
Barriers to Successful End-User Programming

Andrew Ko
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

ajko@cs.cmu.edu, http://www.cs.cmu.edu/~ajko

In my research and my personal life, I have come to
know numerous people that our research community
might call end-user programmers. Some of them are
scientists, some are artists, others are educators and
other types of professionals. One thing that all of these
people have in common is that their goals are entirely
unrelated to producing code. In some cases,
programming may be a necessary part of accomplishing
their goals, such as a physicist writing a simulation in C
or an interaction designer creating an interactive
prototype. In other cases, programming may simply be
the more efficient alternative to manually solving a
problem: one might find duplicate entries in an address
book by visual search or by writing a short Perl script.

In either case, the fact that end-user programmers are
motivated by their domain and not by the merits of
producing high-quality, dependable code, means that
most of the barriers that end users encounter in the
process of writing a program are perceived as
distractions. This is despite the fact that such barriers
can represent fundamental problems in end-users’
program’s or their understanding of how to use a
programming language effectively.

Much of my research has focused on understanding
these barriers and how end users overcome them. When
are they insurmountable and why? What happens when
end users fail to overcome them? And how can tools
help end-user programmers’ improve their programs’
dependability, while allowing them to remain focused
on their goals, rather than their code?

Studies of Barriers

Some of my earlier investigations of these barriers
involved observations of non-programmers using the
Alice programming environment to create interactive
3D worlds (Ko and Myers 2005). Some of these
observations were done in the field, in the context of
teams of students, only one of which was programming,
and other observations were performed in a lab, with an
experimenter. There were several barriers that users
encountered that seemed fundamental to programming
and programming tools, and not just to Alice. For
example, premature commitment was a major problem
in numerous contexts: users were forced to make

decisions before they had enough information to do so
accurately. For example, they had to create an object
before they could write code to manipulate it. Or, when
a user was trying to diagnose their program’s failure,
they had to base their hypothesis of what caused the
failure just on what they could see in the program’s
output, rather than on information about the program’s
execution. In many of these situations, users premature
decisions led to errors.

These observations led to broader study, aimed at
classifying major barriers (Ko, Myers and Aung 2004). I
observed over thirty students learning to use Visual
Basic.NET to create simple form-based applications and
user interfaces. I attempted to document the barriers that
students encountered by telling them that they could
consult the teaching assistants with any problems they
felt they could not overcome. When consulted, the
teaching assistants recorded the problem that the student
was stuck on and the strategies that the student had used
to try to overcome it. After classifying all of the
different barriers that students encountered, there were
six major barriers that accounted for our data:

Design – Complex computational problems that users
were not trained to solve, such as sorting and searching.

Selection – Finding code, usually part of an API, that
produces a desired behavior, such as tracking time.

Use – Once some class, method, or data structure was
found, learning how to properly use its programming
interface, such as how to start and stop a timer.

Coordination – Learning rules about how entities can
communicate, such as how to send data between forms.

Understanding – Forming hypotheses about the
potential causes of a program’s behavior.

Information – Gathering information to test hypotheses
about the causes of a program’s behavior.

These six barriers accounted for all of the situations we
observed in our study, and we have continued to
observe them in other languages and tools.

Dagstuhl Seminar Proceedings 07081
End-User Software Engineering
http://drops.dagstuhl.de/opus/volltexte/2007/1091

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62912598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Whyline

In addition to studying the barriers that end user
programmers face, I have also attempted to lower them
with tools. The Whyline (Ko and Myers 2005) is aimed
at alleviating difficulties with the understanding and
information barriers described above, specifically for
the Alice programming environment. Essentially, it
allows users to choose some aspect of the program’s
behavior, such as a change to the color of some object
onscreen, and ask why and why not questions about it.
The Whyline then gives answers in terms of a causal
chain of events that caused or prevented the behavior to
occur. In a user study it was highly effective, reducing
debugging time by a factor of 8. The reasons for this
improvement were simple. By allowing users to reason
about the output of their program, it deferred the
premature formation of hypotheses about the causes of
the behavior until the Whyline provided information,
helping lower the understanding barrier. By providing
the information about the program’s execution
automatically, rather than having users gather it
manually, it almost entirely eliminated the information
barriers that we observed in our earlier study of Alice.

Future Directions

My studies of barriers in end-user programming
revealed many important problems to address, and the
Whyline demonstrates one example of addressing them.
However, not only are there many other barriers that
deserve attention, but the tools that we design to help
with each of these are influenced by a number of factors
for which we still have little knowledge.

For example, the generalizability of any end-user
software engineering tool depends greatly on the
similarity of the work contexts of the end users we
intend to design for. The Whyline was designed for a
single user; in a group context, where many people may
be involved in diagnosing and fixing a bug, the tool
suddenly has many shortcomings. Do end user
programmers work in groups? If they do, how is the
work divided? What information do they share?

Another issue that may vary across different work
contexts is the set of languages and applications with
which end users’ programs must interact. We might be
able to design tools for one language, but can we design
general tools to support Excel scripters interacting with
a proprietary internal company database? To what
extent do such setups actually occur for end users?

Although end-user programming language design has
received much attention in the past, there are still
several important issues to understand. For example, to
what extent must a language match the work that end-

users do? How can we help end users bridge the
expressive gap in the languages they use and the
behaviors they want to express? Because end users often
lack the training to create the abstractions necessary to
bridge these gaps, this will continue to be an issue.

Another software engineering issue that end users may
encounter are the long-term maintenance issues
common to commercial software development. We
frequently hear anecdotes about how a one-off excel
spreadsheet meant to be temporary became the
centerpiece of some accounting logic. How often do
such organizational dependencies occur, and how
important do such program’s become? What can tools
do to help the future owners of these programs learn
about the program’s history and design?

Finally, one challenge about end-user programming is
that end-user programmers needs may vary so widely
that we cannot design tools and languages general
enough, yet specific in their aid to help everyone. Do we
approach this problem by simplifying the creation of
end-user programming environments and creating
highly tailored languages on-demand, by helping end-
users bridge expressive gaps in a smaller number of
languages, or by some other means? What general
research contributions can we make and what specifics
do we have to leave to individuals and the market?

That we face so many complex issues is encouraging.
Not only does this mean that we have lots of interesting
work to do, but it also means that we are closer to
addressing real concerns. Let us continue to tackle them
with rigor and objectivity.

Acknowledgements

This work was funded in part by the National Science
Foundation (NSF) under grant IIS-0329090, the EUSES
consortium under NSF grant ITR CCR-0324770, and an
NDSEG fellowship.

References

Ko, A. J. and Myers, B. A. (2005). A Framework and
Methodology for Studying the Causes of Software Errors in
Programming Systems. Journal of Visual Languages and
Computing, 16, 1-2, 41-84.

Ko, A. J. Myers, B. A., and Aung, H. (2004). Six Learning
Barriers in End-User Programming Systems. IEEE Symposium
on Visual Languages and Human-Centric Computing, Rome,
Italy, September 26-29, 199-206.

Ko, A. J. and Myers, B. A. (2004). Designing the Whyline: A
Debugging Interface for Asking Questions About Program
Failures. ACM Conference on Human Factors in Computing
Systems, Vienna, Austria, April 24-29, 151-158.

