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Abstract. The Dagstuhl Seminar Similarity-based Clustering and its
Application to Medicine and Biology (07131) held in March 25–30, 2007,
provided an excellent atmosphere for in-depth discussions about the re-
search frontier of computational methods for relevant applications of
biomedical clustering and beyond. We address some highlighted issues
about correlation-based data analysis in this seminar postribution. First,
some prominent correlation measures are briefly revisited. Then, a focus
is put on Pearson correlation, because of its widespread use in biomedical
sciences and because of its analytic accessibility. A connection to Euclid-
ean distance of z-score transformed data outlined. Cost function opti-
mization of correlation-based data representation is discussed for which,
finally, applications to visualization and clustering of gene expression
data are given.

Keywords. correlation, data representation, gradient-based optimiza-
tion, clustering, neural gas, visualization, multi-dimensional scaling

1 Introduction

Data comparison is one of the most fundamental operations in data analysis.
Comparisons are used to induce an ordering of data, which can be regarded
as precursor to clustering, i.e. grouping of similar data. Although ordering and
clustering can be defined as two stand-alone problems, there are many efforts
to combine both tasks: self-organizing maps realize such a combination by vec-
tor quantization (clustering) and mapping to a low dimensional grid (ordering);
as another example, hierarchical clustering generates clustering trees, which are
usually post-structured by means of leaf-ordering procedures. In addition, graph-
ical data representations are frequently found in biomedical publications, such as
principal component projections, for visually illustrating closeness (clustering)
of reference data points and their arrangement (ordering) along axes of principal
changes, such as induced by time, probe concentrations, stress application, and
so forth. Ordering of multi-dimensional data items, and likewise their centroid
representations, according to similarity is thus a non-trivial task, because the di-
versity of complex orthogonal relationships needs to be reduced to lists or other
low-dimensional structures that can be intuitively called ordered.
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Relative and absolute distance sources can be identified for data comparisons.
Relative distances are characterized by knowledge of an adjacency matrix,

for example, gradients between concentrations of chemical agents. Correspond-
ing network nodes need not have a proper physical representation to which an
absolute measure is applicable; the network might be defined only by proximity
relationships between the nodes. If needed, an auxiliary physical representation
of such proximity network can be obtained, for example, by multi-dimensional
scaling methods that embed proximities into a target vector space with fixed
dimensionality, possibly Euclidean, for convenience. Such embedding is compu-
tationally costly, though, and a loss of information is inevitable in many cases.
This motivates direct functional methods for dealing with proximity data [1]
which also facilitate comparisons of non-vector objects like strings or graphs.

Absolute distances provide a comparison of data items, here, vectors of fixed
dimensionality. Although metrics, distances, and similarity measures differ in
their degree of mathematical strictness, there is some common sense about the
basic intention in clustering: maximum data similarities are sought, or, on the
contrary, minimum distances and dissimilarities. In such an intuitive manner,
Minkowski metrics, the Malahanobis distance, and Kendall correlation are ex-
amples of absolute ’distances’, although the mathematical definition of distance
is more stringent.

Since clustering results are depending only on the data, the data measure,
and the computing method, the the data measure has to be chosen carefully. In
many biological applications, correlation measures are preferred because of their
favorable invariance properties: adding a constant offset to components of a data
sample, or applying a multiplicative factor does not affect correlation. Such in-
variance helps, up to a certain degree, to circumvent calibration issues connected
to measuring devices. As will be discussed, normalization does not always allow
to boil down data for treatment with the standard Euclidean distance.

In the following, correlation measures will be briefly revisited, Pearson cor-
relation will be considered in detail, and, connected to this, cost function based
optimization for clustering and visual data screening will be presented.

2 Correlation Measures

In general, correlation quantifies the strictness of dependence of two vectors: ’the
more of one amount, the more of the other’, corresponds to positive correlation,
while negative correlation indicates ’the more of one, the less of the other’. High
absolute correlation values, though, are no guarantee that two observations really
influence one another. Correlations might be caused by spurious dependence,
either mediated by a hidden factor controlling both, or simply by chance. This
explains, why ’measure of association’ is a misleading synonym of correlation.

Different types of correlation can be specified. For brevity, we refer to exist-
ing literature and focus on the three most frequent ones [2]. These are Kendall’s
Tau [τ ], comparing occurrences of positive and negative signs of differences of
components in two vectors; Spearman rank correlation, comparing rank order-
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ings, i.e. monotonic relationships, of the entries in two vectors; and Pearson
correlation which is a measure of linear correlation between real-value entries
of two vectors. The three measures yield numerical values in a range between
-1, meaning negative correlation, and +1, meaning positive correlation; values
around zero indicate uncorrelatedness.

2.1 Kendall’s Tau [τ ]

The Kendall coefficient τ measures the strength of the common tendency of
two d-dimensional vectors x = (xk)k=1...d and w = (wk)k=1...d in a very direct
manner. Data pairs (xi, wi) and (xj , wj) are considered. If xi − xj and wi − wj

have the same sign, the pair is concordant, else it is discordant. The number of
concordant pairs is C, the number of discordant pairs is D, for i < j in both
cases. Then

τ =
C −D

d · (d− 1)/2
describes the amount of bias towards concordant or discordant occurrences, nor-
malized by the effective number of component pairs. Versions for handling tied
data are also available. For its fundamental counting statistics and its easy in-
terpretation Kendall’s τ might be considered as favorable characterization of
correlation. However, the computing complexity is O(d2), i.e. quadratic in the
number d of data dimensions. Also, τ does change in discrete steps as data rela-
tionships change, which makes it difficult to use in optimization scenarios, such
as the optimum data representation task described below.

2.2 Spearman Rank Correlation

Another non-parametric correlation measure is obtained by calculating the nor-
malized squared Euclidean distance of the ranks of xk and wk according to

ρ(x,w) = 1− 6
d · (d2 − 1)

·
d∑

k=1

(
rnk(xk)− rnk(wk)

)2
.

Ranks of real values ck are defined by rnk(ck) = | {ci < ck , i = 1 . . . d} |, which
can be easily derived from the ordering index (minus one) after an ascending sort-
ing operation. This induces a common computing complexity of O (d · log(d)).
Again, tie handling strategies are available.

Spearman correlation has got the interesting property that a conversion of a
non-linear data space into a special Euclidean one takes place. Replacing vector
entries by their ranks leads to a compression of outliers and to a magnification,
of close values, which, in the absence of ties, results in a uniform distribution
with unit spacing and invariant statistical moments of the data vectors. In case
of a low noise ratio, this simple conversion is a robust preprocessing step for
getting standardized value discriminations, not only in correlation analysis. Un-
fortunately, as for Kendall’s τ , these favorable features cannot be easily trans-
fered from their discrete ranking basis into a desirably continuous optimization
framework.
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2.3 Pearson Correlation

In the majority of publications, data dependencies are described by values of
Pearson correlation. The reason is that this measure is closely connected to linear
regression analysis via the residual sum of squares to the fitted line. Pearson
correlation describes the degree of linear dependence of vectors x and w by

r(x,w) =
∑d

i=1 (xi − µx) · (wi − µw)√(∑d
i=1 (xi − µx)2

)
·
(∑d

i=1 (wi − µw)2
) =:

B√
C ·D

. (1)

This equation has got advantageous properties, because r requires only linear
computing complexity O(d), and it is continuous in R, except for non-interesting
constant vectors with zero standard deviations of x or w, i.e. zero denominators.

In principle, the covariance B of x and w in Equation 1 gets standardized
by the product of the standard deviations

√
C and

√
D of x and w, respectively,

after mean subtraction of µx and µw from x and w. As with any calculation
that involves mean or variance, these first two statistical moments have high-
est reliability in case of well-behaved data distributions, possibly uni-modal and
symmetric, such as the normal distribution; this condition, though, is hardly
ever considered in practical calculations of Pearson correlation. Data standard-
ization makes Pearson correlation invariant to rescalings of whole data vectors
by common multiplication factors and to additive component offsets, such as in-
duced by the gain of measuring devices and homogeneous background signals. In
other words, the favorable invariance feature of Pearson correlation results from
implicit data normalization realized by Equation 1. This raises the question, if
Pearson correlation can be and should be replaced by simple covariance analysis
of preprocessed data.

Relationship between Pearson correlation and Euclidean distance.
The z-score transform xz = (x−µx ·1)/

√
var(x) discards the mean value of x and

yields unit variance. For z-score transformed vectors xz and wz the correlation
of x and w can be expressed in terms of covariance using the scalar product 〈·, ·〉:

r(x,w) = 〈xz,wz〉/(d− 1) , 〈xz,wz〉 =
d∑

k=1

xz
k · wz

k .

Because of invariance r(x,w) = r(xz,wz). When this notation is applied to the
squared Euclidean distance of z-score transformed data this yields

d2(xz,wz) =
d∑

i=1

(xz
i − wz

i )2 = 〈xz, xz〉 − 2 · 〈xz,wz〉+ 〈wz,wz〉

= 2 · (d− 1) ·
(
1− r(x,w)

)
.

Thus, correlation r can be easily expressed as distance d2. However, one must not
forget about the crucial step of z-score normalization. In optimizations operating
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on dynamic data, static pre-computation by the z-score transform is not avail-
able for computational improvements over Equation 1. Furthermore, for analytic
considerations, such as the derivative computation discussed below, it is much
more natural to think of the ’correlation’ rather than of the ’negative rescaled
and shifted squared Euclidean distance’.

Compactification of z-score transformed data.
The z-score transform is often used for visualizing correlated data, when differ-
ent data ranges and offsets complicate a common plotting display or coloring
scheme. It is the aim to transform highly correlated data into data items that
are compact in Euclidean sense. However, the z-score vector transformation,
producing zero mean and unit variance, is not optimum in terms of Euclidean
compactness. Further compactification of n z-score transformed data vectors xj

can be obtained by minimizing the sum-of-squares quantization term

EQ =
n∑

j=2

n∑
i=1

d∑
k=1

(
υi · xi

k + νi − (υj · xj
k + νj)

)2

→ min . (2)

Notice that the correlation r(υi · xi + νi · 1, υj · xj + νj · 1) is not influenced
by different choices of the free parameters υl ∈ R0, νl ∈ R. The cost function
can be minimized, for example, by gradient descent, using ∂EQ/∂υj , ∂EQ/∂νj ,
initializing υi = 1, νi = 0, i = 1 . . . n. By the heuristic trick of starting at j = 2 in
Equation 2, the trivial solution υi = 0, νi = 0, i = 1 . . . n is effectively prevented,
because the first pattern remains fixed, inducing an anchoring constraint on the
other parameters.

An example of optimized data alignment is given in Figure 1. A number of
48 temporal gene expression profiles are aligned by standard z-score, followed
by optimization. Since optimization reduces overall variance, the dimensionless
coefficient of variation (cv) is computed for a standardized comparison. As de-
sired, it turns out that this measure of dispersion is especially low for attributes
in the set of optimized expression profiles.

3 Approaches to Correlation-based Analysis

In a plain view, data analysis is essentially data modeling, followed by model
analysis and interpretation. This view allows to consider, for example, even a
simple averaging operation as a modeling task, namely as solution of k-means
with one (k = 1) centroid. In general, model selection and the modeling process
itself are crucial ingredients to proper analysis. This motivates our focus on the
derivation of optimum correlation-based data models.

In the following, optimality is always defined in terms of mathematically
rigorous cost functions. These cost functions are continuous in almost every
practical case, which allows their optimization by means of gradient techniques.
Therefore, the partial gradient of Pearson correlation with respect to a target vec-
tor component is revisited, which can be used for attribute characterization [3],
clustering, classification [4], and visualization [5]. Here, gradients will be used in
order to optimize cost functions related to clustering and visualization.
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Fig. 1. Data alignment of temporal gene expression profiles. Original data, con-
sisting of 48 14-dimensional expression profiles (top left), are transformed by
z-score (top right), which is refined by optimization of Equation 2 (bottom left).
For scale-free comparison of both alignments, coefficients of variation (cv = σ/µ)
have been calculated as measures of dispersion, separately between all pairs of
422 distances available at each time step (bottom right). Optimized data exhibit
smaller cv-levels, i.e. higher compactness, than data only transformed by z-score.

3.1 Correlation-based Representation

Alternative data representations help to reduce complexity if these data models
require only a low number of parameters, such as simple models of data dis-
tribution. Then the model can be analyzed instead of the possibly large and/or
high-dimensional data sets. Very intuitive and characteristic data representations
can be obtained by means of centroids, also known as prototypes, or, in classi-
fication setups, as codebook vectors. It is commonly considered a useful or even
undoubted strategy to apply vector averaging in order to obtain representative
centroid vectors for faithful data coverage. The well-known k-means algorithm is
one such example using a center-of-gravity approach. Other methods, like learn-
ing vector quantization (LVQ) and self-organizing maps (SOM), rely on a similar
reasoning, implementing incremental prototype adaptation based on the plain
Hebbian learning term (x−w). This term expresses the movement of a centroid
w on a straight line in Euclidean space towards the currently processed pattern
x. If data are completely considered in Euclidean space and is not only processed
there, everything works fine. However, there are many computer programs avail-
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able, offering k-means, LVQ, SOM, and some more methods in combination
with a bunch of data measures, ranging from uncentered Minkowski metrics to
Kendall correlation; yet, they do only change the comparison and not the essen-
tial step of centroid update. Since Pearson correlation is a widely used measure
with advantageous analytic properties, this measure will be considered in more
detail in the following, for realizing appropriate model updates.

Correlation-optimized centroid representation – A toy example.
A small three-dimensional data set with three items is given in Table 1, for point-
ing out exemplary differences between the center-of-gravity x̄ and a correlation-
optimized centroid location s. Optimization is carried out on the cost func-
tion

∑3
i=1 r(xi, s) → max via adaptation of centroid components in s, initial-

ized at the center-of-gravity. Gradient ascent on the optimization target yields
vector s in Table 1, which is only one of infinitely many equivalent solutions
ŝ = υ · s + ν · 1, υ, ν ∈ R,1 ∈ R3.

The quality of data representation should certainly depend on the similarity
measure, i.e. analytic properties of the chosen measure should be considered for
optimizing the representation, as sketched for the cost function above. Table 2
contains the obtained ’quantization’ results in terms of individual and average
Pearson correlations between the data vectors and the two centroids x̄ and s.

It is not too much surprising that the measure-specific optimization out-
performs the simple vector averaging. Still, it is surprising that widely accepted
software tools most often do not realize such integrative modeling when they sep-
arate similarity computation and model update. If the pragmatism of Euclidean
update is accepted, then why shouldn’t it be acceptable, the other way round,
to compare by Euclidean distance, but update in a correlation-optimum man-
ner? Sometimes there are, of course, good reasons to stick to Euclidean updates.
These are cases when analytic properties cannot be derived from the measure,
such as the discrete counting statistics in Kendall’s τ . Then Euclidean-driven
optimization might be the only available choice. Still, one must keep in mind
that Euclidean updates towards component-wise identity of centroids and data
are not always compatible with more relaxed similarity measures. At least, the
strict Euclidean dynamic does not distribute the centroids generously, which
might induce the usage of more prototypes than would be actually required by
a more relaxed similarity measure.

x1 x2 x3 avg.: x̄ alt.: s

0 0 1 0.3333 0.1744
0 2 2 1.3333 0.1333
4 2 3 3 2.4923

Table 1. Toy example with three data vectors x1, x2, x3 and their average cen-
troid x̄ (center of gravity). The last column contains an alternative reference
vector s derived from cost function optimization.
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corr. x1 x2 x3 avg.

x̄ 0.92857 0.78571 0.98974 0.90134

s 0.86605 0.866 1 0.91068

Table 2. Correlation table of x̄ and s vs. pattern vectors xi, including their aver-
age correlations (rightmost column). High values indicate good representations.

3.2 Gradient of Pearson Correlation

The definition of the gradient of a similarity measure is generally a very valu-
able tool for assessing the influence of vector components on the measured value,
characterizing the relationship between two vectors. In unsupervised attribute
selection tasks, this allows to identify attributes contributing most to the mea-
sure [3]. This is trivial for Euclidean distance, for which the derivative can be
decomposed into independent components, except for a common scaling factor:

d(x,w) =

√√√√ d∑
i=1

(xi − wi)2 → ∂d(x,w)
∂wk

=
wk − xk

d(x,w)
.

In this case, the component k with maximum absolute difference (or highest
variance, for simplicity) contributes most.

The situation is much more interesting when gradients of Pearson correlation
corresponding to Equation 1 are considered:

∂r(x,w)
∂wk

=
(xk − µx)− B

D · (wk − µw)
√

C ·D
. (3)

Independence of the components is not realized, because the components µx,
µw, B, C and D , contribute knowledge of all other vector components in a
non-trivial manner. Additionally, the Euclidean rule of opposite direction for
argument flipping, does not hold, because ∂r(x,w)/∂wk 6= −∂r(w, x)/∂wk in the
usual case of B 6= D .

Clustering framework. In coexpression analysis, the ultimate goal is to find
clusters of data containing highly correlated data vectors [6]. Centroids are a very
natural schematic representation of such clusters. Faithful data representation
requires robust centroid locations within the data. Self-organizing maps (SOM)
realize a cooperative centroid placement strategy by iterative presentation of
data points that trigger further improvements of previously placed centroids. A
general formulation of this simple procedure is given in Algorithm 1. The SOM
mode of algorithm 1 is not of interest here, because the visualization capabili-
ties of SOM are required; yet, we are interested in high quantization accuracy.
Neural gas (NG) [7] is our method of choice for finding high-quality centroids
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Algorithm 1 SOM / NG centroid update

repeat
chose randomly a data vector x
k ← arg mini {d(wi, x) }
{ wk is closest centroid to data vector x }

for all m centroids j do
wj ← wj + γ · hσ

�
D(wk,wj)

�
· U(x,wj)

{ γ, h, σ, D, U : see text }
end for

until no more major changes

in the original data space. The authors of NG showed that the NG algorithm
asymptotically realizes a stochastic gradient descent on the cost function:

E(W, σ) =
1

C(σ)
·

m∑
j=1

n∑
i=1

hσ

(
rnk(xi,wj)

)
· d(xi,wj) . (4)

The scaling factor C(σ) =
∑m−1

i=0 hσ(i) is used for normalization. In the limit
σ → 0, the NG mode of Algorithm 1 leads to a centroid placement that minimizes
the total quantization error between the m centroids and n data vectors.

The benefits of neural gas are: mathematical understanding of centroid spe-
cialization, high reproducibility of results, neighborhood cooperation for robust-
ness against initialization, and easy implementation. A fast batch version of
neural gas with quadratic convergence has been proposed recently [8], comple-
menting the iterative online approach discussed here.

Correlation described by Equation 1 can be plugged into the cost function
Equation 4 being optimized by gradient tracking along partial derivatives of
E with respect to the components of all centroids wj . Since the cost function
should be minimized, correlation r is turned by negative sign into a dissimilarity
measure. Therefore, the term U(xk, wk) = −∂r(x,w)/∂wk is inserted into Algo-
rithm 1, which constitutes the alternative version of neural gas for correlation-
based centroid placement, NG-C for short.

It can be shown that this correlation-based update rule yields a valid gradient
descent also at the boundaries of the receptive fields. A proof, originally for the
Euclidean case, is provided by [7], where a vanishing contribution of the ranks
was presented. Since the proof does not rely on specific properties of the Euclid-
ean metric, a direct transfer to Pearson correlation is possible. Thus, Equation 4
is a valid cost function that gets optimized by the neural gas algorithm. If vi-
sualization is desired and the cost function criterion be relaxed, the correlation
derivative can be used, of course, for an improved update of self-organizing maps.
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Visualization framework. For visualization of individual data points one of
the most widely used methods is principal component projection. However, PCA
is restricted to linear mappings of high-dimensional data, thereby focusing on
directions of maximum Euclidean variance. A more natural alternative goal is
to obtain low-dimensional displays that reflect most faithfully the inter-vector
similarities of the source data.

In principle, this goal can be reached by using multi-dimensional scaling
(MDS) techniques to make distances of reconstructed low-dimensional points
similar to distances between the input vectors. This optimization task can be very
hard, because of ambiguous compromise solutions in the low-dimensional space.
Most MDS methods define quite stringent cost functions, such as searching – by
least squares approaches – strict identity of distances between the reconstructed
point locations and the distances of corresponding input data.

Alternatively, Pearson correlation between the distance matrices of input
data and reconstructed points allow, due to scale and shift invariance, infi-
nitely many more solutions than for strict identity optimization. The following
method, called high-throughput multidimensional scaling (HiT-MDS), describes
how correlation is used to help alleviate the optimization task of finding proper
low-dimensional point locations.

Let matrix D = (dij)i,j=1...n contain the pattern distances, and the ma-
trix D̂ = (d̂ij)i,j=1...n those of the reconstructions. Then the correlation r(D, D̂)
between entries of the source distance matrix D and the reconstructed distances
D̂ is maximized by minimizing the following embedding cost function:

s = −r ◦ D̂ ◦ X̂ ⇒ ∂s
∂x̂i

k

= −
j 6=i∑

j=1...n

∂r

∂d̂ij

· ∂d̂ij

∂x̂i
k

→ 0, i = 1 . . . n (5)

Locations of points in target space are obtained by gradient descent on the stress
function s using the depicted chain rule. The derivatives in Equation 5 are [5]

∂r

∂d̂ij

=
(dij − µD)− B

D · (d̂ij − µD̂)
√

C ·D
(cf. Eqn. 3)

∂d̂ij

∂x̂i
k

= (x̂i
k − x̂j

k)
/

d̂ij for Euclidean d̂ij =

√∑d

l=1
(x̂i

l − x̂j
l )2 .

While, for planar and intuitive plotting purposes, target distances d̂ij are usu-
ally Euclidean, input distances can be mere dissimilarities, like flipped Pearson
correlation dij = (1− r(xi, xj)) or powers of which. Note that these data vector
correlations are completely different from the target r in the correlation-based
cost function optimization in Equation 5 of HiT-MDS.

In contrast to previous versions of HiT-MDS, a slightly modified, but effi-
cient update step is proposed. Randomly drawn points x̂i are updated into the
direction of the sign sgn(x) = x/|x| of the steepest gradient of s, scaled by the
decreasing learning rate γt:

∆x̂i
k = −γt · sgn

(
∂s

∂x̂i
k

)
, γt→tt−max → 0.
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Convergence is forced by driving the learning rate monotonously to zero, in the
limit of maximum cycles tmax +1. In practice, the learning rate starts at γ0 = 1,
where it is kept until iteration number tmax/2; it is then linearly decreased to
zero. This update scheme is very robust against the choice of the learning rate
and usually yields excellent results.

Maximum calculation efficiency, justifying the name high-throughput MDS,
can be obtained by optimized procedures described in [9]: once matrices D and
D̂ are computed in O(n2), updates of the similarity matrix and incremental
changes in correlations r(D, D̂) can be computed in O(n) instead of O(n2).

4 Correlation-based Methods for Gene Expression Data

Using the two methods for clustering (NG-C) and visualization (HiT-MDS) de-
scribed above, a number of interesting features can be derived from the data.
Visualization is certainly helpful for initial data screening and for accompany-
ing later steps of analysis. Clustering is one of the central tools for extracting
common regulatory patterns, such as temporal up- and down-regulation, inter-
mediate events and other characteristic processes. The particular advantage of
the proposed methods is their perfect interplay, as they optimize correlation-
based data representation.

The aim of the presented analysis is the identification of tissue-specific key
regulatory genes that trigger critical pathways during the temporal development
in growing barley grains [10]. This study has practical values for the improve-
ment of seed quality which is of high interest to breeding companies. A total of
330 008 gene expression values were collected from 28 hybridization experiments
with 12k macroarrays, covering 14 temporal developmental points of developing
barley endosperm tissue from two independent series. Gene expression levels had
to exceed twice the background to be considered as signal. Background subtrac-
tion and quantile normalization of log2-transformed data was carried out for the
remaining genes. This processing was done separately for both experimental se-
ries to allow the comparison of signal intensities across time series. A filter based
on Pearson correlation was then applied to select gene profiles time series that
correlate at a conservative level of r > 0.5 between the two independent series.
With this criterion, a qualified subset of 4824 out of 11 786 genes was created for
analysis. For simplicity, data from only the second series are considered here.

4.1 HiT-MDS Visualization

For the 4824 genes of interest, HiT-MDS embedding requires only 100 data cy-
cles, processed within a few minutes, to get the high-quality display shown in
Figure 2. The characteristic sandglass shape results from using eighth power of
the correlation measure, (1− r(xi, xj))8. This power magnifies subtle dissimilar-
ities in highly correlated genes which leads to focus on a good reconstruction
– and thus a fair differentiation – of highly correlated, i.e. with near zero dis-
similarities, rather than of obviously discorrelated genes. The exponent of eight
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Fig. 2. HiT-MDS scatter plot of embedded temporal gene expression data. Cor-
relation similarity (1 − r(xi, xj))p is considered at p = 8 for magnification of
high-correlation subsets, which explains the characteristic sandglass shape.

has turned out to be a good compromise for spreading highly correlated genes
and for giving, at the same time, space also to intermediate regulations. Similar
findings for higher order powers of correlation are reported in [11].

By posterior labeling with known gene annotations, the group of hormone
and signaling related genes are highlighted in orange colors before other func-
tional categories, marked in gray. Additionally, data boxes, brushed in blue, and
their corresponding plots of temporal patterns have been manually picked in
order to demonstrate the high spatial connectivity of similar regulatory profiles
and their embedded two-dimensional counterparts. A smooth transition can be
found from the western side (W) with patterns of down-regulation, via south
(S) corresponding to patterns of intermediate up-regulation and up-regulation
located in the east (E) to north (N) with intermediate down-regulation, back
to west. Rare and unique regulation patterns are found in the interior of the
sandglass structure.

The prominent temporal expression patterns are easily revealed by browsing
the scatter plot in the way described above. The plot shows that the correlation
space is very homogeneous, dominated by patterns of up- and down-regulation,
according to the experimental design. Overall, the HiT-MDS embedding proce-
dure applied to transcriptome data of endosperm development yields a faithful
arrangement of genes with their typical temporal expressions. Using the freely
available GGobi visualization software [12], data can be interactively browsed
for picking candidate genes. This combination of embedding and visualization
tools turned out to be very assisting in the derivation of potential regulatory
pathways [5].
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4.2 Clustering

Beyond the described visual sub-grouping of embedded gene expression data,
dedicated clustering methods provide more reliable clusters. Since these methods
do usually operate in the original data space and not in the somewhat lossy
reconstruction of embedded data, higher quantization accuracy can be obtained.

In a previous study, neural gas has been successfully applied to subdividing
the set of 4824 genes into smaller sets of characteristic regulation patterns [5].
In principle, such a partitioning helps to get an abstract view upon the data set,
because the data space gets faithfully covered by a pre-defined number of typical
centroids. Such a relatively small number of centroids helps to identify poten-
tial cascades of regulatory events by looking at temporal delays of transcription
activity. The benefits over hierarchical clustering are two-fold: firstly, the hier-
archical clusters would need to be merged appropriately for data abstraction,
requiring an extra step; secondly, with NG-C no decision must be taken about
the linkage method – one of complete, single, or average linkage – needed for tree
creation in hierarchical clustering. Hierarchical clustering is of interest rather for
the identification of outliers.

Certainly the number of centroids is an interesting choice for NG-C, because
it defines the level of abstraction. For k-means, which is used for the same purpose
as NG-C, a number of heuristic methods exist to give rough estimates about the
number k of centroids [13]. The pragmatic approach suggested here is to compute
the centroids and embed them together with the data. The obtained display will
then give reasonable hints, if all major modes, i.e. high density regions, are
covered by the centroids. If not so, their number has to be further adjusted until
a good correspondence of centroids and data is obtained.

Visualization of embedded centroids. Clustering and visualization of the
4824 barley endosperm genes introduced above yields scatter plots shown in Fig-
ure 3. For comparison with NG-C, Eisen’s implementation of k-means has been
taken as reference model [14]. Both methods make use of Pearson correlation for
creating sets of similar patterns for centroid calculation, but according to the
standards, k-means calculates averages in Euclidean space, whereas NG-C uses
correlation-optimized updates. The exponential NG-C neighborhood influence is
realized as exponential decay from σ = 23 to σ = 0.001, the update rate is set
to γ = 0.001. Both methods were trained with 100 data cycles for 23 centroid
positions.

As most fundamental difference, the final states in k-means, corresponding
to the right panel of Figure 3, are quite close and dense at the boundaries of the
embedded data manifold, while a more homogeneous spreading is observed for
NG-C centroids.

Quality of representation. Beyond visualization, another quality criterion
has been derived from 10 independent repetitions of k-means and NG-C clus-
tering, starting from random initialization. Analogous to quantization accuracy,
we determine the average correlation of centroids to their represented data. For
k-means we obtained, over 10 runs, an average correlation of r = 0.9329±0.0017
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k-means NG-C

Fig. 3. Correlation-based clustering and visualization using HiT-MDS. Left: k-
means; right: NG-C. Both methods use Pearson correlation similarity for com-
puting locations of 23 centroids. NG-C centroids are more faithfully distributed
among the data.

per centroid with an average standard deviation 0.0881± 0.0038. For NG-C the
results are r = 0.9516 ± 0.0001 with standard deviation 0.0573 ± 0.0004. Thus,
NG-C provides higher average correlation with much less standard deviation.
The low standard deviation underlines a very important feature of NG-C: the
high reproducibility of final centroids, independent of their initialization. This
is one major advantage over k-means for which a poor reproducibility is known.
Moreover, and contrary to k-means, unused prototypes do not occur in NG-C,
because of its built-in neighborhood cooperation.

5 Conclusions

Gradients of Pearson correlation have been introduced for cost function opti-
mization frameworks aiming at reliable data representation.

The quality of models can be assessed already during data processing by
looking at the current cost value. Rigorous comparisons to existing methods
have not been carried out in this work. There is one simple reason: it does not
make much sense to compare an unsupervised model, optimized for a certain
purpose to a model not optimized for it. From a different perspective, why should
an optimization model be judged by another than the optimization criterion?
For example, if PCA optimizes directions of maximum variance and HiT-MDS
optimizes maximum correlation between two data spaces, the only reason for
choosing either approach is its practical use.

A very central statement derived from the claim above, apply methods to
targets they are designed for, is to make model update consistent with the data
similarity. Here, derivative properties of Pearson correlation are used for opti-
mization which provides a model space that is in good agreement with the data
space. An introduced toy example has demonstrated the practical value of this
consideration. The presented NG-C clustering method realizes an update con-
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sistent with the Pearson correlation similarity measure which allows to generate
highly reproducible partitions of the data.

Adequate visualization is certainly a very important tool to accompany most
steps of data analysis. Initial screening yields hints if pronounced clustering can
be expected, and it allows a reasonable choice of the number of centroids by
embedding them together with the data. In the presented gene expression study
it turned out that the correlation-based data space is rather homogeneous; it
might thus be worth to look for interesting outliers by interactive browsing or
by detection of special nodes in trees from hierarchical clustering.

Finally, the presented cost function frameworks focussing on the Pearson
correlation measure are general enough to replace correlation by any measure for
which mathematical derivatives are available. This opens a very wide perspective
on future approaches for reliable data-driven biomedical analysis.

Availability

C, MATLAB (GNU Octave), and R source code of high-throughput multi-
dimensional scaling (HiT-MDS) and supplemental data is online available at
http://hitmds.webhop.net/.
C code of neural gas for Pearson correlation (NG-C) is online available at
http://pgrc-16.ipk-gatersleben.de/˜stricker/ng/.
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