
Complexity of Scheduling in Synthesizing Hardware
from Concurrent Action Oriented Specifications

Gaurav Singh1, S. S. Ravi2, Sumit Ahuja3 and Sandeep Shukla4

1 FERMAT Lab, Virginia Tech, Deptt. of Electrical and Computer Engineering,
Blacksburg, VA 24060, USA.

gasingh@vt.edu
2 Univ. at Albany - State Univ. of New York, Department of Computer Science,

Albany, NY 12222, USA.
ravi@cs.albany.edu

3 FERMAT Lab, Virginia Tech, Deptt. of Electrical and Computer Engineering,
Blacksburg, VA 24060, USA.

sahuja@vt.edu
4 FERMAT Lab, Virginia Tech, Deptt. of Electrical and Computer Engineering,

Blacksburg, VA 24060, USA.
shukla@vt.edu

Abstract. Concurrent Action Oriented Specifications (CAOS) formal-
ism such as Bluespec Inc.’s Bluespec System Verilog (BSV) has been
recently shown to be effective for hardware modeling and synthesis. This
formalism offers the benefits of automatic handling of concurrency issues
in highly concurrent system descriptions, and the associated synthesis al-
gorithms have been shown to produce efficient hardware comparable to
those generated from hand-written Verilog/VHDL. These benefits which
are inherent in such a synthesis process also aid in faster architectural
exploration. This is because CAOS allows a high-level description (above
RTL) of a design in terms of atomic transactions, where each transac-
tion corresponds to a collection of operations. Optimal scheduling of such
actions in CAOS-based synthesis process is crucial in order to generate
hardware that is efficient in terms of area, latency and power. In this
paper, we analyze the complexity of the scheduling problems associated
with CAOS-based synthesis and discuss several heuristics for meeting
the peak power goals of designs generated from CAOS. We also discuss
approximability of these problems as appropriate.

Keywords. Hardware Synthesis, Concurrent Action Oriented Specifi-
cations (CAOS), Scheduling, Complexity, Peak Power.

1 Introduction

High-level synthesis is the process of converting a behavioral (algorithmic) spec-
ification of a design into its register transfer level (RTL) description [1]. The

Dagstuhl Seminar Proceedings 07041
Power-aware Computing Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1105

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

three most important phases of any high-level synthesis process are operation
scheduling, resource allocation and resource binding. During operation schedul-
ing, each operation of a design is mapped to an appropriate control step in
which it will be executed. Resource allocation determines the number of various
resources (adders, multipliers, registers) that should be used to implement the
design. During resource binding, each operation is bound to a particular resource
which will be used to implement it.

Scheduling affects allocation and binding phases and hence efficient schedul-
ing of the operations of a design is very important in producing designs that are
efficient in terms of area, latency and power. The problem of scheduling during
traditional high-level synthesis using CDFGs (control data flow graphs) can man-
ifest in different forms as per the design requirements. A resource-constrained
scheduling problem involves the minimization of the total number of control
steps required to execute the operations of a design given the fixed number
of each resource. On the other hand, time-constrained scheduling problems in-
volve minimizing the number of instances of each resource required given the
fixed number of control steps. Both these versions of the scheduling problem are
known in general to be NP-complete. The best known algorithms for solving
these problems have exponential time complexity, and hence heuristics are often
used to solve such problems.

Recently, a new approach to high-level synthesis from Concurrent Action Ori-
ented Specifications (CAOS) [2,3] has been proposed which is based on the idea
that any hardware design can be described in terms of concurrent atomic actions
or transactions [4]. During the execution of the designs generated from CAOS-
based synthesis, one or more actions can be scheduled to execute in a given time
slot. Each time slot corresponds to one cycle of a hardware clock. Since power
management is essential in contemporary designs, efficient scheduling of the ac-
tions of a design can be used to minimize its peak as well as dynamic power
consumption. Peak power of a design can be defined as the maximum total power
consumed (due to the switching activity) during one time slot, whereas dynamic
power is the total power consumed during the overall execution of the design.

In this paper, we analyze the complexity of the scheduling problems asso-
ciated with CAOS-based synthesis. We focus on the peak power requirements
of a design, and propose several heuristics for efficient scheduling of the actions
of a CAOS-based design such that its peak power constraints are satisfied. The
paper is organized as follows. Section 2 presents related work done in the area
of low-power high-level synthesis. Section 3 briefly describes CAOS-based syn-
thesis approach. In Section 4, we provide some preliminary definitions related to
the complexity theory of algorithms. Section 5 presents the complexity analysis
of the scheduling problem associated with CAOS-based synthesis without any
peak power constraints. This paves the way to the analysis under peak power
constraint in the next section. In Section 6, various versions of the scheduling
problem under peak power constraints are discussed and efficient heuristics are
presented in each case. Section 7 concludes this chapter with a brief summary.

Complexity of Scheduling in Synthesis from CAOS 3

2 Related Work

References [2,3] formulate the problems of power-optimal synthesis for CAOS
and present heuristics targeting the minimization of peak power and dynamic
power in designs generated from CAOS. The low-power heuristics presented in
[2,3] are based on re-scheduling and factorization of actions. In this paper, we
further extend the preliminary analysis of the peak power minimization problem
in [2,3] by presenting a thorough analysis of various peak power optimization
problems related to CAOS-based design.

In the past, most of the other work done in low-power behavioral synthesis
is based on the techniques which use CDFGs as inputs to the synthesis process
[5,6,7,8]. In [5], an integer linear programming model (ILP) for peak power min-
imization under latency constraints is presented. In [6], a power management
technique targeted towards high-level synthesis of data-dominated behavioral
descriptions is proposed. Reference [7] presents a scheduling algorithm which
aims to maximize the idle times for functional units. Reference [8] proposes a
controller re-specification technique based on re-designing the controller logic
used to reduce the activity in the components of the datapath. Reference [9]
presents a comprehensive high level synthesis system for reducing power con-
sumption in control-flow intensive as well as data-dominated circuits. In [10],
the authors address the issue of managing transient power consumption through
the choice of appropriate architectures during high-level synthesis. A framework
for simultaneous reduction of energy and transient power components during be-
havioral synthesis is proposed in [11]. [12] formally describes various algorithms
on power macro-modeling based on regression analysis and power minimization
through behavioral transformations, scheduling, resource assignment and hard-
ware/software partitioning and mapping.

Given that the above mentioned low-power techniques [5,6,7,8,9,10,11,12] are
related to the CDFG-based models, the work presented in this paper is distinct.
Our work is related to the CAOS-based synthesis approach. One advantage of
CAOS is that it does not lose the parallelism/concurrency inherent in the spec-
ification, and allow the synthesis mechanism to infer more parallelism.

The problem of resource-constrained scheduling for low-power objective has
been addressed in [13,14]. These approaches use CDFGs to first determine the
mobility of various operations based on the ASAP and ALAP schedules. Using
the computed mobilities and other relevant factors, priorities are assigned to
various operations. Based on these priorities, the operations are then scheduled
in each time slot such that the power consumption of the design is reduced.
However, as mentioned earlier, the strategies presented in this paper are not
based on the static schedule (CDFGs) and hence do not have knowledge of the
future time slots due to the nature of CAOS. In each time slot, appropriate
actions are dynamically chosen to be scheduled based on the CAOS semantics
such that the low-power goals of the design are met maintaining the correct
functionality.

4 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

3 Concurrent Action Oriented Specifications

In the CAOS formalism, the behavior of the design is described using a collection
of guarded atomic actions (transactions) at a level of abstraction higher than
RTL. Each action consists of an associated condition (called the guard of that
particular action) and a body. An action executes only when its associated guard
is true, and the body of an action operates on the state of the system. The
state can be explicitly defined by the designer in the high-level description of
the system or, in other cases, can be inferred from that description. Bluespec
Compiler [15] is an example CAOS-based synthesis. In Bluespec, there is no
need to infer the state because the designer explicitly instantiates all the state
elements of the system (like registers, FIFOs, memories etc.). This model then
undergoes synthesis to generate the RTL code [15].

An action A in the concurrent action-based description of a design can be
written as,

Action A : g(s) → {
s1 = b1(s, i);
s2 = b2(s, i);
s3 = b3(s, i); }

Here, g(s) is the guard associated with the action A. s is the set of state
elements of the design such that s1 ∈ s, s2 ∈ s and s3 ∈ s. The body of the
action contains three statements of the form sj = bj(s, i). bj(s, i) computes the
subset of the next state of the system using the current values of the elements
of s and the current input i.

The actions are atomic in the sense that either all the computations corre-
sponding to the body of an action finish successfully, or none of them executes.
Two actions are said to be in conflict with each other if they update one or more
of the same state elements. Multiple actions can execute concurrently as long as
they do not conflict, thus exploiting maximum parallelism present in the design.
The system execution stops when no guard evaluates to True.

Following is an example from [2], which illustrates how a specific hardware
can be described in Bluespec System Verilog (which is based on CAOS) and also
provides an idea of the execution semantics of CAOS.

Example

Figure 1 shows an example of an action-oriented description of a LPM (Longest
Prefix Match) module [15]. It takes 32-bit IP addresses, looks up the destina-
tion (32-bit data) for each IP address in a table in a memory, and returns the
destinations. The module is pipelined and the results are returned in the same
order as requests. The memory is also pipelined and has a fixed latency of L
cycles. One of the possible implementations of a LPM module is in the form of
a Circular Pipeline as shown below.

Complexity of Scheduling in Synthesis from CAOS 5

Action 1 (Input):
(true) → {

IPaddr = fifo1.deq();
token = compBuffer.getToken();
fifo2.enq(token,IPaddr[15:0],state0);
RAM.readRequest(baseAddr + IPaddr[31:16]); }

Action 2 (Complete):
(isLeaf(d = RAM.readResult())) → {

(token, IPaddr, s) = fifo2.deq();
compBuf.done(token, d);
RAM.readAck(); }

Action 3 (Circulate):
(!(isLeaf(d = RAM.readResult()))) → {

(token, IPaddr, s) = fifo2.deq();
fifo2.enq(token, IPaddr, s+1);
RAM.readRequest(computeAddr(d,s,IPaddr));
RAM.readAck();}

Fig. 1. Circular pipeline specification of the LPM module design using
concurrent actions.

In the above example, Action 1 represents the Input stage which takes an
IP address IPaddr from fifo1 and a token from the Completion Buffer. It then
places a tuple (token, IPaddr[15:0], state0) into fifo2 and enqueues a memory
request using the 16 bits of the IP address. Based on the memory response d
and the first tuple (token, IPaddr, s) in fifo2, either the Completion (Action 2)
or Circulate (Action 3) stage executes. If the lookup is done the Completion
stage forwards the tuple containing the memory response d and the token to
the Completion Buffer, else the Circulate stage places the tuple (token, IPaddr,
s+1) into fifo2 and launches another memory request.

In this example, since IP addresses need varying numbers of memory refer-
ences, each IP address goes around the pipe as many times as the number of
needed memory references. This means that the requests finish out of sequence.
Thus, tokens from the Completion Buffer are used to make sure that the results
arrive in the right order.

After the parts of an action corresponding to combinational logic have exe-
cuted, all the other parts of an action will occur in parallel in order to achieve
maximum parallelism. For example, in Action 1 (Input), after IP address and to-
ken are fetched (combinational parts), the other two parts of the actions which
place a tuple into fifo2 and enqueue a memory request will occur in parallel.
Similarly, in the (Action 3 (Circulate)), the portion of the action that places
a tuple in fifo2, enqueues a memory request, and acknowledges the reading of
result will be executed in parallel after the part that dequeues the tuple from
fifo2 has executed. This kind of parallelism is quite common in hardware design.

6 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

However, the use of concurrent actions (multiple actions executing in the same
time slot) in the above example reflects the additional amount of parallelism
that can be exploited through synthesis from the action-oriented specification
style.

The example illustrates that using action-oriented specifications relieves de-
signers from worrying about global coordination, thus allowing them to focus on
the much simpler task of local correctness. Larger examples of similar kind may
be found in [16], [17].

Confluent Set of Actions

A CAOS-based design can be composed of conflict-free actions. Two actions are
said to be conflict-free if none of the actions updates the state elements accessed
(including the state elements accessed in the guards) by the other action [4]. A
set of actions where all the pairs of actions are conflict-free is said to be confluent
[18]. The important thing to note about a confluent set of actions is that all the
possible orders of the execution of such actions will result in the same final state
of the design.

Synthesis

Hardware synthesis using the concurrent actions can be achieved by implement-
ing each g and b as a combinational logic. Also, a control circuit will be needed
that picks up a maximum number of actions (among those having their guards
true) to be executed concurrently in each time slot (clock cycle).

STATE

Control
Circuitry

(Scheduling &
Selecting
Actions)

For each
action

compute
guards

For each action
compute

next State

Read

Update

1

2

n

.

.

.

1

2

n

.

.

.b

g
g

g

b

b

Fig. 2. Synthesis from Concurrent Actions [15].

Complexity of Scheduling in Synthesis from CAOS 7

Figure 2 shows the schema for a translation from the actions into the hard-
ware. The circuit shown is generated in the concurrent action-based synthesis
flow. The guards (g’s) and update functions (b’s) are computed for each action
using a combinational circuit. The scheduler is designed to select a maximal sub-
set of applicable actions under the constraint that the outcome of a scheduling
step can be explained as atomic firing of actions in some order. In each time slot,
the Control Circuit selects as many actions as possible to execute and updates
the current state with the resulting values of those actions. Thus, there exists
an almost direct translation from the action-oriented specification of the design
to its hardware. Note that the synthesis is done without any constraints on the
resources of the design.

Peak Power Constraint

As mentioned earlier, during the execution of a CAOS-based design, multiple
non-conflicting actions can be selected for execution from all the actions enabled
(guards evaluated to True) in a particular time slot. Let A be such a set of non-
conflicting actions. Each action ai ∈ A is composed of a set of operations and
the power expended during each operation of ai contributes to power pi needed
to execute ai.

Total power consumed during a particular time slot can be estimated as the
summation of the power consumed by various actions executing in that time
slot. Thus, executing large number of actions in a time slot may increase the
peak power of the design beyond the acceptable limits, which is undesirable. A
peak power constraint P on a design can be specified by putting a limit on the
total power that can be consumed in any time slot during the execution of the
design. The scheduling of various actions of the design should then be done such
that the peak power constraint of the design is not violated.

4 Terminology Concerning Approximation Algorithms

A heuristic for a combinatorial optimization problem is a polynomial time
algorithm that produces a feasible, but not necessarily optimal, solution to all
instances of the problem.

For any ρ ≥ 1, a ρ-approximation algorithm for a combinatorial opti-
mization problem is a heuristic that produces a solution which is within a factor
ρ of the optimal solution value. To further clarify this notion, suppose the op-
timal solution value for an instance I of an optimization problem is denoted by
OPT(I). For each instance I of a minimization problem, a ρ-approximation al-
gorithm produces a solution whose value is at most ρ OPT(I). For each instance
I of a maximization problem, a ρ-approximation algorithm produces a solution
whose value is at least OPT(I)/ρ. A ρ-approximation algorithm is also referred
to as an algorithm that provides a performance guarantee of ρ.

For any fixed ε > 0, a polynomial time approximation scheme (PTAS)
for a combinatorial optimization problem provides a performance guarantee of

8 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

1 + ε. Thus, by an appropriate choice of ε, a PTAS can produce solutions that
are arbitrarily close to the optimal value. As can be expected, the running time
of a PTAS increases as the value of ε is decreased.

For some combinatorial problems, it is possible to design algorithms whose
running times are polynomial in the size of the problem instance and the max-
imum value that occurs in the instance. Such an algorithm is called a pseudo
polynomial time algorithm. For example, consider the Subset Sum problem:
Given a set S = {s1, s2, . . . , sn} of integers and an additional integer B, is there
a subset S′ of S such that the sum of all the integers in S′ is equal to B? We may
assume without loss of generality that B is the largest integer among the input
values. (Integers in S which are larger than B cannot be part of S′.) The Subset
Sum problem can be solved in O(nB) time using dynamic programming [19].
This is a pseudo polynomial time algorithm for the Subset Sum problem. On
the other hand, for problems such as Minimum Vertex Cover and Maximum
Independent Set, there is no pseudo polynomial algorithm, unless P = NP
[19].

5 Scheduling Problems without a Peak Power Constraint

This section considers two scheduling problems related to CAOS-based synthesis
in which there is no constraint on the amount of power that can be used in any
time slot; that is, no peak power constraint exists. The first problem (considered
in Section 5.1) is to construct a largest subset of non-conflicting actions from
the set of actions enabled in a time slot. The second problem (considered in
Section 5.2) concerns the construction of a minimum length schedule for all the
actions.

5.1 Selecting a Largest Non-conflicting Subset of Actions

During the execution of a CAOS-generated design, two actions conflicting with
each other cannot be executed in the same time slot. Given a set of actions
enabled in a time slot and pairs of conflicting actions, this section considers the
problem of finding a largest subset of pairwise non-conflicting actions. The idea
is that all the actions in such a subset can be scheduled in the same time slot.
We call it the Maximum Non-conflicting Subset of actions (MNS) problem and
its formal definition is presented below.

Maximum Non-conflicting Subset of actions (MNS)
Instance: A set A = {a1, a2, . . . , an} of actions; a collection C of pairs of actions,
where {ai, aj} ∈ C means that actions ai and aj conflict; that is, they cannot
be scheduled in the same time slot; an integer K ≤ n.
Question: Is there subset A′ ⊆ A of such that |A′| ≥ K and no pair of actions
in A′ conflict?

In subsequent sections, we present complexity and approximation results for
the MNS problem.

Complexity of Scheduling in Synthesis from CAOS 9

Complexity Results for the General Case - The following result points out
that the MNS problem is, in general, computationally intractable. In particular,
the result points out that the MNS problem corresponds to the well studied
Maximum Independent Set problem for undirected graphs.

Proposition 1. The MNS problem is NP-complete.

Proof: The MNS problem is in NP since one can guess a subset A′ of A and
verify in polynomial time that |A′| ≥ K and that no pair of actions in A′ conflict.

To show that MNS is NP-hard, we use reduction from the Maximum In-
dependent Set (MIS) problem which is known to be NP-complete [19]. An
instance of the MIS problem consists of an undirected graph G(V, E) and an
integer J ≤ |V |. The question is whether G has an independent set V ′ of size
≥ J (i.e., a subset V ′ of V such that |V ′| ≥ J and there is no edge between any
pair of nodes in V ′).

The reduction is straightforward. Given an instance I of the MIS prob-
lem, we construct an instance I ′ of the MNS problem as follows. The set
A = {a1, a2, . . . , an} of actions is in one-to-one correspondence with the node
set V , where n = |V |. For each edge {vi, vj} of G, we construct the pair {ai, aj}
of conflicting actions. Finally, we set K = J . Obviously, the construction can
be carried out in polynomial time. From the construction, it is easy to see that
each independent set of G corresponds to a non-conflicting set of actions and
vice versa. Therefore, G has an independent set of size J if and only if there is a
subset A′ of size K = J such that the actions in A′ are pairwise non-conflicting.

The above reduction shows that there is a direct correspondence between the
MNS and MIS problems. Thus, for any ρ ≥ 1, a ρ-approximation algorithm for
the MNS problem can also be used as a ρ-approximation algorithm for the MIS
problem. It is known that for any ε > 0, there is no O(n1−ε)-approximation
algorithm for the MIS problem unless the complexity classes1 NP and ZPP
coincide [21]. Thus, we have the following observation.

Observation 1 For any ε > 0, there is no O(n1−ε)-approximation algorithm
for the MNS problem, unless the complexity classes NP and ZPP coincide.

Approximation Algorithms for a Special Case of MNS- As mentioned
above, a polynomial time approximation algorithm with a good performance
guarantee is unlikely to exist for general instances of the MNS problem. How-
ever, for special cases of the problem, one can devise heuristics with good per-
formance guarantees by exploiting the close relationship between the MNS and
MIS problems. We now present an illustrative example.

Consider instances of the MNS problem in which every action conflicts with
at most ∆ other actions, for some constant ∆. A simple heuristic which provides
a performance guarantee of ∆ + 1 for this special case of the MNS problem is

1 For definitions of complexity classes, see [20].

10 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

shown in Figure 3. Step 1 of this heuristic transforms the special case of the
MNS problem into a special case of the MIS problem where the underlying
graph has a maximum node degree of ∆. It is a simple matter to verify that
each independent set of the resulting graph corresponds to a subset of pairwise
non-conflicting actions. Step 3 describes a greedy algorithm which provides a
performance guarantee of ∆ + 1 for the restricted version of the MIS problem
[22,23]. Because of the direct correspondence between independent sets of G
and non-conflicting subsets of actions, the heuristic also serves as a (∆ + 1)-
approximation algorithm for the special case of the MNS problem. This result
is stated formally below.

Observation 2 For instances of the MNS problem in which each action con-
flicts with at most ∆ other actions for some constant ∆, the approximation
algorithm in Figure 3 provides a performance guarantee of ∆ + 1.

For the class of graphs whose maximum node degree is bounded by a con-
stant ∆, a heuristic which provide a better (asymptotic) performance guarantee
of O(∆ log log ∆/ log ∆) is known for the MIS problem [22,23]. However, that
heuristic is harder to implement compared to the one shown in Figure 3.

Efficient approximation algorithms with good performance guarantees are
known for the MIS problem for other special classes of graphs such as planar
graphs, near-planar graphs and unit disk graphs [24,25,26]. When the MNS in-
stances correspond to instances of the MIS problem for such graphs, one can
use the approximation algorithms for the latter problem to obtain good approx-
imations for the MNS problem.

1. From the given instance of the MNS problem, construct a graph G(V, E) as follows:
The node set V is in one-to-one correspondence with the set of actions A. For each
conflicting pair {ai, aj} of actions, add the edge {vi, vj} to E.

2. Initialize A′ to ∅. (Note: At the end, A′ will contain a set of pairwise non-conflicting
actions.)

3. while V 6= ∅ do
(a) Find a node v of minimum degree in G.
(b) Add the action corresponding to node v to A′.
(c) Delete from G the node v and all nodes which are adjacent to v. Also delete

the edges incident on those nodes.
(d) Recompute the degrees of the remaining nodes.

4. Output A′.

Fig. 3. Steps of the Heuristic for the Special Case of the MNS Problem

Complexity of Scheduling in Synthesis from CAOS 11

Application to Bluespec

Bluespec Compiler (BSC) allows a maximal set of non-conflicting actions to exe-
cute in each time slot which aids in reducing the latency of the design. Reference
[27] presents an algorithm used in BSC which selects actions based on their pri-
orities. The algorithm first orders the set A of all the actions in terms of their
priorities. Let A

′
= {a1, a2, ..., an } be the ordered set of actions such that ai

is more urgent (higher priority) than aj iff i < j. The algorithm then computes
a set S which contains all the actions that can be executed in a time slot as
follows.

1. Let S be the empty set.
2. If A

′
is empty, stop and return S.

3. Let ak be the highest priority action in A
′
.

4. If ak is enabled and no action aj , 1 ≤ j < k conflicting with ak is enabled,
then e = 1, else e = 0.

5. If (e == 1) then add ak to S.
6. Remove ak from A

′
.

7. Go to step 2.

Thus, the above algorithm selects the set of non-conflicting actions based on
their priorities. Between two conflicting actions, an action with higher priority
is always chosen to execute whenever both the actions are enabled in the same
time slot. If multiple actions conflict with each other then the action with the
highest priority is preferred for execution over all the other conflicting actions.
Such a high priority action is selected even if it conflicts with large number of
other actions.

Note that step 3 of the heuristic shown in Figure 3 selects the minimum
degree node from the remaining set of nodes. Thus, during the selection of inde-
pendent nodes, the heuristic gives low preference to a node connected to large
number of other nodes. With regard to the MNS problem, this implies that if
an action conflicts with large number of other actions then the heuristic gives a
low preference to that action while selecting the set of non-conflicting actions.
It gives priority to actions conflicting with minimum number of other actions,
and thus attempts to select as many actions as possible. This may further re-
duce the latency of the design. On the other hand, in BSC, if the designer does
not specify a priority between two conflicting actions, the compiler assigns an
arbitrary priority to both of them. Thus, the algorithm used in BSC does not
attempt to select a large set of non-conflicting actions, unlike the heuristic shown
in Figure 3.

If we change step 3 of the heuristic to select nodes based on their priorities,
as done in BSC, then the result of the heuristic in Figure 3 will be same as the
algorithm used in BSC ; that is, if enabled an action with the highest priority
will always be chosen to execute.

12 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

5.2 Constructing Minimum Length Schedules

The previous section considered the problem of choosing a non-conflicting set
of maximum cardinality. Here, we consider the problem of partitioning a given
set of actions into a minimum number of subsets so that no subset contains a
pair of conflicting actions. When this condition is met, the actions in each subset
can be scheduled in the same time slot. Thus, the partitioning problem models
the problem of constructing a minimum length schedule for the set of actions.
A formal definition of the scheduling problem is given below.

Minimum Length Schedule Construction (MLS)
Instance: A set A = {a1, a2, . . . , an} of actions; a collection C of pairs of actions,
where {ai, aj} ∈ C means that actions ai and aj conflict, that is, they cannot
be scheduled in the same time slot; an integer ` ≤ n.
Question: Is there a partition of A into r subsets A1, A2, . . ., Ar, for some r ≤ `,
such that for each i, 1 ≤ i ≤ r, the actions in Ai are pairwise non-conflicting?

In what follows, we present complexity and approximation results for the MLS
problem.

Complexity Results for the General Case The following result points out
that the MLS problem is, in general, computationally intractable. In particu-
lar, our result points out that the MLS problem corresponds to the minimum
coloring problem for undirected graphs.

Proposition 2. The MLS problem is NP-complete.

Proof: It is easy to see that the MLS problem is in NP since one can guess a
partition of A into at most r ≤ ` subsets and verify in polynomial time that no
pair of actions in any subset conflict.

To show that MLS is NP-hard, we use reduction from the Minimum K-
Coloring (K-Coloring) problem which is known to be NP-complete [19]. An
instance of the K-Coloring problem consists of an undirected graph G(V, E)
and an integer K ≤ |V |. The question is whether the nodes of G can be colored
using at most K colors so that for each edge {vi, vj} ∈ E, the colors assigned to
vi and vj are different. We note that in any valid coloring of G, each color class
(i.e., the set of nodes assigned the same color) forms an independent set.

The reduction is straightforward. Given an instance I of the K-Coloring
problem, we construct an instance I ′ of the MLS problem as follows. The set
A = {a1, a2, . . . , an} of actions is in one-to-one correspondence with the node
set V , where n = |V |. For each edge {vi, vj} of G, we construct the pair {ai, aj}
of conflicting actions. Finally, we set ` = K. Obviously, the construction can be
carried out in polynomial time. From the construction, it is easy to see that each
valid coloring set of G corresponds to a partition of the set A into non-conflicting
subsets and vice versa. (Each color class corresponds to a subset of actions that
can be scheduled in the same time slot and vice versa.) Therefore, G has a valid
coloring with r ≤ K colors if and only if there is a partition of A into r subsets
such that the actions in each subset are pairwise non-conflicting.

Complexity of Scheduling in Synthesis from CAOS 13

Let us denote the problem of coloring a graph with a minimum number of
colors by MinColor. The above reduction shows that there is a direct corre-
spondence between the MLS and MinColor problems. Thus, for any ρ ≥ 1,
a ρ-approximation algorithm for the MLS problem can also be used as a ρ-
approximation algorithm for the MinColor problem. It is known that for any
ε > 0, there is no O(n1−ε)-approximation algorithm for the MinColor problem
unless the complexity classes NP and ZPP coincide [28]. Thus, we have the
following observation.

Observation 3 For any ε > 0, there is no O(n1−ε)-approximation algorithm
for the MLS problem, unless the complexity classes NP and ZPP coincide.

Observations Concerning Special Cases of MLS As mentioned above,
the MLS problem is, in general, hard to approximate. To identify some simpler
versions of the MLS problem, we exploit the relationship between the MLS and
MinColor problems. In particular, the MLS problem can be reduced to the
MinColor problem by constructing a graph G in which each node corresponds
to an action and each edge corresponds to a pair of conflicting actions. It is
easy to see that any valid coloring of G with r colors corresponds to a schedule
of length r. This reduction of MLS to the MinColor problem is useful for
several reasons. First, it points out that in practice, one can use known heuristics
for graph coloring in constructing schedules of near-minimum length. Although
the coloring problem is hard to approximate in the worst-case [28], heuristics
that work well in practice are known (see for example [29,30]). In addition, the
reduction to the MinColor problem also points out that the following two
special cases of the MLS problem can be solved efficiently.

(a) Consider instances of the MLS problem in which the upper bound on the
length of the schedule is two. This special case of the MLS problem corre-
sponds to the problem of determining whether a graph is 2-colorable. Effi-
cient algorithms are known for this problem [31].

(b) Consider instances of the MLS problem in which each action conflicts with
at most ∆ other actions, for some integer ∆. For such instances, a schedule
of length at most ∆ + 1 can be constructed in polynomial time. To see this,
we note that the graph corresponding to such instances of the MLS problem
has a maximum node degree of ∆. By a well known result in graph theory,
called Brooks’s Theorem, any graph with a maximum node degree of ∆ can
be colored efficiently using at most ∆ + 1 colors [32]. Such a coloring gives
rise to a schedule of length at most ∆ + 1.

Application to Bluespec

In Bluespec, multiple conflicting actions can get enabled in each time slot. But
only a non-conflicting subset of such actions can be allowed to execute in a given
time slot. Thus, the heuristics for MLS problem can be used for partitioning such

14 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

a set of actions into multiple subsets of non-conflicting actions. Each of these
subsets can then be scheduled in a separate time slot.

Note that executing actions of one subset may disable (guards evaluate to
False) the actions of other subsets. This may happen if the state elements up-
dated by the actions belonging to a subset (executing in the present time slot)
are accessed by the guards of the actions belonging to the other subsets (which
are scheduled to execute in future time slots). However, if the guards of these
actions of other subsets do not access the state elements updated by the subset
of actions executing in the present time slot, then such partitioning of actions
can be used in Bluespec to schedule each non-conflicting subset in a different
time slot.

6 Scheduling Problems Involving a Power Constraint

In this section, we study scheduling problems taking into consideration the
amount of power consumed by various actions. In particular, we assume that
a constraint on peak power, that is, the amount of power that can be consumed
in any time slot, is specified. The goal is to construct schedules satisfying this
constraint. We first consider (Section 6.1) the problem of finding a largest sub-
set of actions from a set of non-conflicting actions that can be scheduled in a
given time slot under the peak power constraint. We show that this problem
can be solved efficiently. Next, a generalization of this problem, where there is a
utility value associated with each action and the goal is to choose a subset of ac-
tions that maximize the total utility while satisfying the peak power constraint
is shown to be NP-complete (Section 6.2). Finally (Section 6.3), we consider
several versions of the problem of minimizing the schedule length subject to the
peak power constraint. We present both complexity and approximation results.

6.1 Packing Actions in a Time Slot under Peak Power Constraint

Due to the peak power constraint, it might not be possible to execute all the
actions belonging to a set of non-conflicting actions that are enabled in a partic-
ular time slot. This section considers the problem of packing a maximum number
of actions into a time slot without violating the constraint on peak power. We
present a simple algorithm with a running time of O(n log n) for the problem.
We begin with a formal statement of the problem.

Maximum Number of Actions in a Time Slot Subject to Peak Power
Constraint (Mna-PP)
Instance: A set A = {a1, a2, . . . , an} of non-conflicting actions; for each action
ai, the power pi needed to execute that action; a positive number P representing
the peak power, that is, the maximum power that can be used in any time slot.
Requirement: Find a subset A′ ⊆ A such that the total power needed to execute
all the actions in A′ is at most P and |A′| is a maximum over all subsets of A
that satisfy the constraint on total power.

Complexity of Scheduling in Synthesis from CAOS 15

1. Sort the actions in A into non-decreasing order by the amount of power needed
for each action. Without loss of generality, let 〈a1, a2, . . . , an〉 denote the resulting
sorted order.

2. Comment: Keep adding actions in the above order as long as the total power is
constraint is satisfied.
(a) Initialization: Let A′ = ∅, i = 1 and R = P . (Note: R denotes the remaining

amount of power.)
(b) while (i ≤ n) and pi ≤ R do

(i) Add ai to A′.
(ii) R = R− pi.
(iii) i = i + 1.

3. Output A′.

Fig. 4. Steps of the Algorithm for the Mna-PP Problem

An efficient algorithm for Mna-PP is shown in Figure 4. The following lemma
shows the correctness of the algorithm.

Lemma 1. The algorithm in Figure 4 computes an optimal solution to the
Mna-PP problem.

Proof: Let 〈a1, a2, . . . , an〉 denote the list of actions in nondecreasing order of
power values. We assume that P is sufficient to execute a1; otherwise, none of the
actions can be executed in any time slot. Let A′ be the set of actions produced
by the algorithm in Figure 4, and let |A′| = k. Thus, A′ = {a1, a2, . . . , ak}, and
the remaining power is not enough to add action ak+1 to A′.

Suppose A′ is not an optimal solution. Thus, there is another solution A∗ such
that |A∗| = r ≥ k + 1. Let 〈ai1 , ai2 , . . . , air 〉 denote the actions in A∗ arranged
in the sorted order chosen by the algorithm. It is easy to see that, for 1 ≤ j ≤ k,
the power needed to execute action aj is no more than that of aij . Thus, the
remaining power after adding actions ai1 , ai2 , . . . , aik

is no more than that after
adding the actions a1, a2, . . . , ak. Further, the power needed for action aik+1

is at least that needed for action ak+1. Thus, the optimal solution A∗ cannot
accommodate the action aik+1 without violating the peak power constraint. This
is a contradiction and the lemma follows.

Theorem 4. The Mna-PP problem can be solved in O(n log n) time, where n
is the number of actions.

Proof: The correctness of the algorithm in Figure 4 follows from Lemma 1. To
estimate the running time of the algorithm, we note that the sorting step uses
O(n log n) time and the other steps use O(n) time. So, the overall running time
is O(n log n).

16 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

Application to Bluespec

As already mentioned, in Bluespec, maximal subset of non-conflicting actions
are executed in each time slot. If large number of actions are executed in the
same time slot, then it can lead to the violation of peak power constraint of the
design. In that case, only a subset of such actions should be allowed to execute
in a given time slot to meet the peak power constraint.

Thus, in Bluespec, the problem of selecting a largest subset of actions such
that the peak power constraint of the design is satisfied can be directly mapped
to the Mna-PP problem described above. Algorithm in Figure 4 can then be
used to solve the peak power problem optimally.

6.2 Maximizing Utility Subject to a Power Constraint

We now consider a generalization of the Mna-PP problem considered in the
previous subsection. Suppose for each action ai ∈ A, there is a utility value
ui, in addition to the power value pi. We can define the utility of a subset A′

of actions to be the sum of the utilities of the actions in A′. It is of interest to
consider the problem of selecting a subset of maximum utility, subject to the
constraint on peak power. A formal statement of the decision version of this
problem is as follows.

Maximizing Utility Subject to Peak Power Constraint (MU-PP)
Instance: A set A = {a1, a2, . . . , an} of non-conflicting actions; for each action
ai, the power pi consumed during the execution of that action and the utility
ui of that action; a positive number P representing the peak power, that is,
the maximum power that can be used in any time slot; a positive number Γ
representing the required utility.
Question: Is there a subset A′ ⊆ A such that the total power needed to execute
all the actions in A′ is at most P and the utility of A′ is at least Γ?

Note that the Mna-PP problem is a special case of the MU-PP problem,
with the utility value each action being 1. However, while the Mna-PP problem
is efficiently solvable, the MU-PP problem is NP-complete, as shown below.

Proposition 3. The MU-PP problem is NP-complete.

Proof: The MU-PP problem is in NP since one can guess a subset A′ of A
and verify in polynomial time that the utility of |A′| is at least Γ and that the
total power needed to execute the actions in A′ is at most P .

To show that MU-PP is NP-hard, we use reduction from the Knapsack
problem which is known to be NP-complete [19]. An instance of the Knapsack
problem consists of a set S of items, an integer weight wi and an integer profit
value ui for each item si ∈ S, and two positive integers B and Π. The question
is whether there is a subset S′ of S such that the total weight of all the items in
S′ is at most B and the profit of all the items in S′ is at least Γ .

Complexity of Scheduling in Synthesis from CAOS 17

The reduction is straightforward. Given an instance I of the Knapsack
problem, we construct an instance I ′ of the MU-PP problem as follows. The set
A = {a1, a2, . . . , an} of actions is in one-to-one correspondence with the set S,
where n = |S|. For each action ai, the power value pi and the utility ui are set
respectively to the weight wi and the profit ui of the corresponding item si ∈ S,
1 ≤ i ≤ n. Finally, we set the power bound P = B and the utility bound Γ = Π.
Obviously, the construction can be carried out in polynomial time. From the
construction, it is easy to see that any solution to the Knapsack problem with
a profit of α corresponds to a set of actions whose utility is α and vice versa.
Therefore, there is a solution to the Knapsack instance I if and only if there is
a solution to the MU-PP instance I ′.

Approximation Algorithms for MU-PP

It is easy to see that the optimization version of the MU-PP problem can be
transformed into the Knapsack problem. Each action ai is represented by an
item si; the utility ui and the power value pi are respectively the weight and
the profit values for the item. The peak power value P represents the knapsack
capacity. Because of this transformation, known algorithms for the Knapsack
problem can be directly used to solve the MU-PP problem. For example, a
pseudo polynomial algorithm for the MU-PP problem follows from the corre-
sponding algorithm for the Knapsack problem [19]. Further, any approxima-
tion algorithm for the Knapsack problem can be used as an approximation
algorithm with the same performance guarantee for the optimization version
of MU-PP. For example, a known 2-approximation algorithm for Knapsack
[19] implies a similar approximation for the optimization version of the MU-PP
problem. Also, when the weights and profits are integers, there is a polynomial
time approximation scheme (PTAS) for the Knapsack problem [19]. Therefore,
when the power and utility values for each action are integers, one can obtain a
PTAS for the optimization version of the MU-PP problem.

Application to Bluespec

The utility value of a given action represents the usefulness of the execution of
that action. In Bluespec, one such measure of the utility value of an action is the
number of actions having a data dependency on it [3]; that is, number of actions
accessing the state elements updated by a particular action. Based on such a
measure, an action having a large number of other actions dependent on it can
be assigned a high utility value.

Thus, when actions are assigned different utility values in a Bluespec design,
the solutions to the MU-PP problem described above can be used to solve the
following Bluespec peak power problem - selecting the largest subset of non-
conflicting actions such that peak power constraint of the design is satisfied and
the utility of the selected subset of actions is maximized.

18 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

6.3 Combination of Makespan and Power Constraint

Peak power constraint of a design may not allow all the actions in a set of non-
conflicting actions to execute in a single time slot. In this subsection, our focus
is on scheduling such a set of actions over a small number of time slots while
keeping the peak power value as small as possible. The number of slots used by
a schedule is called the makespan. Two optimization problems can be studied
in this context. First, the problem of minimizing makespan subject to a peak
power constraint can be formulated as follows.

Minimizing Makespan Subject to Peak Power Constraint (MM-PP)
Instance: A set A = {a1, a2, . . . , an} of non-conflicting actions; for each action
ai, the power pi needed to execute that action; a positive number P representing
the peak power, that is, the maximum power that can be used in any time slot.
Requirement: Find a schedule of minimum length for the actions in A such that
the total power needed to execute the actions in each time slot is at most P .

The dual problem of minimizing peak power subject to a constraint on the
schedule length can be formulated as follows.
Minimizing Peak Power Subject to a Makespan Constraint (MPP-M)
Instance: A set A = {a1, a2, . . . , an} of non-conflicting actions; for each action
ai, the power pi needed to execute that action; a positive integer L representing
the makespan.
Requirement: Find a schedule of length at most L for the actions in A such that
the maximum total power used in any time slot is a minimum over all schedules
of length at most L.

We note that the decision versions of the two problems MM-PP and MPP-M
are identical. A formal statement of the decision version is as follows.

Minimizing Makespan and Peak Power – Decision Version (MPP-
Decision)
Instance: A set A = {a1, a2, . . . , an} of non-conflicting actions; for each action ai,
the power pi needed to execute that action; a positive number P representing the
peak power that can be used in any time slot; a positive integer L representing
the makespan.
Question: Is there a schedule of length at most L for the actions in A such that
the total power used in any time slot is at most P?

We now show that MPP-Decision is NP-complete, even when the makespan
is fixed at 2.

Proposition 4. Problem MPP-Decision is NP-complete.

Proof: The MPP-Decision problem is in NP since one can guess a schedule
for the actions in A and verify in polynomial time that the schedule length and
the peak power constraints are satisfied.

Complexity of Scheduling in Synthesis from CAOS 19

To show that MPP-Decision is NP-hard, we use reduction from the Par-
tition problem which is known to be NP-complete [19]. An instance of the
Partition problem consists of a set S = {s1, s2, . . . , sn} of n integers. The
question is whether S can be partitioned into two subsets S1 and S2 such that
the sum of the elements in S1 is equal to the sum of the elements in S2. (We
may assume without loss of generality that

∑n
i=1 si is even; otherwise, there is

no solution to the Partition problem.)
Given an instance I of the Partition problem, we construct an instance

I ′ of the MPP-Decision problem as follows. The set A = {a1, a2, . . . , an} of
actions is in one-to-one correspondence with the set S of items. For each action
ai, the power value pi is set equal to si, 1 ≤ i ≤ n. Finally, we set the bound P
on peak power to (

∑n
i=1 si)/2 and the schedule length L to 2. This completes

the construction. Obviously, the construction can be carried out in polynomial
time. We now show that the Partition instance I has a solution if and only if
the MPP-Decision instance I ′ has a solution.

Part 1: Suppose the Partition instance I has a solution given by subsets S1

and S2. Consider the schedule of length 2 which includes all the actions corre-
sponding to the numbers in S1 in the first time slot and the remaining actions in
the second time slot. Since the sum of the integers in S1 and S2 are both equal
to P = (

∑n
i=1 si)/2, the total power used in each time slot is equal to P . Thus,

we have a schedule of length two satisfying the peak power constraint; in other
words, there is a solution for the MPP-Decision instance I ′.

Part 2: Suppose the MPP-Decision instance I ′ has a solution, that is, a sched-
ule of length at most 2 such that in each time slot, the power used is at most
P . We first note that the schedule cannot be of length 1; if so, the peak power
used would be equal to

∑n
i=1 si, which is greater than P . Thus, the schedule is

of length 2. For i = 1, 2, let Si be the set of integers corresponding to the actions
scheduled in time slot i. We claim that the sum of the integers in S1 is equal to
that of S2. To see this, note that the sum of the integers in S1 cannot exceed
P = (

∑n
i=1 si)/2, since that will violate the peak power constraint in the first

time step. Likewise, if the sum of the integers in S1 is less than P , then the sum
of the integers in S2 would exceed P ; that is, the peak power constraint would be
violated in the second time step. Thus, sum of the integers in S1 must be equal
to that of S2. In other words, we have a solution to the Partition instance I.
This completes the proof of Proposition 4.

The above proof shows that determining whether there is a schedule of length
2 satisfying the peak power constraint is NP-complete. In contrast, we note that
determining whether there is a schedule of length 1 satisfying the peak power
constraint is trivial; we need only check whether the total power for all the
actions in A is at most the peak power value.

While the above proof shows that the MPP-Decision problem is NP-
complete even for fixed values of schedule length, it leaves open the possibility
of a pseudo-polynomial algorithm for the problem. We now present a different
reduction to show that MPP-Decision is strongly NP-complete, when the

20 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

schedule length is part of the problem instance. Thus, in general, there is no
pseudo-polynomial algorithm for the MPP-Decision problem, unless P = NP.

Proposition 5. Problem MPP-Decision is strongly NP-complete when the
schedule length is part of the problem instance.

Proof: We use a reduction from the 3-Partition problem, which is known to be
strongly NP-complete [19]. An instance I of this problem consists of a positive
integer B, a positive integer m, a set S = {s1, s2, . . . , s3m} of 3m positive integers
such that B/4 < si < B/2, 1 ≤ i ≤ m, and

∑3m
i=1 si = mB. The question is

whether the set S can be partitioned into m subsets such that the sum of the
values in each subset is exactly B. (The constraint on the value of each si ∈ S
ensures that when there is such a partition, each subset in the partition has
exactly three elements.)

Given an instance I of 3-Partition, an instance I ′ of MPP-Decision can
be constructed as follows. The set A = {a1, a2, . . . , a3m} of actions is in one-
to-one correspondence with the set S of items. For each action ai, the power
value pi is set equal to si, 1 ≤ i ≤ n. We set the bound P on peak power to
B and the schedule length L to m. This completes the construction. Obviously,
the construction can be carried out in polynomial time. The proof that the 3-
Partition instance I has a solution if and only if the MPP-Decision instance
I ′ has a solution is similar to that presented in the proof of Proposition 4.

6.4 Approximation Algorithms for MM-PP

Recall that in the MM-PP problem, we are required to minimize the schedule
length subject to a constraint on the peak power value. Since this problem is
NP-hard, it is of interest to investigate approximation algorithms with provable
performance guarantees. One can obtain such approximation algorithms by re-
ducing the problem to the well known Bin Packing problem and using known
approximation algorithms for the latter problem.

In the Bin Packing problem, we are given a collection C of n items, where
item i has a size xi ∈ (0, 1]. The goal is to pack these items into a minimum
number of bins, each of unit capacity. This minimization problem is known to
be NP-hard [19]. However, several approximation algorithms with good perfor-
mance guarantees are known for this problem [33]. For example, the problem
admits a PTAS. However, the algorithm is somewhat complicated and its run-
ning time is exponential in 1/ε, where ε is the fixed accuracy parameter. A much
simpler algorithm, called First Fit Decreasing (FFD), provides a performance
guarantee of 11/9 [33]. The idea is first to sort the items in non-increasing order
of their sizes and then assign each item to the first bin in which it will fit. The
steps of this approximation algorithm are shown in Figure 5. A straightforward
implementation of the algorithm Figure 5 runs in O(n2) time. However, a more
sophisticated implementation reduces the running time to O(n log n) [19].

We note that the MM-PP problem can be reduced to the Bin Packing
problem as follows. Let P denote the given bound on peak power. For each

Complexity of Scheduling in Synthesis from CAOS 21

1. Sort the items into non-increasing order of their sizes. Without loss of generality,
let 〈c1, c2, . . . , cn〉 denote the resulting sorted order.

2. Comment: Assign each item to the first bin in which it will fit.
(a) Initialization: Let j = 1. (The variable j denotes the number of bins.) Let B1

denote the initial bin.
(b) for i = 1 to n do

(i) Find the first bin, say bin Bk, among B1 through Bj in which item i will
fit.

(ii) If there is no such bin, increment j by 1 and create a new bin Bj . Let
k = j.

(iii) Add item i to bin Bk.
3. Output j (the number of bins) and the packing generated above.

Fig. 5. Steps of the First Fit Decreasing Algorithm for the Bin Packing Prob-
lem

action ai with power value pi, we create an item with size = pi/P . Since pi ≤ P ,
the size of each item is at most 1. Now, each time slot can be thought of as a bin
(of unit capacity) so that any packing of the items into q bins corresponds to a
valid schedule of length q and vice versa. Thus, any approximation algorithm for
the Bin Packing problem can be used as an approximation algorithm for the
MM-PP problem with the same performance guarantee. A formal statement of
this result is as follows.

Observation 5 Any ρ-approximation algorithm for the Bin Packing problem
is also a ρ-approximation algorithm for the MM-PP problem.

From the above discussion, we can conclude that there are efficient approxi-
mation algorithms with good performance guarantees for the MM-PP problem.

Application to Bluespec

In Bluespec, if the execution of a large set of non-conflicting actions in a single
time slot leads to the violation of peak power constraint, then such a set of actions
can be re-scheduled to execute over multiple time slots. Instead of executing
all the actions of the set, some of the actions can be postponed to execute
in the future time slots in order to meet the peak power constraint. Such a
re-scheduling problem of Bluespec is equivalent to the MM-PP problem, and
hence the approximation algorithms for the MM-PP problem can be used to re-
schedule a set of actions of a Bluespec design to meet the peak power constraint.

Note that executing only a subset of actions in the present time slot may
disable (guards evaluate to False) the remaining actions of the set in future
time slots. This may happen if the state elements updated by the subset of
actions executing in the present time slot are accessed by the guards of the

22 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

actions postponed to future time slots. In such cases, using the approximation
algorithms of the MM-PP problem for re-scheduling of the actions may result
in changing the output of the design (though the output will still be functionally
correct) [3]. However, for designs described in terms of confluent set of actions,
the output will not be affected. This is because, as mentioned earlier, a confluent
set of actions can be executed in any order without changing the final state of the
design. Thus, for a design described using confluent set of actions, solutions of
the MM-PP problem can be used to re-schedule a set of non-conflicting actions
to arrive at a minimum length schedule under the peak power constraints.

6.5 Approximation Algorithms for MPP-M

In the MPP-M problem, we are given a bound on the schedule length and the
goal is to minimize the maximum power used in any time slot. Interestingly, when
the power needed to execute each instruction is an integer, the MPP-M problem
can be transformed into a classical multiprocessor scheduling problem [19] In the
classical scheduling problem, we are given a collection T = {T1, T2, . . . , Tn} of
tasks, where each task Ti has an integer execution time ei. The tasks are in-
dependent; that is, there are no precedence constraints among the tasks. The
problem is to schedule the tasks in a non-preemptive fashion on m identical pro-
cessors so as to minimize the makespan. To see the correspondence between the
MPP-M problem and the classical scheduling problem, we think of each action
ai as a task and the power value pi as the execution time of the corresponding
task. Further, we think of the number of time slots ` as the number of avail-
able processors. Now, for the resulting scheduling problem, it can be seen that
any schedule with makespan P on ` processors corresponds to a solution to the
MPP-M problem using ` time slots and a peak power value of P . (The set of
tasks scheduled to run on the same processor corresponds to the set of actions
to be performed during the same time slot.)

In view of the above relationship between the MPP-M problem and the
multiprocessor scheduling problem, any ρ-approximation algorithm for the latter
is a ρ-approximation algorithm for the former. In particular, the following is a
4/3-approximation algorithm for the multiprocessor scheduling problem [34].

1. Construct a list of the tasks in non-increasing order of execution times.
2. Whenever a processor becomes available, assign the next job from the list

to that processor. (If several processors become available at the same time,
ties are broken arbitrarily.)

In terms of the MPP-M problem, the above approximation algorithm corre-
sponds to sorting the actions in non-increasing order of their power requirements
and assigning each action to a time slot for which the total power used is the
smallest at that time. Clearly, this approximation algorithm can be implemented
to run in O(n log n) time.

A PTAS is also known for the multiprocessor scheduling problem [34]. How-
ever, as the running time of the corresponding algorithm is exponential in 1/ε,

Complexity of Scheduling in Synthesis from CAOS 23

where ε > 0 is the chosen accuracy parameter, this may not be suitable in
practice.

Application to Bluespec

For some Bluespec designs, latency is of prime concern. For such designs, actions
can be re-scheduled using the approximation algorithms for MPP-M problem
in order to minimize the peak power of the design under the given latency
constraints.

Here again, the re-scheduling of the actions of a design may result in the
disabling of some of the actions, thus changing the output of the design. However,
for designs described in terms of confluent set of actions, such re-scheduling is
suitable (since it will not change their output) and hence can be used to minimize
the peak power.

7 Conclusion

Keeping the peak power of a design under acceptable limits is important for
designs generated from CAOS. In this paper, we discussed the complexity and
approximability of a variety of problems involving peak power and schedule
length encountered in CAOS-based synthesis. Exploiting the relationships be-
tween these problems and classical optimization problems such as bin packing
and multiprocessor scheduling, we showed how one can develop efficient approx-
imation algorithms with provable performance guarantees. In the future, we are
planning to investigate whether the approximation algorithms can be extended
to the scheduling problems in which there are precedence constraints among the
actions.

References

1. Raghunathan, A., K.Jha, N., Dey, S.: High-Level Power Analysis And Optimiza-
tion. Kluwer Academic Publishers (1998)

2. Singh, G., Shukla, S.K.: Algorithms for Low Power Hardware Synthesis from CAOS
- Concurrent Action Oriented Specifications. Special Issue of International Journal
of Embedded Systems on Power/Energy/Thermal topics (IJES’06) (2007)

3. Singh, G., Shukla, S.K.: Low-Power Hardware Synthesis from TRS-based Speci-
fications. International Conference on Formal Methods and Models for Codesign
(MEMOCODE’06) (2006)

4. Hoe, J.C., Arvind: Hardware Synthesis from Term Rewriting Systems. Proceeding
of VLSI’99 Lisbon, Portugal (1999)

5. Shiue, W.T.: High level synthesis for peak power minimization using ilp. In
Proceedings of the IEEE International Conference on ASSAP (2000) 103–112

6. Lakshminarayana, G., Raghunathan, A., Jha, N.K., Dey, S.: A Power Management
Methodology for High-Level Synthesis. International Conference on VLSI Design
(1998) 24–29

24 G. Singh, S. S. Ravi, S. Shukla, S. Ahuja

7. J.Monteiro, S.Devadas, P.Ashar, A.Mauskar: Scheduling techniques to enable
power management. Proceedings of Design Automatin Conference (1996) 349–352

8. Raghunathan, A., Dey, S., Jha, N., K.Wakabayashi: Power Management techniques
for Control-flow intensive designs. Proceedings of Design Automation Conference
(1997)

9. Khouri, K.S., Lakshminarayana, G., Jha, N.K.: High-Level Synthesis Of Low Power
Control-Flow Intensive Circuits. IEEE Transactions on Computer-Aided Design
(TCAD’99) 18 (1999)

10. Raghunathan, V., Ravi, S., Raghunathan, A., Lakshminarayana, G.: Transient
Power Management Through High Level Synthesis. In Proceedings of the ICCAD
(2001) 545–552

11. Mohanty, S.P., Ranganathan, N.: A framework for energy and transient power
reduction during behavioral synthesis. In Proceedings of the International Confer-
ence on VLSI Design (2003) 539–545

12. Chang, J.M., Pedram, M.: Power Optimization And Synthesis At Behavioral And
System Levels Using Formal Methods. Kluwer Academic Publishers (1999)

13. Shiue, W.T., Chakrabarti, C.: Low-Power Scheduling with Resources Operating
at Multiple Voltages. IEEE Transactions On Circuits and Systems - II: Analog
and Digital Signal Processing 47 (2000) 536–543

14. Kumar, A., Bayoumi, M.: Multiple Voltage-based Scheduling Methodology for
Low-power in the High-level Synthesis. IEEE International Symposium on Circuits
and Systems 1 (1999) 371–374

15. Arvind, Nikhil, R., Rosenband, D., Dave, N.: High-level synthesis: An Essential
Ingredient for Designing Complex ASICs. Proceedings of the International Con-
ference on Computer Aided Design (ICCAD’04) (2004) 775–782

16. Kurki-Suonio, R.: A Practical Theory of Reactive Systems: Incremental Modeling
of Dynamic Behaviors. Springer (1998)

17. Misra, J.: A Discipline of Multi-Programming. Springer (2001)
18. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University

Press (1998)
19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, San Francisco, CA (1979)
20. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading, MA

(1993)
21. Hastad, J.: Clique is Hard to Approximate Within n1−ε. Acta Mathematica 182

(1999) 105–142
22. Berman, P., Fujito, T.: Approximating Independent Sets in Degree 3 Graphs. Proc.

4th Workshop on Algorithms and Data Structures, Lecture Notes in Comput. Sci.
955 (1995) 449–460

23. Halldorsson, M.M.: Approximations of Weighted Independent Set and Hereditary
Subset Problems. In: Proc. 5th Ann. Int. Conf. on Computing and Combinatorics,
Lecture Notes in Comput. Sci. Springer-Verlag (1999) 261–270

24. Baker, B.S.: Approximation Algorithms for NP-complete Problems on Planar
Graphs. J. ACM 41 (1994) 153–180

25. Hunt-III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: NC-Approximation Schemes for NP- and PSPACE-hard Problems
for Geometric Graphs. Journal of Algorithms 26 (1998) 238–274

26. Hunt-III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: Parallel Approximation Schemes for a Class of Planar and Near
Planar Combinatorial Problems. Information and Computation 173 (2002) 40–63

Complexity of Scheduling in Synthesis from CAOS 25

27. Liz, M., et al.: Efficient Generation of Schedulers for Guarded Atomic Actions.
Technical Memo, Bluespec Inc. (2005) http://www.bluespec.com/.

28. Feige, U., Kilian, J.: Zero Knowledge and the Chromatic Number. J. Computer
and System Sciences 57 (1998) 187–199

29. Hertz, A., de Werra, D.: Using Tabu Search Techniques for Graph Coloring. Com-
puting 39 (1987) 345–351

30. Campers, G., Henkes, O., Leclerq, P.: Graph Coloring Heuristics: A Survey, Some
New Propositions and Computational Experiences on Random and Leighton’s
Graphs. Proc. Operational Research ’87, Buenos Aires (1987) 917–932

31. Cormen, T., Leiserson, C.E., Rivest, R., Stein, C.: Introduction to Algorithms,
Second Edition. MIT Press and McGraw-Hill, Cambridge, MA (2001)

32. West, D.B.: Introduction to Graph Theory, Second Edition. Prentice Hall, Inc.,
Englewood Cliffs, NJ (2001)

33. Coffman-Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation Algorithms for
Bin-Packing - A Survey. In: Approximation Algorithms for NP-hard Problems.
Edited by D. S. Hochbaum, PWS Publishing Company, Boston, MA (1997) 46–93

34. Hall, L.A.: Approximation Algorithms for Scheduling. In: Approximation Al-
gorithms for NP-hard Problems. Edited by D. S. Hochbaum, PWS Publishing
Company, Boston, MA (1997) 1–45

