
Twelve Theses on Reactive Rules for the Web

François Bry and Michael Eckert

University of Munich, Institute for Informatics
Oettingenstr. 67, D-80538 München
{bry, eckert}@pms.ifi.lmu.de
http://www.pms.ifi.lmu.de

Abstract. Reactivity, the ability to detect and react to events, is an
essential functionality in many information systems. In particular, Web
systems such as online marketplaces, adaptive (e.g., recommender) sys-
tems, and Web services, react to events such as Web page updates or
data posted to a server.
This article investigates issues of relevance in designing high-level pro-
gramming languages dedicated to reactivity on the Web. It presents
twelve theses on features desirable for a language of reactive rules tuned
to programming event-driven Web and Semantic Web applications.

This is an extended abstract of a talk given during the Dagstuhl Seminar
“Event Processing.” A longer version of this work, which explains and justifies
each thesis in detail, has been presented with the same title at the workshop
“Reactivity on the Web” at EDBT 2007, see [1].

1 Introduction

A common perception of the Web is that of a distributed repository of hyper-
media documents with clients (in general browsers) that download documents,
and servers that store and update documents. Although reflecting a widespread
use of the Web, this perception is not completely accurate.

In fact, many Web applications build upon servers or clients updating data
in reaction to events or to messages exchanged on the Web. Examples are on-
line marketplaces, adaptive (e.g., recommender) systems, and Web services. The
Web’s communication protocol, HTTP, provides an infrastructure for exchang-
ing events or messages. In addition, SOAP provides conventions for exchanging
structured and typed information on the Web as XML messages. For transport
of messages between Web nodes, SOAP can use HTTP (or other protocols).

This article first argues that complementing HTTP and SOAP with high-
level languages for updates and reactivity is needed for both standard Web and
Semantic Web applications. It then presents twelve theses on features desirable
for a language of reactive rules tuned to programming Web applications.

The views reported about in this article have emerged during the design of
the Web and Semantic Web query language Xcerpt [2, 3] and of the reactive
Web language XChange [4, 5], as well as from experiences with programming in
Xcerpt and XChange [6, 7].

Dagstuhl Seminar Proceedings 07191
Event Processing
http://drops.dagstuhl.de/opus/volltexte/2007/1144

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Bry and Eckert

2 Motivation and Background

Many Web applications, such as online marketplaces, e-learning systems, recom-
mender systems, and communication platforms (Wikis, forums, etc.), build upon
complex reactions to messages or events as well as updates to Web data (HTML,
XML, RDF, OWL, etc.). Cost-efficient development of such Web applications
requires high-level languages tailored to updates and reactivity. Although HTTP
and SOAP provide a communication infrastructure that helps implementing re-
activity on the Web, more abstract and higher-level languages are needed that

– abstract away network communication and system issues,
– ease the specification of complex updates of Web resources (e.g., XML, RDF,

and OWL data),
– are convenient for specifying complex flows of actions and reactions on the

Web.

The need for high-level Web update and reactive languages is similar to the
need for high-level (Semantic) Web query languages (see [8] for a survey). High-
level reactive languages will complement, not replace, HTTP and SOAP.

3 The Need for ECA Rules on the Web

Thesis 1: High-level reactive languages are needed on the Web. Event-Condition-
Action rules are well-suited to specify reactivity on the Web. In particular, they
are better suited than production rules for a large class of Web applications.

A rule-based approach to reactivity on the Web provides the following bene-
fits over the conventional approach using (imperative or object-oriented) general
purpose programming languages:

– Rules are easy to understand for humans. Requirements specification often
already comes in the form of rules expressed either in a natural or formal
language.

– Rule-based specifications are flexible, therefore easy to adapt, alter, and
maintain as requirements change, which is quite frequently the case with
business rules.

– Rules are well-suited for processing and analyzing by machines. Methods for
automatic optimization, verification, and transformation into other types
of rules (e.g., derive ECA rules from integrity constraints) have been well-
studied and applied successfully in the past.

– Rules can be managed in a single rule base as well as in several rule bases
possibly distributed over the Web.

On the Web, reactive rules explicitly referring to events, i.e., Event-
Condition-Action (ECA) rules, are more appropriate than production rules with-
out explicit reference to events for the following reasons:



Twelve Theses on Reactive Rules for the Web 3

– “Real-world reactive rules” often come with an explicit specification of an
event, for example: “a credit card application (event) will be granted (action)
if the applicant has a monthly income of more than EUR 1 500 and no
outstanding debts (condition).”

– Events exchanged as messages between Web nodes are a natural, high-level
communication paradigm, also exploited in Service-Oriented and Event-
Driven Architecture.

– Events can carry data between Web nodes that is relevant for the condition
and action part of a rule.

– ECA rules allow an easy handling of errors and exceptional situations that
can conveniently be expressed as (special) events.

Thesis 2: Given the loosely coupled nature of the Web, reactive rules should
be processed locally. They act globally through event-based communication and
access to persistent Web data.

4 Event Communication Paradigms

Thesis 3: Events are best exchanged directly between Web sites in a push
manner.

Periodical polling, where interested Web sites retrieve remote Web resources
periodically to check if an event has happened, is less favorable since it causes
more network traffic, increases reaction time, and requires more local resources.

5 Specifying Composite Events: Towards High-Level

Event Query Languages

Thesis 4: Events are volatile data and should be kept distinct from persistent
data.

On a reactive Web, there are two kinds of data: “normal” data from Web
resources such as XML or RDF documents (“persistent data”) and data from
events (“volatile data”). “Normal” Web data is retrieved upon request in a pull
manner, persistent, and can be modified. It typically signifies a state of (an ab-
straction of) the world. Event data is communicated between Web nodes (typi-
cally in a push manner), volatile, and not modifiable. It is typically used to signal
changes in state. Due to their different nature, there should be a clean separation
of persistent Web data and volatile event data in a reactive language.

Thesis 5: Recognizing composite (or complex) events is essential for a reactive
Web language. Composite events are conveniently specified by (event) queries.
There are (at least) four complementary dimensions to event queries: data ex-
traction, event composition, temporal conditions, and event accumulation.



4 Bry and Eckert

Thesis 6: A data-driven, incremental evaluation of event queries is the approach
of choice.

Incremental evaluation avoids re-computation of intermediate results when-
ever new events arrive. In contrast, a standard, “query-driven” approach would
perform a full re-evaluation of the query against the history of events received
so far for each new event.

6 Specifying Conditions: Embedding a Web Query

Language

Thesis 7: Data from persistent Web resources plays an essential role for Web
reactivity. A reactive language thus should embed or build upon a Web query
language.

A reactive Web language has to integrate in the current Web of retrievable,
persistent data sources. Programmers must be able to easily access and query
persistent Web data. Instead of “reinventing the wheel,” a reactive language
should embed or build upon an existing Web query language.

7 Specifying State-Changing Actions

Thesis 8: The Web is a dynamic, state-changing system. Reactions to state
changes (events) through reactive rules are state-changing actions such as up-
dates to persistent data. Reactive rules are needed where compound actions can
be constructed from primitive actions.

8 Structuring Rules and Rule Programs

Thesis 9: Like in any other programming language, Development and main-
tenance of reactive rule programs can be considerably supported by structuring
mechanisms such as: branching in rules, deductive rules for event queries and
Web queries, procedural abstractions for actions, and grouping of rules.

9 Miscellanea

Thesis 10: Identity of data items is an issue for reactive languages due to their
ability to react to changes of data objects on the Web.

Reactive languages with the ability to monitor data items (or objects) and
react to their changes need to deal with identity of the data items. There are ba-
sically two approaches to identity: extensional identity (as part of the data, e.g.,
primary keys in relational databases) and surrogate identity (independently from
the data, e.g., pointers or references to objects in object-oriented programming
languages).



Twelve Theses on Reactive Rules for the Web 5

For monitoring changes of objects, surrogate identity is advantageous. How-
ever, to communicate with remote Web sites, surrogate identity has to become
part of the data, i.e., made extensional. Even worse, Web resources such as XML
or RDF documents usually do not provide a surrogate identity for their data at
all and only rarely provide auxiliary identity-defining attributes (keys such as
xml:id attributes) as part of the extension.

Thesis 11: Meta-programming and meta-circularity, that is, the ability to use
rules to exchange and evaluate (other) rules, are needed in some important
cases.

A particular example of this are (automatic) policy-based trust negotiations
[9]. Negotiating partners do not give out all their policies at once, since policies
themselves can be sensitive information and thus only given out when a cer-
tain stage in the negotiation (e.g., trust level) has been reached. Instead they
exchange policies reactively during the course of the trust negotiation.

Thesis 12: Reactivity in the Web’s open and uncontrolled world requires lan-
guage support for authentication, authorization, and accounting.

10 Conclusion

In this article we have presented twelve theses on reactive rules for the Web. We
have argued that reactivity in the Web needs reactive rules, in particular ECA
rules, and established a list of desiderata for reactive, ECA-rule-based languages.

Many of the desiderata postulated in this article are very general. They
apply not only to reactive languages based on ECA rules, but also to other rule-
based reactive languages (e.g., based on production rules) and even languages,
frameworks, and program libraries not based on rules at all.

Acknowledgments

The ideas expressed in this article have been significantly influenced
by the research project REWERSE (Reasoning on the Web with Rules
and Semantics, http://rewerse.net) and the W3C RIF Working Group
(http://w3.org/2005/rules). The authors thank their colleagues of REWERSE
and of the W3C RIF Working Group for many fruitful exchanges on the subject
of this article.

The authors thank Tim Furche, Paula-Lavinia Pătrânjan, and Inna Roma-
nenko for their insights and numerous discussions.

References

1. Bry, F., Eckert, M.: Twelve theses on reactive rules for the Web. In: Proc. Int.
Workshop Reactivity on the Web at EDBT 2006. Volume 4254 of LNCS, Springer
(2006)



6 Bry and Eckert

2. Schaffert, S., Bry, F.: Querying the Web reconsidered: A practical introduction to
Xcerpt. In: Proc. Extreme Markup Languages. (2004)

3. Xcerpt. http://xcerpt.org (2006)
4. Bailey, J., Bry, F., Eckert, M., Pătrânjan, P.L.: Flavours of XChange, a rule-based

reactive language for the (Semantic) Web. In: Proc. Intl. Conf. on Rules and Rule
Markup Languages for the Semantic Web. Volume 3791 of LNCS, Springer (2005)

5. Bry, F., Eckert, M., Pătrânjan, P.L.: Reactivity on the Web: Paradigms and appli-
cations of the language XChange. J. of Web Engineering 5(1) (2006) 3–24

6. Kraus, S.: Use Cases für Xcerpt: Eine positionelle Anfrage- und Transformation-
ssprache für das Web. Master’s thesis (in German), Inst. for Informatics, Univ. of
Munich (2004)

7. Romanenko, I.: Use cases for reactivity on the Web: Using ECA rules for business
process modeling. Master’s thesis, Inst. for Informatics, Univ. of Munich (2006)

8. Bailey, J., Bry, F., Furche, T., Schaffert, S.: Web and Semantic Web query languages:
A survey. In: Reasoning Web, Int. Summer School. Volume 3564 of LNCS, Springer
(2005) 35–133

9. Winslett, M.: An introduction to trust negotiation. In: Proc. Int. Conf. on Trust
Management (iTrust). Volume 2692 of LNCS, Springer (2003) 275–283


