of our knowledge, our work presented here is
the first work concerning a framework for generating static
analyzers on VHDL code. Our results are currently going
to be used for the semi-automatically derivation of timing
analyzers from a formal processor description in VHDL.
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