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1 The problem

A group of n agents must assign p identical desirable objects, where p < n.
Cash transfers are used to compensate the losers (who get no object) from
the winner’s pocket, and to align incentives and efficiency.
Preferences are quasi-linear in money, described by a non negative val-

uation (willingness to pay) for an object. A Vickrey-Clarke-Groves (VCG)
mechanism induces truthful revelation of individual valuations and imple-
ments an efficient assignment, i.e., assigns the objects to the p agents with
the highest valuations. Cash transfers don’t balance out at some profiles
of valuations, therefore to run the mechanism the participants must find a
residual claimant who will ‘burn’ the surplus of money.
We only consider VCGmechanisms that are feasible (self-sufficient): money

may flow out but not in. The relative surplus loss at a profile of valuations
is the ratio of the budget surplus (the money burnt) to the efficient sur-
plus; the overall performance of a mechanism is the worst such ratio over all
possible profiles of valuations; we call this number the efficiency loss of the
mechanism.
∗Thanks to Sandeep Baliga, Geoffroy de Clippel, Olivier Gossner, Jason Hartline, and

Jay Sethuraman for their comments. This research is supported by the NSF under grant
SES-0414543.
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We compute for all n and p the smallest possible efficiency loss bL(n, p)
among all feasible VCGmechanisms, and a canonical VCGmechanism achiev-
ing bL(n, p). We also compute the minimal efficiency loss L∗(n, p) and an op-
timal mechanism, under the additional constraint of Voluntary Participation
(individual rationality) requiring that no participant ends up with a net loss.
We call such mechanisms voluntary. Our results illuminate some important
limitations of the voluntary participation constraint.
If we assign a single object, p = 1, our optimal voluntary mechanism

is also optimal among unvoluntary ones. Moreover it achieves asymptotic
efficiency at exponential speed in n: bL(n, 1) = L∗(n, 1) = n−1

2n−1−1 . Start
from the Vickrey auction, where the residual claimant sells the object at
the second highest price. In addition to the Vickrey transfers, all agents,
including the winner of the object, receive a cash rebate — a share of the
auctioneer’s revenue — that is independent of their own bid, hence preserves
the incentive to bid truthfully. The challenge is to choose the rebates small
enough that feasibility is preserved, but large enough that they absorb most
of the auctioneer’s revenue.
If we must assign two or more objects, the voluntary participation con-

straint has bite: bL(n, p) < L∗(n, p) for all p ≥ 2. The most dramatic illus-
tration is for p = n − 1, where no voluntary mechanism improves upon the
Vickrey auction and L∗(n, n− 1) = 1: in any voluntary VCG mechanism, at
some profiles the entire surplus goes to the residual claimant. But if we can
use unvoluntary mechanisms we get bL(n, n− 1) = n−1

n2n−2−1 '
1

2n−2 .
It turns out that for unvoluntary mechanisms, asymptotic efficiency holds

uniformly in p and the worst choice of p is the integer n
2
or n−1

2
, denoted {n

2
}:

max
1≤p≤n−1

bL(n, p) = bL(n, {n
2
}) ' 0.8√

n

The critical value of the ratio p
n
, that we call the scarcity index of the assign-

ment problem, is 1
2
. Loosely speaking, if p < n

2
the two optimal efficiency

losses bL(n, p) and L∗(n, p) vanish exponentially fast in n. On the other hand
if p > n

2
no voluntary mechanism is asymptotically efficient (L∗(n, p) remains

bounded away from zero), whereas among unvoluntary mechanisms efficiency
can still be achieved exponentially fast.
The mathematical backbone of our results in the one object case is the

approximation of the function maxi{xi} for x ≥ 0, by an additively decom-
posable function of the form

P
i gi(x−i). We require an approximation from
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above and measure the approximation error by the maximal ratio i gi(x−i)
maxi{xi} .

We find the optimal approximation. For the p objects case, we solve two
similar approximation problems (with or without the voluntary participation
constraint) for the function

Pp
k=1 x

∗k where x∗k is the k-th highest among
the n variables xi.
We state the results without proof, and refer the reader to [11] for a

complete treatment, including the fair division aspects of the mechanisms we
propose.

2 Relation to the literature

The worst case analysis is commonplace in the Operations Research and
Computer Science literatures where it is often referred to as competitive
analysis (e.g., [8], [14]). Although less familiar, it is not without prece-
dent in the micro-economic literature on VCG mechanisms: [10] and [4] use
it to discuss the pivotal mechanism in the public good provision problem;
[12] does the same in a cost sharing problem.
The idea of refunding part of the budget surplus of the pivotal mecha-

nism while respecting incentives goes back to [9], and was developed by [2]
for the public good provision problem. It was recently used in the assignment
problem by Cavallo [3] and Guo and Conitzer [5], who also apply the worst
case analysis. They use a different performance index, namely the ratio of
the budget surplus to the revenue of the Vickrey auctioneer: this revenue is
not a good proxy for the potential welfare gains in the assignment economy
because it can be arbitrarily smaller than the efficient surplus, therefore the
interpretation of their performance index is unclear. Reference [3] proposes a
rebate that only depends upon the p+2 highest bids and belongs to the family
of mechanisms identified in our Proposition 2; [5] discovers independently the
linear optimal mechanism of Theorem 1, and offer an alternative character-
ization in the class of anonymous VCG mechanisms. In turn, the difference
in the performance index eliminates the non voluntary mechanisms of our
Theorem 2, with their superior efficiency properties (Theorem 3). On the
other hand [5] extends the linear optimal mechanism beyond the assignment
problem to multi-unit demands.
Two more papers applying VCG mechanisms to the assignment of p iden-

tical bads (tasks) follow a different yet related route. Porter, Shoam and
Tennenholtz ([13]) propose an original test of equity called k-fairness (dis-
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cussed in subsection 5.3; see also [1]) that leads to their 3-Fair mechanism. In
the one object case, this is the mechanism introduced in [3] (see Proposition
2). However when p ≥ 2, the 3-Fair mechanism is unvoluntary and is not
comparable to the mechanisms in our Theorem 2.

3 The model

We have p identical objects and a set N of n agents, who each need at
most one object. Assume a rationing situation, i.e., n > p ≥ 1 (if n ≤ p
everyone gets an object and goes home). Monetary transfers are feasible
and agent i’s privately known value for an object (relative to no object) is
ai. We assume ai ≥ 0: objects are weakly desirable. Given a profile of
valuations a ∈ RN

+ , the vector a
∗ ∈ Rn

+ is its permutation where coordinates
are arranged decreasingly

a∗1 ≥ a∗2 ≥ · · · ≥ a∗n (1)

For any i ∈ N , the (NÂ{i})-profile a−i obtains by deleting the i-th coor-
dinate, and a∗−i denotes its permutation by weakly decreasing coordinates.
The efficient surplus given p objects and the profile of valuations a is

vp(a) = a∗1 + · · ·+ a∗p (2)

Similarly vp(a−i) = a∗1−i + · · · + a∗p−i is the efficient surplus in the absence of
agent i.
A general VCG mechanism ([7]) is defined by n arbitrary real valued

functions hi on RNÂ{i}
+ . The function hi determines agent i’s net utility Ui

Ui(a) = vp(a)− hi(a−i) for all a ∈ RN
+ (3)

At a profile a, the mechanism assigns an object to an efficient subset of p
agents. Monetary compensations are adjusted so that the net utility of every
agent, whether or not she gets an object, is given by (3). Recall that the tie
breaking rule (if there is more than one efficient subset, i.e., a∗p = a∗(p+1)) is
arbitrary, it affects neither welfare nor incentives.
We denote by ∆ the budget surplus of mechanism (3):

∆(a) = vp(a)−
X
i∈N

Ui(a) =
X
i∈N

hi(a−i)− (n− 1)vp(a)
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We restrict attention to feasible mechanisms where the money only flows out:

Feasibility (F): ∆(a) ≥ 0⇔
X
i∈N

hi(a−i) ≥ (n− 1)vp(a) for all a (4)

The performance of a mechanism is measured by the following index, that
we call its worst efficiency loss, or simply its efficiency loss:

L(n, p) = max
outflow of money
efficient surplus

= max
a∈RN+Â{0}

∆(a)

vp(a)
(5)

If ∆(0) > 0 it is natural to set L(n, p) =∞, and to modify the definition (5)
accordingly.
We call a mechanism voluntary if no one ever suffers a net loss as a

result of participating. This requirement is compelling when our model is
interpreted as a fair division problem:

Voluntary Participation (VP) : Ui(a) ≥ 0 for all a, all i (6)

⇔ hi(a−i) ≤ vp(a−i) for all a−i, all i

Note that F and VP imply 0 ≤ L(n, p) ≤ 1. Indeed inequality (6) gives
hi(a−i) ≤ vp(a−i) ≤ vp(a) for all i, which sums to ∆(a) ≤ vp(a).
A benchmark mechanism is the Vickrey auction (also called pivotal mech-

anism see [7]), in which the residual claimant "owns" the objects and sells
them at the (p+ 1)st highest price. Thus hvicki (a−i) = vp(a−i) and

Uvick
i (a) = vp(a)− vp(a−i) for all i and a (7)

The Vickrey auction is feasible and (barely) induces voluntary participation:
an inefficient agent breaks even, an efficient one gets Uvick

i (a) = ai − a∗(p+1).
The residual claimant captures the whole surplus if a∗1 = · · · = a∗p+1, implying
Lvick(n, p) = 1. The Vickrey auction has the largest efficiency loss among all
feasible and voluntary VCG mechanisms.
In view of definition (7), inequality (6)) reads Uvick

i (a) ≤ Ui(a) for all i
and a: a VCG mechanism is voluntary if and only if it is Pareto superior to
the Vickrey auction.
Whether or not the mechanism under consideration is voluntary, it will

be convenient to write the functions hi(a−i) in (3) as hi(a−i) = vp(a−i) −
rp(i; a−i) where rp(i; a−i) is a rebate function. Hence the general form of
VCG mechanisms in our model:

Ui(a) = vp(a)−vp(a−i)+rp(i; a−i) = Uvick
i (a)+rp(i; a−i) for all a ∈ RN

+ (8)

5



When Voluntary Participation holds, and only then, we interpret rp(i; a−i)
as agent i’s share of the seller’s revenue in the Vickrey auction.

4 Results

4.1 Optimal feasible mechanisms: voluntary and un-
voluntary

Let
¡
s
k

¢
be the binomial coefficient “take k among s”. For any integers such

that t ≤ t0 ≤ s we define

Bt,t0
s =

t0X
k=t

µ
s

k

¶
, Bt→

s = Bt,s
s , B→t

s = B0,t
s (9)

Theorem 1 (under F and VP)
Among all feasible and voluntary VCG mechanisms (8), the smallest effi-
ciency loss (5) is

L∗(n, p) =

¡
n−1
p

¢
Bp→
n−1

(10)

The following linear rebate functions define an optimal mechanism

r∗p(a−i) =
n−1X

k=p+1

(−1)k−p−1 pL
∗(n, p)

kL∗(n, k)
a∗k−i if p ≤ n− 2; r∗n−1(a−i) = 0 (11)

The corresponding budget surplus is

∆∗(a) = pL∗(n, p){
nX

k=p+1

(−1)k−p−1a∗k} (12)

Theorem 2 (under F only)
Among all feasible VCG mechanisms (8) the smallest efficiency loss bL(n, p)
(5) is

bL(n, 1) = L∗(n, 1) ; bL(n, p) = ¡
n−1
p

¢
Bp→
n−1 +

n
p
B
→(p−2)
n−2

if 2 ≤ p ≤ n− 1 (13)
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The following linear rebate functions define an optimal mechanism

br1(a−i) = r∗1(a−i)

brp(a−i) = bL(n, p){p−1X
k=1

γka
∗k
−i}+(1−

bL(n, p)
L∗(n, p)

)a∗p−i+
n−1X

k=p+1

(−1)k−p−1 p
bL(n, p)

kL∗(n, k)
a∗k−i

(14)

γk = −
n

n− 1
B
(n−k)→
n−2¡
n−2

n−k−1
¢ − 1

n− 1 if p−k is odd; γk =
n

n− 1
B
(n−k)→
n−2¡
n−2

n−k−1
¢ if p−k is even

( the right summation in (14) is zero if p = n− 1).The budget surplus is

b∆(a) = bL(n, p){ ≤p−1X
k=1,3,···

(p−k)(a∗(p−k)−a∗(p−k+1))+p
nX

k=p+1

(−1)k−p−1a∗k} (15)

The rebate functions (11) and (14) are not the only choices of rp(a−i)
achieving, respectively, L∗(n, p) and bL(n, p). They are the only choices if we
restrict attention to symmetric rebate functions, linear in the a∗k−i.
Compare the two theorems first when p = 1, then for p = (n − 1). For

p = 1 Voluntary Participation comes free: the optimal linear rebates under
F define a voluntary mechanism, therefore the optimal efficiency loss under
F is also the optimal loss under F and VP:

bL(n, 1) = L∗(n, 1) =
n− 1
2n−1 − 1 '

2n

2n

The situation for p = n− 1 is much different. Then we cannot improve upon
the Vickrey auction by a voluntary and feasible VCG mechanism (L∗(n, n−
1) = 1 and r∗n−1(a−i) = 0), whereas the optimal feasible (unvoluntary) mech-
anism achieves an efficiency loss even smaller than in the one object case:

bL(n, n− 1) = n− 1
n2n−2 − 1 '

4

2n

We illustrate the optimal linear mechanism for p = 1 and small values
of n. For n = 2 the Vickrey auction cannot be improved. For n = 3, 4, 5, 6
equation (11) gives the optimal rebates r∗1(a−i) = br1(a−i):

L∗(3, 1) =
2

3
and r∗1(a−i) =

1

3
a∗2−i
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L∗(4, 1) =
3

7
and r∗1(a−i) =

2

7
a∗2−i −

1

7
a∗3−i

L∗(5, 1) =
4

15
and r∗1(a−i) =

11

45
a∗2−i −

1

9
a∗3−i +

1

15
a∗4−i

L∗(6, 1) =
5

31
and r∗1(a−i) =

13

62
a∗2−i −

8

93
a∗3−i +

3

62
a∗4−i −

1

31
a∗5−i

L∗(7, 1) =
2

21
and r∗1(a−i) =

19

105
a∗2−i −

1

15
a∗3−i +

11

315
a∗4−i −

1

45
a∗5−i +

1

63
a∗6−i

Equation (11) and the fact that L∗(n, k) increases in k (Theorem 3 below)
imply r∗1(a−i) =

Pn−1
k=2 βka

∗k
−i where, the βk start with β1 > 0, alternate in

sign and |βk| decreases in k. For an arbitrary p, 1 ≤ p ≤ n− 2, the general
form of the optimal rebates is similarly r∗p(a−i) =

Pn−1
k=p+1 βka

∗k
−i, where the

coefficients start positive, alternate in sign and decreases in absolute value.
Turning to the case p = n−1, where r∗n−1(a−i) = 0, equation (14) (where

the second summation disappears) gives on the other hand:

bL(3, 2) = 2

5
and br2(a−i) = −1

5
a∗1−i +

3

5
a∗2−i

bL(4, 3) = 1

5
and br3(a−i) = −1

5
a∗2−i +

4

5
a∗3−i

bL(5, 4) = 4

39
and br4(a−i) = − 1

39
a∗1−i +

5

117
a∗2−i −

23

117
a∗3−i +

35

39
a∗4−i

bL(6, 5) = 1

19
and br5(a−i) = − 1

38
a∗2−i +

1

19
a∗3−i −

7

38
a∗4−i +

18

19
a∗5−i

bL(7, 6) = 6

223
and

br6(a−i) = − 1

223
a∗1−i +

7

1115
a∗2−i −

26

1115
a∗3−i +

56

1115
a∗4−i −

187

1115
a∗5−i +

217

223
a∗6−i

The pattern is now brn−1(a−i) = Pn−1
k=1 γka

∗k
−i where the γk alternate in sign,

|γk| increase in absolute value, and γn−1 is positive and slightly below 1; if n
is even γ1 = 0 and γ2 < 0 and if n is odd γ1 = −L(n,n−1)

n−1 .
Comparing (13) and (10) we see that if 2 ≤ p ≤ n − 1, allowing unvol-

untary mechanisms strictly decreases the optimal efficiency loss: bL(n, p) <
L∗(n, p) . In the rebates brp(a−i) ((14)) the first p terms make a sumPp

k=1 γ
0
ka
∗k
−i
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similar to that for brn−1(a−i) (coefficients increasing in absolute value, al-
ternating in sign and γp > 0) while the next (n − 1 − p) terms are just
L(n,p)
L∗(n,p)r

∗
p(a−i). For instance

bL(6, 3) = 5

13
and br3(a−i) = − 3

26
a∗2−i +

5

13
a∗3−i +

9

26
a∗4−i −

3

13
a∗5−i

where the first two terms are
Pp

k=1 γ
0
ka
∗k and the last two are 8

13
r∗3(a−i).

4.2 Asymptotic efficiency

The scarcity ratio p
n
essentially determines the asymptotic behavior of bL(n, p)

and L∗(n, p) for large n.
We use the notation f(n) ' g(n) for limn→∞

f(n)
g(n)

= 1; the expression
"f(n) is exponential" means the existence of K > 0 and α < 1 such that
f(n) ≤ Kαn for all n; finally {n

2
} is the integer n

2
or n−1

2
.

Theorem 3
i) L∗(n, p) increases strictly in p, decreases strictly in n; bL(n, p) increases in
n for p ≤ n ≤ 2p − 1, decreases in n if 2p ≤ n; bL(n, p) increases in p for
1 ≤ p ≤ {n

2
}, decreases in p if {n

2
} ≤ p ≤ n.

ii) bL(n, p) converges to zero uniformly in p:

max
1≤p≤n

bL(n, p) = bL(n, {n
2
}) ≤ 4

3
√
n
for all n

iii) For p fixed, L∗(n, p) and bL(n, p) are exponential in n: L∗(n, p) 'bL(n, p) ' 2
p!
np

2n
.

iv) For any sequence pn, n = 1, 2, · · · such that for some K, n
2
−K ≤ pn ≤

n
2
+K for all n:

L∗(n, pn) ' 2
r
2

πn
=
1.59 · · ·√

n
; bL(n, pn) 'r 2

πn
=
0.80 · · ·√

n
(16)

v) For any sequence pn, n = 1, 2, · · · and any positive number δ

pn
n
≤ δ <

1

2
⇒ L∗(n, pn) and bL(n, pn) are exponential in n (17)

pn
n
≥ δ >

1

2
⇒ bL(n, pn) is exponential in n; L∗(n, pn) ≥

2δ − 1
δ

for all n

(18)
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Loosely speaking, bL(n, p) and L∗(n, p) converge exponentially fast to zero
in n if p

n
< 1

2
, and as 1√

n
if p

n
' 1

2
. Yet their behavior is very different

if p
n
> 1

2
: unvoluntary mechanisms still allow exponentially fast efficiency,

while voluntary ones preclude asymptotic efficiency altogether.

5 Two open problems

5.1 Non VCG mechanisms

The family of strategyproof assignment mechanisms contains many non-VCG
members that do not always assign the objects efficiently. If Ui(a) denotes as
before agent i’s net utility, the worst efficiency loss of a feasible mechanism
is

L(n, p) = max
a∈RN+Â{0}

vp(a)−
P

N Ui(a)

vp(a)

The challenge is to compute the optimal value of L(n, p) over all feasible (or
all feasible and voluntary) strategyproof mechanisms.
When the scarcity ratio p

n
is large enough, it is easy to construct non

VCG mechanisms improving upon the efficiency losses bL(n, p) and L∗(n, p).
Consider the (non anonymous) mechanism picking an arbitrary agent, say
agent 1, giving her an object and making her the residual claimant of a vol-
untary VCG mechanism (e.g., the Vickrey auction) assigning the remaining
p− 1 objects among agents other than 1. This ensures budget-balance and
a worst efficiency loss of 1

p
(the worst case is that the residual claimant has

a1 = 0 while the p efficient agents have the same positive valuation)1. For
p = {n

2
} and n large enough this improves upon bL(n, {n

2
}) ' 0.6√

n
.

5.2 Heterogenous objects

In the general assignement problem we have a set N of n agents and a set
P of p desirable objects. Agent i’s valuation for object k is an arbitrary non
negative number ai(k). The efficient surplus vp(a) maximizes

P
N ai(k(i))

over all feasible assignments. The definition (5) of the worst relative efficiency

1Thanks to Jason Hartline for this remark.
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loss for a feasible VCG mechanism is now

L(n, p) = max
a∈RN×P+ Â{0}

∆(a)

vp(a)

The agents may view all objects as identical, therefore the optimal value
L∗(n, p) over all feasible and voluntary VCG mechanisms is at least L∗(n, p).
Clearly L∗(n, 1) = L∗(n, 1), moreover VP and F imply L(n, p) ≤ 1 as before.
Therefore Theorem 1 determines L∗(n, p) in the following cases:

L∗(n, 1) = n− 1
2n−1 − 1;L

∗(n, p) = 1 if p ≥ n− 1

(for p ≥ n we use the fact that the matrix of valuations a may be such that
only n− 1 objects are desired).
Computing L∗(n, p) for 2 ≤ p ≤ n−2 appears to be difficult. The compu-

tation of the optimal efficiency loss bL(n, p) over all feasible VCG mechanisms
is equally open. A general characterization result by Guo and Conitzer [6]
may be helpful to reach an answer.
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