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Abstract. Iterative aggregation/disaggregation methods (IAD) belong
to competitive tools for computation the characteristics of Markov chains
as shown in some publications devoted to testing and comparing various
methods designed to this purpose. According to Dayar T., Stewart W.J.
Comparison of partitioning techniques for two-level iterative solvers on

large, sparse Markov chains. SIAM J. Sci. Comput.Vol 21, No. 5, 1691-
1705 (2000), the IAD methods are effective in particular when applied to
large ill posed problems. One of the purposes of this paper is to contribute
to a possible explanation of this fact. The novelty may consist of the
fact that the IAD algorithms do converge independently of whether the
iteration matrix of the corresponding process is primitive or not. Some
numerical tests are presented and possible applications mentioned; e.g.
computing the PageRank.

Keywords. Iterative aggregation methods, stochastic matrix, station-
ary probability vector, Markov chains, cyclic iteration matrix, Google
matrix, PageRank.

1 Introduction

The paper is organized as follows. Section 2 contains notation and some faithful
concepts as well as some new concepts useful to realize our goals and namely
to support via theory the statements cited in the introductory section. The ag-
gregation methods are treated in connection with either the Leontev models or
stochastic modeling. Some possible generalizations of the notion stochastic ma-
trix is presented in Section 3. After a brief introduction of a class of IAD methods
in Section 4 and Section 5 some of their basic properties are surveyed in Section
6. A proof of our main result is presented in Section 7 and its subsections. Some
experiments documenting the theory are collected in Section 10. There are two
categories of experiments there. The first one concerns convergence properties
of IAD methods for randomly chosen stochastic matrices in order to show the
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influence of cyclicity. The experiments of the second category are devoted to ap-
plications of IAD methods to PageRank computations with a sample of a part
of the Google matrix. A special technique of reordering the blocks is utilized in
order to accelerate the convergence. Section 11 contains some conclusions.

2 Definitions and notation

As standard, we denote by ρ(C) the spectral radius of matrix C, i.e.

ρ(C) = Max {|λ| : λ ∈ σ(C)} ,

where σ(C) denotes the spectrum of C. Further we define the quantity

γ(C) = sup {|λ| : λ ∈ σ(C), λ 6= ρ(C) = 1} .

We are going to call γ(C) the convergence factor of C. We also need another
more general characteristic of convergence, therefore we introduce

1 Definition For any N × N matrix C = (cjk), where cjk, j, k = 1, ..., N, are
complex numbers, let us define quantity

τ(C) = Max{|λ| : λ ∈ σ(C), |λ| 6= ρ(C)}.

This quantity is called spectral subradius of C.

2 Remark Let C be any N × N matrix. Then obviously,

ρ(C) ≥ γ(C) ≥ τ(C)

with possible strict inequalities in place of the nonstrict ones.

3 g-stochastic matrices

We are going to generalize slightly the concept of stochastic matrix. Obviously,
every stochastic matrix B is g-stochastic, where g = e = (1, ..., 1)T .

3 Definition Suppose g ∈ RN is such that gT = (g1, ..., gN) and that gj > 0
for all j = 1, ..., N . Matrix C = (cjk), where cjk ≥ 0, j, k = 1, ..., N , is called
g-stochastic if

CT g = g.

It is easy to see that the class of all g-stochastic matrices shares most of the
properties typical for stochastic matrices. In particular,

4 Proposition Suppose C is a g-stochastic matrix. The following statements
hold true

a) Spectral radius ρ(C) = 1.
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b) Possible eigenvalues of C, let us denote them by λ1, ..., λp, for which |λj | = 1,
are simple poles of the resolvent matrix (λI − C)−1.

c) The Perron projection Q can be expressed as

Q = lim
M→∞

1

M

M
∑

k=1

Ck (3.1)

Furthermore,
Q = CQ = QC, (3.2)

and Q is componentwise nonnegative. Moreover, if C is irreducible, then Q
is componentwise strictly positive. In the latter case Q = xgT , where x is a
unique eigenvector of C corresponding to eigenvalue 1 and g comes from the
definition.

5 Remark The concept just introduced can be met quite frequently. We will
see in the following sections, in particular in Section 9 that iteration matrices
governing most of the iterative aggregation/disaggregation processes to com-
puting stationary probability vectors of stochastic matrices are g-stochastic not
necessarily stochastic matrices.

4 Iterative aggregation/disaggregation methods

Let E = RN ,F = Rn, n < N , eT = e(N)T = (1, ..., 1) ∈ RN . Let G be a map
defined on the index sets:

G : {1, ..., N}
onto

→ {1, ..., n}

By means of G IAD communication operators are defined as

(Rx)j =
∑

G(j)=j

xj

S = S(u), (S(u)z)j =
uj

(Ru)j

(Rx)j .

We obviously have
RS(u) = IF

For the aggregation projection P (x) = S(x)R

P (x)T e = e ∀x ∈ RN , xj > 0, j = 1, ..., N

and
P (x)x = x ∀x ∈ RN , xj > 0, j = 1, ..., N (4.3)

Define the aggregated matrix as

B(x) = RBS(x)
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How to choose the map G?
Naturally, if B is in ”suitable” block form

B =









B11 B12 . . . B1n

B21 B22 . . . B2n

. . . . . .
Bn1 Bn2, . . . Bnn









, with diagonal nj × nj block Bjj , j = 1, ..., n.

Then one lets usually,

j = G(j) for n0 + n1 + ... + nj−1 + 1 ≤ j ≤ n0 + n1 + ... + nj−1 + nj , n0 = 0.

and this means that each of the blocks Bjk is aggregated to a 1 × 1 matrix.
Conversely, the map G gives a rise to appropriate block form of B (up to a

permutation).

6 Example Let B be a stochastic matrix written in a block form

B =









B11 B12 . . . B1n

B21 B22 . . . B2n

. . . . . .
Bn1 B22 . . . Bnn









Take N = 4 and n = 2 and each block Bjk to be 2 × 2. Then, choosing

R =

(

1 1 0 0
0 0 1 1

)

and

S(x) =









1
x1+x2

x1 0
1

x1+x2
x2 0

0 1
x3+x4

x3

0 1
x3+x4

x4









the aggregated matrix becomes

B(x) =

(

β11(x) β12(x)
β21(x) β22(x)

)

β11(x) =
1

x1 + x2
[(b11 + b21)x1 + (b12 + b22)x2]

β12(x) =
1

x3 + x4
[(b13 + b23)x3 + (b14 + b24)x4]

β21(x) =
1

x1 + x2
[(b31 + b41)x1 + (b32 + b42)x2]

β22(x) =
1

x3 + x4
[(b33 + b43)x3 + (b34 + b44)x4]
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To choose G is a very difficult task and any advice is welcome. In practice
external information frequently coming from sources far of mathematics is uti-
lized.

The following three quotations excerpted from [1] showing competence of
iterative aggregation/disaggregation methods (shortly IAD) are based on prac-
tical experiments and experience of the authors. Our study can be considered as
an attempt to support the statements by some theoretical results that typically
are not valid for all standard methods frequently applied in practice.

”Results of experiments on a test suite of 13 Markov chains show that the
particular two-level iterative solvers BSOR and IAD are in general very com-
petitive with ILU preconditioned Krylov subspace solvers BSGStab, CGS, and
GMRES.”

”When the Markov chain is extremely ill-conditioned (leaky), incomplete ILU
factorization may even fail. For NCD matrices, we recommend IAD and BSOR
with newncd partitioning and relaxation parameter 1.0.”

”However, higher ill-conditioning not always imply poorer performance. It is
noticed in some cases that it may even help a solver, especially IAD (compare
results of ncd-alt2 and ncd), to converge faster. ”

5 IAD Algorithms

5.1 Algorithm SPV(B; T ; t, s; x(0); ε)

Let B be an N × N irreducible stochastic matrix and x̂ its unique stationary
probability vector. Further, let I − B = M − W be a splitting of I − B such
that T is an elementwise nonnegative matrix. Finally, let t, s be positive integers,
x(0) ∈ RN an elementwise positive vector and ε > 0 a tolerance.

Step 1. Set k = 0.

Step 2. Construct the aggregated matrix (in case s = 1 irreducibility of B implies
that of B(x(k)))

B(x(k)) = RBsS(x(k))

Step 3. Find the unique stationary probability vector z(k) from

B(x(k))z(k) = z(k), e(p)T z(k) = 1, e(p) = (1, ..., 1)T ∈ Rp.

Step 4. Let

Mx(k+1,m) = Wx(k+1,m−1), x(k+1,0) = x(k), m = 1, ..., t,

x(k+1) = x(k+1,t), e(N)T x(k+1) = 1.
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Step 5. Test whether
‖x(k+1) − x(k)‖ < ǫ.

Step 6. If NO in Step 6, then let

k + 1 → k

and GO TO Step 2.
Step 7. If YES in Step 6, then set

x̂ := x(k+1)

and STOP.

5.2 Algoritm LM(C; M, W ; t; y(0))

Let C be an N × N aggregation convergent matrix with nonnegative real ele-
ments, and let {M, W} be a splitting of of A = I − C such that the iteration
matrix T = M−1W is elementwise nonnegative.
Step 1. Set 0 → k.
Step 2. Construct the matrix

C(y(k)) = RCS(y(k)).

Step 3. Find a unique the solution z̃(k) to the problem

z̃(k) − C(y(k))z̃(k) = Rb. (5.4)

Step 4. Disaggregate by setting

v(k+1) = S(y(k))z̃(k).

Step 5. Let

My(k+1,m) = Ny(k+1,m−1) + b, y(k+1,0) = v(k+1), m = 1, ..., t,

y(k+1) = y(k+1,t).

Step 6. Test whether
‖y(k+1) − y(k)‖ < ǫ.

Step 7. If NO in Step 6, then let

k + 1 → k

and GO TO Step 2.
Step 8. If YES in Step 6, then set

x∗ := y(k+1)

and STOP.
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7 Remark The algorithms of the type introduced in this section are known as
Leontev procedures invented by Leontev in the thirties of the twentieth century
in his famous sectorial economy theory. Actually, his sectorial variables are just
the aggregates of the initial variables and sectorial production matrix is our
aggregation matrix etc.

Since both algorithms SPV and LM possess the property that the corre-
sponding error-vector formulas are identical and the corresponding theories are
very similar we will investigate the case of SPV algorithms only.

6 Some properties of IAD methods

According to definition of bf SPV algorithm the error-vector formula for the
sequence of approximants reads

x(k+1) − x̂ = Jt(x
(k))

(

x(k) − x̂
)

, (6.1)

where [2]

Jt(x) = J(B; T t; x) = T t [I − P (x)Z]−1 (I − P (x)) , (6.2)

and where Z comes from the spectral decomposition of B = Q+Z, Q2 = Q, QZ =
ZQ = 0, 1 /∈ σ(Z). Furthermore, Jt(x) = T t−1J1(x), t ≥ 1, holds for any x with
all components positive.

We want to analyze convergence properties of IAD methods with no explicit
requirement that the basic iteration matrix is convergent, i.e.

lim
k→∞

Zk = 0.

8 Remark One of the most delicate questions concerning Theorem 11 reads:
How to choose the number of smoothings t̂? The answer to this question is
not a simple matter as does the following example show. It turns us back to
another basic question and namely, how to aggregate. Some results concerned
with convergence issues of the SPV algorithm with small number of smoothings
t can be found in [3].

6.1 An example

9 Example Assume p > 1 is a positive integer and B is the transition matrix
of a Markov chain such that it can be written in a block form as









B11 0 . . . 0 B1p

B21 B22 . . . 0 0
. . . . . . .
0 0 . . . Bpp−1 Bpp









.

The iteration matrix T = M−1W is defined via splitting I − B = M − W
with

M = diag{B11, ..., Bpp}, W = I − B − M.



8 I. Marek, P. Mayer, I. Pultarova

We see that the iteration matrix T is block p-cyclic.

The aggregation communication operators are chosen such that

R = (1, ..., 1)T

is 1 × N matrix and

S(x)z =
z

Rx
x, x ∈ IntRN , z ∈ R1.

This means that the SPV algorithm reduces to the simple power method with
the iteration matrix T t. Assume the off-diagonal blocks are elementwise positive.
Obviously, the SPV process possesses the following properties: It does not con-
verge for t < p and does converge for t = kp, k = 1, 2, ... We see that our IAD
method does preserve the nonconvergence property of the original power method.

On the other hand, if the aggregation operators are chosen as shown in Sec-
tion 6 i.e. each single block of matrix B is aggregated to 1×1 matrix, the situation
may change dramatically. As example let us take transition matrix whose off-
diagonal row blocks satisfy Bjk = vju

T
jk, j 6= k where vj and ujk, j, k = 1, ..., n,

are some vectors. Then taking the same splitting as in the example discussed in
this section the exact stationary probability vector is obtained after at most two
iteration sweeps [4].

These examples show that some of the aggregation/disaggregation proce-
dures may be inefficient whilst some other ones can be extremely efficient. The
simplicity of these examples should not lead to conclusion that inefficiency is
due to our ”wish” to demonstrate existence of a poor situation. Divergence may
appear whenever one aggregates inappropriately within some blocks of a given
transition matrix. Dangerous may be aggregations leading to mixing the cycles.
Thus, the situation does not seem to be trivial, but anyhow, inefficiency and
even divergence may always be expected. A way out leads to some ”order”: We
propose a suitable concept − aggregation-convergence.

6.2 Aggregation-convergence

Let us remind a definition relevant in this context of IAD methods [5].

10 Definition Assume B is N×N irreducible stochastic matrix with stationary
probability vector x̂ and R and S(x) IAD communication operators. A splitting
of I − B , where

I − B = M − W = M(I − T ), T ≥ 0,

is called aggregation-convergent if

lim
k→∞

(I − P (x̂)) T k = 0
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An interesting question is how to recognize that a splitting is aggregation-
convergent.

If looking at the error-vector formula valid for any IAD constructed utilizing
splitting of

A = I − B = M(I − T ), T ≥ 0 (6.3)

we can summarize our knowledge concerning the class of IAD algorithms as

11 Theorem [5] Consider algorithm SPV(B; M, W, T ; t, s = 1; x(0); ε) with an
irreducible stochastic matrix B, aggregation-convergent splitting (6.3) and initial
guess taken such that x(0) ∈IntRN

+ .
Then there exist generally two positive integers a, b and two, generally differ-

ent, neighborhoods Ωa (x̂) and Ωb (x̂) such that Algorithm SPV(B; M, W, T ; t,
s = 1; x(0); ε) returns a sequence of iterants {x(k)} for which

lim
k→∞

x(k) = x̂ = Bx̂, eT x̂ = 1,

for t = a and x(0) ∈ Ωa(x̂),
(6.4)

for t ≥ b and x(0) ∈ Ωb(x̂).
(6.5)

12 Remark Theorem 11 deserves some comments.

a) First of all, generally, a in (6.4) may be large.
b) There are examples [3] showing that SPV(B; B; t = 1, s = 1; x(0); ε) does

converge and SPV(B; B; t = 2, s = 1; x(0); ε) does not.

13 Example (I. Pultarová [3]) Let us consider

B =













0 0 0 1/2 0
1 1/2 1/100 1/2 1/100
0 0 0 0 99/100
0 0 99/100 0 0
0 1/2 0 0 0













.

It can be shown that

ρ(J(x̂)) = 0.9855 < 1 for SPV(B; B; t = 1; s = 1; x(0); ε = 1.10−5)

and

ρ(J(x̂)) = 1.1271 > 1 for SPV(B; B; t = 2; s = 1; x(0); ε = 1.10−5).

The effect just shown is caused by nonnormality of the iteration matrix. In
this context let us recall a popular problem of shuffling the cards (see A. Green-
baum [6]).
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If looking at the error-vector formula one recognizes immediately that con-
vergence will take place if the spectral radii ρ(J(b, T, x(k))) < 1, k ≥ k̂ for some

k̂. On the first look, there seems to be no reason for validity of such properties.
The only factor in the product forming matrix J(B, T k, x) that changes with k
is T k. However, {T k} does not converge if T is cyclic. On the other hand, we did
have massive numerical evidence that the IAD processes with iteration matrices
Tm, m = 1, 2, ..., where

Mm =

(

1 +
1

m

)

I

implying that

Tm =

(

1 + m

m

)−1 (

1

m
I + B

)

=
1

1 + m
I +

m

1 + m
B,

showed a monotonically increasing rate of convergence for increrasing index m.
This observation led us to a conclusion that cyclicity of the iteration matrix is
harmless. Our theory confirms this claim.

7 Convergence of IAD within the class of irreducible
stochastic matrices

Let us consider a subclass of the class of all irreducible Markov chains whose
transition matrices are block cyclic. Let B be such a matrix. Then

B =





B11 . . . B1p

. . . . .
Bp1 . . . Bpp





= H









0 . . . 0 B̃1p

B̃21 . . . . 0
. . . . . .

0 . . . B̃pp−1 0









HT ,

(7.1)

where H is some permutation matrix.

14 Agreement In our analysis we will always assume that the examined sto-
chastic matrix is in a block form obtained by applying an aggregation map G.
This concerns in particular the case of cyclic matrices where we assume the
block form shown in (7.1).

Now we consider Algorithm 1 and assume that our transition matrix B has
the form

B = Q + Z(B), ρ(Z(B)) ≤ 1, 1 /∈ σ(Z(B)),

and
Q2 = Q, QZ(B) = Z(B)Q = 0,



IAD methods based on splittings with cyclic iteration matrices 11

B as well as T have the blocks of identical sizes and T is block p-cyclic, i.e.

T = M−1W =

p
∑

j=1

λj−1Qj + Z(T ), λ = exp

{

2πi

p

}

,

where
Q2

j = Qj , QjQk = QkQj = 0, j 6= k,

QjZ(T ) = Z(T )Qj = 0

ρ(Z(T )) < 1.

Defining

U =

p
∑

j=2

λj−1Qj + Z(T ),

we see that 1 is not an eigenvalue of P (x̂)Z(B), I − P (x̂)Z(B) is invertible and

J(x) = T t[I − P (x̂)Z(B)]−1(I − P (x̂)).

Suppose y is an eigenvector of T corresponding to an eigenvalue λ such that
|λ| = 1 and x̂ is the unique stationary probability vector of B. Then, according
to [7], the multi-components of vectors x̂ and y satisfy

y(j) = αj x̂(j), yT = (yT
(1), ..., y

T
(p)), (7.2)

with some αj 6= 0, j = 1, ..., p. It follows that

(P (x̂)y)(j) = x̂(j)

(

1
(Rx̂)j

)

(Ry)j

= αj x̂(j)
1

(Rx̂)j
(Rx̂)j

= y(j)

and thus,
(I − P (x̂))y = 0. (7.3)

Let w be an eigenvector of J(x̂), i.e.

J(x̂)w = λw.

Since
J(x̂) = J(x̂)(I − P (x̂)),

we also have that

λ(I − P (x̂))w = (I − P (x̂))J(x̂)(I − P (x̂))w.

Thus, together with w vector (I−P (x̂))w is an eigenvector of J(x̂) corresponding
to the same λ.
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Since, according to (7.3),

(I − P (x̂))Qj = 0,

we have
(I − P (x̂))U = (I − P (x̂))Z(T )

and thus, there is a t̃ ≥ 1 such that

τ(T t) = ρ((I − P (x̂))(Z(T ))t) < 1, for t ≥ t̃.

It follows that there is a t̂ ≥ t̃ such that

ρ (J(x̂)) = τ
(

T t[I − P (x̂)Z(B)]−1(I − P (x̂))
)

< 1 for t ≥ t̂.

Thus, we have convergence.
Summarizing we can state the following

15 Theorem Let B be an irreducible stochastic matrix and I − B = M − W
its splitting such that the iteration matrix T = M−1W is block p-cyclic.

Then there exists a positive integer t̂ and a neighborhood Ω(x̂) such that the
SPV Algorithm returns a sequence of iterants {x(k)} such that

lim
k→∞

x(k) = x̂ = Bx̂ = T x̂,

whenever x(0) ∈ Ω(x̂).

16 Remark Because of the counterexamples shown one cannot prove more.
There are some results on the local convergence property of some special type
of the aggreagtion algorithm [3].

8 A class of stochastic matrices for which IAD is fast
convergent

In this section we introduce new results concerning convergence of the IAD
algorithm introduced in Section 4 and 5. We show under what circumstances the
exact solution is obtained within n IAD sweeps, where n is the number of the
aggregation groups. The phenomenon when the exact solution is reached within
an a priori known finite number of the IAD steps is called fast convergence of the
IAD method [8,3]. Let us stress that we follow and generalize the basic theorem
on this interesting property of the aggregation methods. [8].

17 Definition Let us consider a class of special stochastic matrices of the block
form

Bdyad =









B11 B12 . . . B1p

B21 B22 . . . B2p

. . . . . .
Bp1 Bp2 . . . Bpp
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where
Bjj , j = 1, ..., p, arbitrary substochastic (8.1)

and

Bjk = vj uT
jk, j 6= k, rank one matrices (8.2)

v =

















v1

0
.
.
.
0

















+

















0
v2

.

.

.
0

















+ ... +

















0
0
.
.
.

vp

















, vj > 0, j = 1, ..., p.

Such matrices Bdyad will be called dyadic matrices.

Let Bdyad be irreducible. Then the IAD algorithm SPV (B; I−Bdiag, Boff; s, t; x(0); ε)

returns as x̂(2) the exact stationary probability vector x̂ [8] having the form

x̂ = v = x(2).

Let v be an arbitrary positive vector such that, eT v = 1. Let us denote

P = veT .

Let us consider a stochastic cyclic matrix C,

Cj,k =
v(j)

||v(j)||
eT , (8.3)

if k = j + 1 or j = n and k = 1, and

Cj,k = 0,

otherwise. The example of the block structure of C for n = 4 is

C =









0 × 0 0
0 0 × 0
0 0 0 ×
× 0 0 0









,

where all of the nonzero blocks are rank-one positive stochastic matrices. The
ordering of the blocks influences the convergence, as it will be seen in the next
sections.

Let us choose 1
2 < α < 1. According to the previous theory, we will observe

the convergence of the IAD algorithm for the matrices

BP = αB + (1 − α)P, (8.4)

BC = αB + (1 − α)C (8.5)
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and
BS = Bdiag + αBoff + (1 − α)Cw, (8.6)

where Bdiag is a block diagonal part of B, Boff is a block off-diagonal part of
B and Cw is of the same type as C, but the columns are weighted in order to
obtain BS stochastic.

18 Remark Let us note that matrix BP coincides with the Google matrix
utilized in computations of the PageRank by the Google search engine while ma-
trices BC and BS represent its analogs utilizing cyclic perturbations in place of
rank-one matrix.

19 Lemma Let x
(k)
(j) = cj x̂(j) for some positive constants c1, . . . cn in step k of

the algorithm SPV(B; T ; t, 1; x(0); ε). Then x(k+1) = x̂.

The proof [8] exploits that relation (I −P (x(k)))(x(k) − x̂) = 0 holds for such
x(k).

20 Theorem [8] Let I − B = M − W be a splitting such that the iteration
matrix = M−1W is elementwise nonnegative. Let M be a block diagonal part
of B or a block triangular part of B. Let the off-diagonal blocks composed from
the block-rows of W corresponding to each particular aggregation group be rank-
one matrices possessing the same range, i.e. they have the properties described
in (8.1) and (8.2). Then the algorithm SPV(B; T ; 1, 1; x(0); ε) with T = M−1W
reaches the exact solution within two iteration sweeps.

Proof [8] The statement directly follows from Lemma 19. It is sufficient
to realize that the assumptions of Lemma 19 are fulfilled after the first sweep,
x(2) = M−1Wy1 with appropriate y1.

In the following we introduce some modifications and generalizations of The-
orem 20 for some other special structures of matrix B. In the first of them, we
consider the case of finding the stationary probability vector of BP .

21 Theorem [3] Let B be a block triangular stochastic matrix and let P be a
rank-one stochastic matrix. Let I − BP = I − αB − (1 − α)P = M − W is a
splitting of nonnegative type where

M = I − αBdiag, W = αBoff + (1 − α)P,

where Bdiag is the block diagonal part of B and Boff is the block off-diagonal
part of B. Then the IAD method SPV(B; M−1W ; 1, 1; x(0); ε) yields the exact
solution within at most n + 1 sweeps where n is the number of the aggregation
groups and where the blocks correspond to the aggregation groups.

Proof [3] Let us recall the error formula [2,8] for the aggregation algorithm
considered in Section 4,

x(k+1) − x̂ = T (I − P (x(k))Z)−1(I − P (x(k)))(x(k) − x̂), (8.7)
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where Z comes from the spectral decomposition of αB + (1 − αP ) = Q + Z,
where Q is the Perron projection corresponding to αB + (1 − αP ). It can be
shown [9] that (8.7) can be substituted by

x(k+1) − x̂ = T (I − αP (x(k))B)−1(I − P (x(k)))(x(k) − x̂).

Since all of the vectors of the last set of rows of B corresponding to the last

aggregation group Gn are equal, then x
(1)
(n) is parallel to x̂(n). Then the last

aggregate of
(I − P (x(1)))(x(1) − x̂)

is the zero-vector and due to the upper triangular shape of (I − αP (x(1))Z)−1,
the last block-component of

(I − αP (x(1)Z)−1(I − P (x(1)))(x(1) − x̂)

is the zero-vector too. Thus x
(2)
(n−1) is parallel to x̂(n−1). Once again, the last and

the last but one aggregates of

(I − P (x(2)))(x(2) − x̂)

are the zero-vectors. Due to the upper triangular shape of (I −αP (x2)Z)−1, the
last and the last but one aggregates of

(I − αP (x(2))B)−1(I − P (x(2)))(x(2) − x̂)

are the zero-vectors. If we repeat these considerations, we come to the conclu-
sion that all of the aggregates of x(n) are pairwise parallel to the corresponding
aggregates of x̂. Then according to Lemma 19, x(k+1) = x̂.

Let us come to the next result of this section. We consider the stationary
probability vector of matrix BC .

22 Theorem Let B be a block upper triangular stochastic matrix and let C
be a block-cyclic stochastic matrix constructed according to (8.3). Let I − BC =
I − αB − (1 − α)C = M − W be a splitting of nonnegative type where

M = I − αBdiag, W = αBoff + (1 − α)C,

where Bdiag is the block diagonal part of B and Boff is the block off-diagonal
part of B. Then the IAD method algorithm SPV(B; M−1W ; 1, 1; x(0); ε) gives
the exact solution within n + 1 sweeps.

Proof The structure of BC is block triangular with a single rank-one nonzero
block in the left lower corner in the matrix. The structure of the aggregated
matrix RBS(x(k)) is the same but considering elements instead of blocks. Then
for example in the case n = 4,

B =









αB11 αB12 + (1 − α)C12 αB13 αB14

0 αB22 αB23 + (1 − α)C23 αB24

0 0 αB33 αB34 + (1 − α)C34

(1 − α)C41 0 0 αB44









,
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and the structure of RBS(x(k)) is

RBS(x(k)) = R









α × × ×
0 × × ×
0 0 × ×

(1 − α) 0 0 ×









S(x(k)).

The block sparsity structure of T is

T =









0 × × ×
0 0 × ×
0 0 0 ×
× 0 0 0









.

Since M = I − αBdiag and Wn,1 = is a rank-one matrix then

x̂(n) = β1
nx

(1)
(n)

for some real β1
n, and the last columns of S(x(1)) and that of S(x̂) are equal.

Then in the next step, the last row and the last column of the aggregated matrix
RBS(x(1)) are equal to the last row and to the last column of the aggregated
matrix RBS(x̂), respectively. From the last row (only the first and the last
elements are nonzero in it) we see that the ratio of the first and the last elements
of the vector z2 is equal to the ratio of the 1-norms of the parts of the exact
solution x̂(1) and x̂(n). Further, the same result is obtained for the parts y2

1 and

y2
(n) of vector y2 = S(x(1))z2. Let us recall once more,

x̂(n) = β1
nx

(1)
(n) = γ2

ny2
(n)

for some real scalars β1
n, γ2

n. Thus from the last block row and from the last but
one block row of the matrix T = M−1W we get

x̂(n−1) = β2
n−1x

(2)
(n−1), x̂(n) = β

(2)
(n)x

2
(n),

for some scalars β2
n−1, β

2
n and that the ratio of the 1-norms of x

(2)
(n−1) and x

(2)
(n)

is equal to the ratio of the norms of x̂(n−1) and x̂(n).
In the third step of the IAD algorithm, the block columns n− 1 and n in the

aggregated matrix RBS(x(2)) are the same as in the matrix RBS(x̂). Thus the
ratios among the elements z1, zn−1, zn are equal to the ratios among the norms
of x̂(1), x̂(n−1), x̂(n). The same ratios are valid for the norms of y(1), y(n−1), y(n).
Thus the multiplication Ty = M−1Wy yields due to the nonzero block structure
of T ,

x̂(n−2) = β3
n−2x

(3)
(n−2), x̂(n−1) = β3

n−1x
(3)
(n−1), x̂(n) = β3

nx
(3)
(n).

Then we get similarly in the fourth step the proper ratios among the norms
of the parts n − 3, n − 2, n − 1, n of y from the solution of principal eigenvector
of aggregated matrix, and further,

x̂(n−3) = β4
(n−3)x

(4)
(n−3), . . . , x̂(n) = β4

(n)x
(4)
(n)
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from the correcting step.
Following these considerations, we can see that after k, k ≤ n sweeps of the

IAD algorithm, we have

x̂(n−(k−1)) = βk
n−(k−1)x

(k(n−(k−1))), . . . , x̂(n) = βk
nx

(k)
(n).

Especially, after n steps, all of the aggregates of x(n) are parallel to the corre-
sponding parts of the exact solution x̂. Now using Lemma 19 we get x(n+1) = x̂.

23 Remark The ordering the blocks in the block-cyclic matrix C is the im-
portant assumption in Theorem 22. The fast convergence couldn’t be obtained,
without some additional requirements, for any other ordering of the blocks, for
example, for such of the type

C =









0 0 0 ×
× 0 0 0
0 × 0 0
0 0 × 0









.

24 Remark If the examined matrix B is block diagonal (instead of block upper
triangular), we get the exact solution after at most two sweeps of the IAD method
algorithm SPV(B; M−1W ; 1, 1; x0; ε). It is the consequence of Theorem 20.

The introduced theorems give rise to guessing that a special reordering may
speed up the convergence of the IAD methods. After performing such a proce-
dure it can be seen that a block diagonal or a block triangular reordered matrix
B is obtained . Even if an appropriate structure is not obtained exactly, the con-
vergence is faster than in case of the originally ordered matrix in many practical
examples. Some numerical experiments shown in the next subsection confirm
these claims.

8.1 Numerical experiments

The main goal of this section is to compare the convergence of some of the IAD
methods applied for different types of perturbing the initial stochastic matrix
B and for different types of reorderings of the matrix B. We have in mind the
perturbation a) by a rank-one stochastic matrix , b) by a block cyclic stochastic
matrix and c) by a special combination of a block diagonal and block cyclic
matrix. These three types of stochastic matrices correspond to the matrices BP ,
BC nad BS defined by (8.4), (8.5) and (8.6), respectively.

As it turned out in our experiments, a reordering of the matrix may influence
the speed of the convergence significantly. That is also a reason why we try to
use two special reordering methods, in order to obtain the nonzero structure of
B more appropriate for the faster convergence.

One of the ways how to perform reordering is the Tarjan’s algorithm [10]
which finds all the strongly connected parts of the incidence graph structure
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of the stochastic matrix. In other words, the algorithm leads to a symmetric
reordering of the matrix which yields the block triangular structure with irre-
ducible diagonal blocks. We can also use a threshold adaptation of this algorithm,
where only the indices j, k of elements bjk greater than some positive constant θ
are treated as the edges of the graph. The complexity of the method corresponds
to the number of nonzero elements of the matrix. Let us stress, that in practical
examples, the speed of convergence is better for the reordered matrix even if the
irreducible diagonal blocks do not correspond to the aggregation blocks.

The second algorithm used in our experiments is a special symmetric reorder-
ing which tries to move great elements in each column to the first ”subdiagonal”.
The algorithm finds the greatest value in the column among the elements with
row indices which were not previously checked. According to this, a path is found
in the graph, and the corresponding reordering is fixed. An interruption of the
graph path, when all elements in a column have been tested, can be treated in
several different manner. When no further nonzero element can be found in the
actuell column, a new starting vertex is chosen. For example, it may correspond
to the column with the lowest index still not visited. We can call this method
as ”following the maximal column elements”. Such reordering is not unique and
may have no positive influence on the speed of convergence. However, both these
types of reordering end up with almost identical conclusions when very sparse
matrices are considered.

In the first test, matrix B is a sparse block triangular column stochastic
matrix of the size 1000. We compute the stationary probability vector of BC .
Before testing, the columns and the rows are randomly symmetrically permuted.
Then several reorderings are considered: Tarjan’s threshold reordering, ordering
following the maximal columns elements, and the original state without reorder-
ing. In the tests we observe the norms of the residual vectors in each step of the
IAD methods, see Fig. 1. The line without markers corresponds to the power
method, the circled line correspods to the algorithm SPV(B; M−1W ; 1, 1; x0; ε)
used for the matrix without any ordering rows and columns. The lines marked
by asterisks and crosses belong to this algorithm used after Tarjan’s reordering
and ”maximal subdiagonal” reordering, respectively.

The second test is performed for the 5000 × 5000 part of the Stanford ma-
trix [11], see Fig. 2. The residuals are displayed for power method, for the method
SPV(B; M−1W ; 1, 1; x0; ε) and for this method with reordering by Tarjan’s algo-
rithm and by ”maximal subdiagonal” reordering, respectively. The corresponding
lines are the black line without markers, the black line with circles, the blue line
with stars and the red line with pluses, respectively.

9 Google-like applications

9.1 A motivating example

We are going to examine the following system of problems parametrized by
parameter α ∈ (1

2 , 1):

G(α) = αG(1) + (1 − α)G(2),
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Fig. 1. The graphical plot of the norms of the residuals of the algorithm
SPV(B; M−1W ; 1, 1; x0; ε) for matrix BC, where N = 1000, n = 10 and B
is block upper triangular.
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Fig. 2. The graphical plot of the norms of the residuals of the IAD algorithm
SPV(B; M−1W ; 1, 1; x0; ε) for matrix BP , where N = 5000, n = 10 and B is a
part of the Stanford matrix.
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where G(1) is a (column) stochastic matrix and G(2) a suitable (low rank) irre-
ducible stochastic matrix.

A prototype of results we would like to establish is the following one presented
as

25 Theorem Suppose G(2) = veT , where v is a vector with all its components
strictly positive and eT = (1, ..., 1), eT v = 1, i.e. G(1) represents a rank-one
primitive stochastic matrix.

Then
γ(G(α)) ≤ α.

26 Remark To prove the above theorem is very easy and there is a lot of
proofs using very different means. Among the existing proofs there are some
quite elementary ones. Our proof does not belong to such category. The reason
is that our intention is to prove a more general result and we did not have success
with elementary methods. A direction of our generalization is led by the fact that
the dyadic matrices studied in Section 8 are fast convergent similar just as do
rank-one matrices applied in the Google search engine. One of the most compact
proofs is presented in [12], see also [13, p.46].

A new approach to computing the PageRank is proposed by applying some
variant from a class of aggregation/disaggregation iterative methods. In con-
trast to frequently used rank-one perturbations in constructing the appropriate
Markov chain transition matrix our novelty allows perturbations of arbitrary
rank. Similarly, the iteration matrix of the aggregation/disaggregation iterative
process is a rank p perturbation of an analog of the original iteration matrix
used for power iterations as standard.

Great interest to investigations of modern techniques in communication and
information retrieval led to a complex and massive research of appropriate com-
puter systems such as web search engines, their parts and combinations. A nice
and nearly complete source of information concerning the mathematics behind
the research of the Google type search engine is available in the monograph of
A. Langville and C.D. Meyer [13].

The PageRank computations are of particular interest. PageRank became
a frequent problem discussed in specialized scientific literature. This problem
influenced quite many areas of research mainly within Mathematics and Com-
puter Sciences in general and Numerical Algebra in particular. Our interest in
PageRank computations will be reflected in analysis of certain type of iterative
processes in the spirit of the title of this contribution.

In connection with computing the PageRank utilizing the power method
a problem arises to estimate the spectral radius of a convex combination of
two stochastic matrices. Our approach is based on application of some suitable
variant from a class of iterative aggregation/diaggregation methods (IAD) [14,
pp.307-342], [5]. A similar problem of estimating the rate of convergence arises as
well. Our goal will be to show that though the IAD approach allows more general
models of computing the PageRank than those exploiting the power method the
rate of convergence remains the same. Actually, it is identical with the α > 1/2
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in the convex combination of the initial Markov chain matrix and the p-rank
perturbation.

Proof of Theorem 25 First we determine the Perron eigenvector of G(α).
Let x̂(α) denote the Perron eigenvector. It is easy to see that x̂(α) is strictly

positive and it can be normalized as follows

eT x̂(α) = 1.

It follows that
x̂(α) = G(α)x̂(α) = αG(1)x̂(α) + (1 − α)v

and

x̂(α) =

[

1

1 − α
(I − αB(1))

]−1

v.

Thus, the Perron projection of G(α) reads

Q(α) = x̂(α)eT .

We check easily that

Q(α)G(α)Q(α) = G(α)Q(α) = Q(α)

and

(I − Q(α))G(2) (I − Q(α)) =
(

G(2) − Q(α)
)

(I − Q(α)) = G(2) (I − G(α)) = 0.

(9.1)
The validity of the statement of the Theorem follows from the relation

G(α) = Q(α) + (I − Q(α)) αG(1) (I − Q(α)) .

The above proof opens a way to generalizations. A crucial point in the above
proof is a special kind of relationship between the original transition matrix G(1)

and the perturbation G(2) consisting of equality (9.1).

9.2 Rank-p perturbations

Since aggregation/disaggregation iterative methods behave very friendly with
respect to cyclic matrices [1], [5] it is natural to manage computing the PageRank
via IAD methods. An appropriate analysis is to be provided in this section.

Similarly as in Subsection 9.1 we are going to consider a convex combination
of two stochastic matrices B(α) where B(1) is arbitrary and B(2) possesses a
particular form. The only difference can be seen in the fact that the iteration
matrix is based on a more general splitting. The iteration matrix coincided with
the transition matrix B(α). It should be mentioned that the just mentioned
fact has only theoretical value, in practice an implementation of the proposed
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approach might be very costly and would require computer technique which is
still too advanced in standard measures. Some attempts have successfully been
made with rather simple splittings, e.g. the IAD iteration matrix coincided with
the transition matrix T (α) = B(α).

To construct the iteration matrix we assume the matrices B(1) and B(2) to
be written in a block form and then let

I − B(α) = I − B
(1)

diag
− αB

(1)

off
− (1 − α)B

(2)

off
, (9.2)

where
B(t) = B

(1)

diag
+ B

(t)

off
, t = 1, 2,

B
(2)

off
=











0 0 . . . 0 B
(2)
1p

B
(2)
1p 0 . . . 0 0
. . . . . . .

0 0 . . . B
(2)
1p 0











(9.3)

and
B

(2)
1p = v1c(np)

T , B
(2)
jj−1 = vjc(nj−1), j = 2, ..., p

with

vT = (vT
1 , ..., vT

p ), cT = (c(n1)
T , ..., c(np))

T , eT = (1, ..., 1) = (e(n1)
T , .., e(np)

T )

assuming that all the components of v are positive real numbers and vector c is
such

(

I − (B
(1)

diag
)T

)

e = f, fT =
(

fT
(1), ..., f

T
(p)

)

and
fT
(j)v

(j) = 1, j = 1, ..., p.

Splitting (9.2) defines iteration matrix

T (α) =
(

I − B
(1)

diag

)−1 [

αB
(1)

off
+ (1 − α)B

(2)

off

]

= αT (1) + (1 − α)T (2)

and one can check easily that T (2) is block p-cyclic, irreducible and

(T (α))
T

f = f.

It follows that T (α) is irreducible and hence, it possesses a unique Perron eigen-
vector x(α). If we normalize this vector by setting

fT x(α) = 1,

we obtain the Perron projection Q1(α)

Q1(α) = x(α)fT =
(

x(α)fT
)2

= [Q1(α)]2 .

Our goal will be
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27 Theorem Irreducibility of matrix B(2) implies that T (α) can be expressed
in the form

T (α) =

p
∑

t=1

λt−1Qt(α) + α(I − Q1(α))Z(1)(T )(I − Q1(α)), λ = exp
2πi

p
,

where

Qt(α) = y(t)
(

f (t)
)T

= (I − Q1(α))
[

αQ
(1)
t + (1 − α)Q

(2)
t

]

(I − Q1(α)) , t > 1,

T (1) =

p
∑

t=1

λt−1Q
(1)
t + Z(1)(T ), T (2) =

p
∑

t=1

λt−1Q
(2)
t

and

y(1)(α) = x(α),
(

y(t)(α)
)T

=
(

λt
(

x(α)(1)
)T

, ..., λpt
(

x(α)(p)

)T
)

, t > 1.

Furthermore, the spectrum σ(T ) = σ(αT (1))
⋃p

t=1{λ
t} and

τ(T (α)) = max {|µ| : µ ∈ σ(T (α)), µ 6= λt, t = 1, ..., p} ≤ α.

Let us mention two obvious facts

28 Proposition The assumption that B(2) as well as T (α) are both p-cyclic
implies that T (1) is p-cyclic too.

29 Proposition Perron projection of T (α) and matrix T (2) satisfy

Q1(α)T (2) = Q1(α) (9.4)

and
Q1(α)

[

T (2) − Q1(α)
]

= 0. (9.5)

Proof Both relations (9.4) and (9.5) are immediate consequences of the fol-
lowing relations

(T (α))
T

f = f =
(

T (1)
)T

f.

Proof of Theorem 27 Relations (9.4) and (9.5) are direct consequences of
the hypothesis concerning cyclicity of T (α) [7].

According to Proposition 29 we have

T (α) = Q1(α)Q1(α) + (I − Q1(α))T (α)(I − Q1(α)))

= Q1(α) + (I − Q1(α))αT (1)(I − Q1(α))

=
∑p

t=1 λt−1Qt(α)) + (I − Q1(α))αZ(1)(T )(I − Q1(α))
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We see that

σ (T (α)) =

p
⋃

j=1

{

λj
}

∪ σ
(

αZ(1)(T )
)

and thus,

τ(T (α)) = αρ
(

Z(1)(T )
)

≤ α.

The proof is complete.

30 Remark It is easy to see that all the statements of Theorem 27 hold in a
more general situation in which the iteration matrices are not formed on basis
of splittings of some Markov chain.

Actually, we have.

31 Theorem Assume g ∈ RN possesses all coordinates strictly positive and
T (j), j = 1, 2 are g-stochastic matrices and T (2) is irreducible and p-cyclic. If
T (α) = αT (1) + (1 − α)T (2) is p-cyclic then

τ(T (α)) ≤ αρ(T (1)).

10 Some further experiments

Let Xjk,
∑p

j=1 = Nj denote a randomly chosen nj ×nk matrix with nonnegative
reals. A transition matrix B is obtained by ”normalizing” each of the blocks X
in order to obtain a column stochastic matrix of the form

B(φ) = Bdiag + φBoff

where

Bdiag =









β11X11 . . . . 0
0 β22X22 . . 0 0
. . . . . .
0 0 . . . βppXpp









,

Boff =









0 0 . . 0 β1pX1p0
β21X21 . . . 0 0

. . . . . .
0 0 . . βpp−1Xpp−1 0









Parameter φ > 0 is utilized in order to test influence of cyclicity. Actually, all the
examples considered possess the same kind of cyclic character, i.e. concerning
the incidence graf of the corresponding matrices.

A solution vector is defined as x(f), where f is the smallest index for which
‖x(f−1) − f (f)‖ < ε = 10−15 and the norm used is the l2 norm.

We let
A(φ) = I − B(φ) = M − W
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and compare the following block methods

MM [4] M = I

KMS [15] M = I − Bdiag − L(Boff), where L(Boff) denotes the lower

block triangle of Boff

Vant [16] M = I − Bdiag

Block Jacobi, Block Gauss-Seidel methods diverge.

N = 1000, φ = 1
index of cyclicity number of iteration sweeps

p power method MM KMS Vant

10 624 12 10 11
20 2526 13 11 12
30 5877 14 12 13
40 9935 15 13 13
50 15570 16 14 14
60 23730 17 14 14
70 31960 17 14 15
80 42060 18 15 15
90 51430 18 15 15

100 60810 18 15 15

N = 1000, φ = 1/10

index of cyclicity number of iteration sweeps
p power MM KMS Vant

10 1874 13 7 7
20 7330 15 8 8
30 16730 16 8 8
40 29160 18 9 9
50 45190 19 9 9
60 67210 20 9 9
70 89210 21 9 9
80 118700 22 9 9
90 144300 22 9 9

100 175900 24 9 9
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N = 1000, φ = 10

index of cyclicity number of iteration sweeps
p power MM KMS Vant

10 1877 13 12 13
20 7348 14 14 14
30 18110 16 16 16
40 28720 17 17 17
50 44800 18 17 17
60 71200 18 18 18
70 96900 19 19 19
80 127700 20 19 20
90 155900 20 20 20

100 171200 21 20 21

The results obtained lead to conclusion that the convergence effects show a
similar behavior as do the appropriate examples in absence of cyclicity. In our
experiments, since the power method with matrix B is convergent the control
case MM is acyclic we conclude that cyclic character of the studied examples is
preferable in comparison with the standard procedures. Even more, the difficul-
ties concerned with treating problems with cyclic transition matrices reported
in some respected sources such as [14] are absent in our computations.

11 Concluding remarks

– The IAD algorithms are shown to be suitable for computing stationary prob-
ability vectors of general MC’s. Roughly speaking, the more cyclicity the
better; cyclicity helps more than primitivity of the iteration matrix.

– Most of the IAD algorithms are very suitable for computations on parallel
architectures. This remark concerns in particular the IAD algorithms exploit-
ing inverses of the diagonal blocks as preconditioner, i.e. M = I − Bdiag as

utilized in our scheme for PageRank computations.

– The above mentioned properties will find applications in modelling real world
problems (railway reliability, Google search engine etc.)
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